adapted dislotungsten; does not converge with large(r) coefficients...
This commit is contained in:
parent
715bc1bb83
commit
dd3d5483d6
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
|||
Subproject commit b4a2af3be9551e267a10554b1692a81b935882fd
|
||||
Subproject commit 4125c71c17a7f876b9766c52f0d7ca7d5e8110a5
|
|
@ -92,8 +92,9 @@ module function plastic_dislotungsten_init() result(myPlasticity)
|
|||
real(pREAL),dimension(:), allocatable :: &
|
||||
f_edge, & !< edge character fraction of total dislocation density
|
||||
rho_mob_0, & !< initial dislocation density
|
||||
rho_dip_0, & !< initial dipole density
|
||||
a !< non-Schmid coefficients
|
||||
rho_dip_0 !< initial dipole density
|
||||
real(pREAL), dimension(:,:), allocatable :: &
|
||||
a_nS !< non-Schmid coefficients
|
||||
character(len=:), allocatable :: &
|
||||
refs, &
|
||||
extmsg
|
||||
|
@ -153,12 +154,14 @@ module function plastic_dislotungsten_init() result(myPlasticity)
|
|||
prm%P_sl = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph))
|
||||
|
||||
if (phase_lattice(ph) == 'cI') then
|
||||
a = pl%get_as1dReal('a_nonSchmid_110',defaultVal = emptyRealArray)
|
||||
prm%P_nS_pos = crystal_nonSchmidMatrix(N_sl,a,+1)
|
||||
prm%P_nS_neg = crystal_nonSchmidMatrix(N_sl,a,-1)
|
||||
allocate(a_nS(3,size(pl%get_as1dReal('a_nonSchmid_110',defaultVal=emptyRealArray))))
|
||||
a_nS(1,:) = pl%get_as1dReal('a_nonSchmid_110',defaultVal=emptyRealArray)
|
||||
prm%P_nS_pos = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph),nonSchmidCoefficients=a_nS,sense=+1)
|
||||
prm%P_nS_neg = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph),nonSchmidCoefficients=a_nS,sense=-1)
|
||||
deallocate(a_nS)
|
||||
else
|
||||
prm%P_nS_pos = prm%P_sl
|
||||
prm%P_nS_neg = prm%P_sl
|
||||
prm%P_nS_pos = +prm%P_sl
|
||||
prm%P_nS_neg = -prm%P_sl
|
||||
end if
|
||||
|
||||
prm%dipoleformation = .not. pl%get_asBool('no_dipole_formation', defaultVal=.false.)
|
||||
|
@ -280,9 +283,9 @@ pure module subroutine dislotungsten_LpAndItsTangent(Lp,dLp_dMp, &
|
|||
Lp !< plastic velocity gradient
|
||||
real(pREAL), dimension(3,3,3,3), intent(out) :: &
|
||||
dLp_dMp !< derivative of Lp with respect to the Mandel stress
|
||||
real(pREAL), dimension(3,3), intent(in) :: &
|
||||
real(pREAL), dimension(3,3), intent(in) :: &
|
||||
Mp !< Mandel stress
|
||||
integer, intent(in) :: &
|
||||
integer, intent(in) :: &
|
||||
ph, &
|
||||
en
|
||||
|
||||
|
@ -291,8 +294,7 @@ pure module subroutine dislotungsten_LpAndItsTangent(Lp,dLp_dMp, &
|
|||
real(pREAL) :: &
|
||||
T !< temperature
|
||||
real(pREAL), dimension(param(ph)%sum_N_sl) :: &
|
||||
dot_gamma_pos,dot_gamma_neg, &
|
||||
ddot_gamma_dtau_pos,ddot_gamma_dtau_neg
|
||||
dot_gamma, ddot_gamma_dtau
|
||||
|
||||
|
||||
T = thermal_T(ph,en)
|
||||
|
@ -301,13 +303,14 @@ pure module subroutine dislotungsten_LpAndItsTangent(Lp,dLp_dMp, &
|
|||
|
||||
associate(prm => param(ph))
|
||||
|
||||
call kinetics(Mp,T,ph,en,dot_gamma_pos,dot_gamma_neg,ddot_gamma_dtau_pos,ddot_gamma_dtau_neg)
|
||||
call kinetics(Mp,T,ph,en, dot_gamma,ddot_gamma_dtau)
|
||||
do i = 1, prm%sum_N_sl
|
||||
Lp = Lp + (dot_gamma_pos(i)+dot_gamma_neg(i))*prm%P_sl(1:3,1:3,i)
|
||||
Lp = Lp + dot_gamma(i)*prm%P_sl(1:3,1:3,i)
|
||||
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
||||
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
|
||||
+ ddot_gamma_dtau_pos(i) * prm%P_sl(k,l,i) * prm%P_nS_pos(m,n,i) &
|
||||
+ ddot_gamma_dtau_neg(i) * prm%P_sl(k,l,i) * prm%P_nS_neg(m,n,i)
|
||||
+ ddot_gamma_dtau(i) * prm%P_sl(k,l,i) &
|
||||
* merge(prm%P_nS_pos(m,n,i), &
|
||||
prm%P_nS_neg(m,n,i), dot_gamma(i)>0.0_pREAL)
|
||||
end do
|
||||
|
||||
end associate
|
||||
|
@ -329,52 +332,50 @@ module function dislotungsten_dotState(Mp,ph,en) result(dotState)
|
|||
dotState
|
||||
|
||||
real(pREAL), dimension(param(ph)%sum_N_sl) :: &
|
||||
dot_gamma_pos, dot_gamma_neg,&
|
||||
tau_pos,&
|
||||
tau_neg, &
|
||||
tau_eff, &
|
||||
v_cl, &
|
||||
dot_rho_dip_formation, &
|
||||
dot_rho_dip_climb, &
|
||||
d_hat
|
||||
real(pREAL) :: &
|
||||
mu, T
|
||||
mu, nu, T
|
||||
|
||||
|
||||
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph), &
|
||||
dot_rho_mob => dotState(indexDotState(ph)%rho_mob(1):indexDotState(ph)%rho_mob(2)), &
|
||||
dot_rho_dip => dotState(indexDotState(ph)%rho_dip(1):indexDotState(ph)%rho_dip(2)), &
|
||||
dot_gamma_sl => dotState(indexDotState(ph)%gamma_sl(1):indexDotState(ph)%gamma_sl(2)))
|
||||
dot_gamma => dotState(indexDotState(ph)%gamma_sl(1):indexDotState(ph)%gamma_sl(2)))
|
||||
|
||||
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||
nu = elastic_nu(ph,en,prm%isotropic_bound)
|
||||
T = thermal_T(ph,en)
|
||||
|
||||
call kinetics(Mp,T,ph,en,&
|
||||
dot_gamma_pos,dot_gamma_neg, &
|
||||
tau_pos_out = tau_pos,tau_neg_out = tau_neg)
|
||||
dot_gamma, tau = tau_eff)
|
||||
|
||||
dot_gamma_sl = abs(dot_gamma_pos+dot_gamma_neg)
|
||||
dot_gamma = abs(dot_gamma)
|
||||
|
||||
where(dEq0((tau_pos+tau_neg)*0.5_pREAL))
|
||||
where(dEq0(dot_gamma))
|
||||
dot_rho_dip_formation = 0.0_pREAL
|
||||
dot_rho_dip_climb = 0.0_pREAL
|
||||
else where
|
||||
d_hat = math_clip(3.0_pREAL*mu*prm%b_sl/(16.0_pREAL*PI*abs(tau_pos+tau_neg)*0.5_pREAL), &
|
||||
prm%d_caron, & ! lower limit
|
||||
dst%Lambda_sl(:,en)) ! upper limit
|
||||
dot_rho_dip_formation = merge(2.0_pREAL*(d_hat-prm%d_caron)*stt%rho_mob(:,en)*dot_gamma_sl/prm%b_sl, &
|
||||
d_hat = math_clip(mu*prm%b_sl/(8.0_pREAL*PI*(1.0_pREAL-nu)*tau_eff), &
|
||||
left = prm%d_caron, & ! lower limit
|
||||
right = dst%Lambda_sl(:,en)) ! upper limit
|
||||
dot_rho_dip_formation = merge(dot_gamma * 2.0_pREAL*(d_hat-prm%d_caron)/prm%b_sl * stt%rho_mob(:,en), &
|
||||
0.0_pREAL, &
|
||||
prm%dipoleformation)
|
||||
v_cl = (3.0_pREAL*mu*prm%D_0*exp(-prm%Q_cl/(K_B*T))*prm%f_at/(TAU*K_B*T)) &
|
||||
v_cl = (3.0_pREAL*mu*prm%D_0*exp(-prm%Q_cl/(K_B*T))*prm%f_at/(2.0_pREAL*PI*K_B*T)) &
|
||||
* (1.0_pREAL/(d_hat+prm%d_caron))
|
||||
dot_rho_dip_climb = (4.0_pREAL*v_cl*stt%rho_dip(:,en))/(d_hat-prm%d_caron) ! ToDo: Discuss with Franz: Stress dependency?
|
||||
end where
|
||||
|
||||
dot_rho_mob = dot_gamma_sl/(prm%b_sl*dst%Lambda_sl(:,en)) & ! multiplication
|
||||
- dot_rho_dip_formation &
|
||||
- (2.0_pREAL*prm%d_caron)/prm%b_sl*stt%rho_mob(:,en)*dot_gamma_sl ! Spontaneous annihilation of 2 edges
|
||||
dot_rho_mob = dot_gamma / (prm%b_sl*dst%Lambda_sl(:,en)) & ! multiplication
|
||||
- dot_rho_dip_formation &
|
||||
- dot_gamma * 2.0_pREAL*prm%d_caron/prm%b_sl * stt%rho_mob(:,en) ! spontaneous annihilation of 2 edges
|
||||
dot_rho_dip = dot_rho_dip_formation &
|
||||
- (2.0_pREAL*prm%d_caron)/prm%b_sl*stt%rho_dip(:,en)*dot_gamma_sl & ! Spontaneous annihilation of an edge with a dipole
|
||||
- dot_rho_dip_climb
|
||||
- dot_rho_dip_climb &
|
||||
- dot_gamma * 2.0_pREAL*prm%d_caron/prm%b_sl * stt%rho_dip(:,en) ! spontaneous annihilation of an edge with a dipole
|
||||
|
||||
end associate
|
||||
|
||||
|
@ -457,51 +458,44 @@ end subroutine plastic_dislotungsten_result
|
|||
! at the end since some of them are optional.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure subroutine kinetics(Mp,T,ph,en, &
|
||||
dot_gamma_pos,dot_gamma_neg,ddot_gamma_dtau_pos,ddot_gamma_dtau_neg,tau_pos_out,tau_neg_out)
|
||||
dot_gamma,ddot_gamma_dtau,tau)
|
||||
|
||||
real(pREAL), dimension(3,3), intent(in) :: &
|
||||
real(pREAL), dimension(3,3), intent(in) :: &
|
||||
Mp !< Mandel stress
|
||||
real(pREAL), intent(in) :: &
|
||||
real(pREAL), intent(in) :: &
|
||||
T !< temperature
|
||||
integer, intent(in) :: &
|
||||
integer, intent(in) :: &
|
||||
ph, &
|
||||
en
|
||||
|
||||
real(pREAL), intent(out), dimension(param(ph)%sum_N_sl) :: &
|
||||
dot_gamma_pos, &
|
||||
dot_gamma_neg
|
||||
real(pREAL), intent(out), optional, dimension(param(ph)%sum_N_sl) :: &
|
||||
ddot_gamma_dtau_pos, &
|
||||
ddot_gamma_dtau_neg, &
|
||||
tau_pos_out, &
|
||||
tau_neg_out
|
||||
real(pREAL), dimension(param(ph)%sum_N_sl), intent(out) :: &
|
||||
dot_gamma
|
||||
real(pREAL), dimension(param(ph)%sum_N_sl), optional, intent(out) :: &
|
||||
ddot_gamma_dtau, &
|
||||
tau
|
||||
|
||||
real(pREAL), dimension(param(ph)%sum_N_sl) :: &
|
||||
StressRatio, &
|
||||
StressRatio_p,StressRatio_pminus1, &
|
||||
dvel, &
|
||||
tau_pos, tau_neg, tau_eff, &
|
||||
t_n, t_k, dtk,dtn
|
||||
integer :: j
|
||||
t_n,t_k, dtk,dtn
|
||||
integer :: i
|
||||
|
||||
|
||||
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
||||
|
||||
do j = 1, prm%sum_N_sl
|
||||
tau_pos(j) = math_tensordot(Mp,prm%P_nS_pos(1:3,1:3,j))
|
||||
tau_neg(j) = math_tensordot(Mp,prm%P_nS_neg(1:3,1:3,j))
|
||||
end do
|
||||
tau_pos = [(math_tensordot(Mp,prm%P_nS_pos(1:3,1:3,i)),i=1,prm%sum_N_sl)]
|
||||
tau_neg = [(math_tensordot(Mp,prm%P_nS_neg(1:3,1:3,i)),i=1,prm%sum_N_sl)]
|
||||
tau_eff = math_clip(merge(tau_pos,tau_neg, tau_pos>tau_neg) - dst%tau_pass(:,en),left = 0.0_pREAL)
|
||||
|
||||
if (present(tau_pos_out)) tau_pos_out = tau_pos
|
||||
if (present(tau_neg_out)) tau_neg_out = tau_neg
|
||||
if (present(tau)) tau = tau_eff
|
||||
|
||||
associate(BoltzmannRatio => prm%Q_s/(K_B*T), &
|
||||
b_rho_half => stt%rho_mob(:,en) * prm%b_sl * 0.5_pREAL, &
|
||||
b_rho => stt%rho_mob(:,en) * prm%b_sl, &
|
||||
effectiveLength => dst%Lambda_sl(:,en) - prm%w)
|
||||
|
||||
tau_eff = abs(tau_pos)-dst%tau_pass(:,en)
|
||||
|
||||
significantPositiveTau: where(tau_eff > tol_math_check)
|
||||
where(tau_eff > tol_math_check)
|
||||
StressRatio = tau_eff/prm%tau_Peierls
|
||||
StressRatio_p = StressRatio** prm%p
|
||||
StressRatio_pminus1 = StressRatio**(prm%p-1.0_pREAL)
|
||||
|
@ -510,53 +504,21 @@ pure subroutine kinetics(Mp,T,ph,en, &
|
|||
/ (prm%omega*effectiveLength)
|
||||
t_k = effectiveLength * prm%B /(2.0_pREAL*prm%b_sl*tau_eff) ! corrected eq. (14)
|
||||
|
||||
dot_gamma_pos = b_rho_half * sign(prm%h/(t_n + t_k),tau_pos)
|
||||
else where significantPositiveTau
|
||||
dot_gamma_pos = 0.0_pREAL
|
||||
end where significantPositiveTau
|
||||
dot_gamma = b_rho * prm%h/(t_n + t_k) * merge(+1.0_pREAL,-1.0_pREAL, tau_pos>tau_neg)
|
||||
else where
|
||||
dot_gamma = 0.0_pREAL
|
||||
end where
|
||||
|
||||
if (present(ddot_gamma_dtau_pos)) then
|
||||
significantPositiveTau2: where(abs(tau_pos)-dst%tau_pass(:,en) > tol_math_check)
|
||||
if (present(ddot_gamma_dtau)) then
|
||||
where(tau_eff > tol_math_check)
|
||||
dtn = -1.0_pREAL * t_n * BoltzmannRatio * prm%p * prm%q * (1.0_pREAL-StressRatio_p)**(prm%q - 1.0_pREAL) &
|
||||
* StressRatio_pminus1 / prm%tau_Peierls
|
||||
dtk = -1.0_pREAL * t_k / tau_pos
|
||||
dtk = -1.0_pREAL * t_k / tau_eff
|
||||
|
||||
dvel = -1.0_pREAL * prm%h * (dtk + dtn) / (t_n + t_k)**2
|
||||
|
||||
ddot_gamma_dtau_pos = b_rho_half * dvel
|
||||
else where significantPositiveTau2
|
||||
ddot_gamma_dtau_pos = 0.0_pREAL
|
||||
end where significantPositiveTau2
|
||||
end if
|
||||
|
||||
tau_eff = abs(tau_neg)-dst%tau_pass(:,en)
|
||||
|
||||
significantNegativeTau: where(tau_eff > tol_math_check)
|
||||
StressRatio = tau_eff/prm%tau_Peierls
|
||||
StressRatio_p = StressRatio** prm%p
|
||||
StressRatio_pminus1 = StressRatio**(prm%p-1.0_pREAL)
|
||||
|
||||
t_n = prm%b_sl*exp(BoltzmannRatio*(1.0_pREAL-StressRatio_p) ** prm%q) &
|
||||
/ (prm%omega*effectiveLength)
|
||||
t_k = effectiveLength * prm%B /(2.0_pREAL*prm%b_sl*tau_eff) ! corrected eq. (14)
|
||||
|
||||
dot_gamma_neg = b_rho_half * sign(prm%h/(t_n + t_k),tau_neg)
|
||||
else where significantNegativeTau
|
||||
dot_gamma_neg = 0.0_pREAL
|
||||
end where significantNegativeTau
|
||||
|
||||
if (present(ddot_gamma_dtau_neg)) then
|
||||
significantNegativeTau2: where(abs(tau_neg)-dst%tau_pass(:,en) > tol_math_check)
|
||||
dtn = -1.0_pREAL * t_n * BoltzmannRatio * prm%p * prm%q * (1.0_pREAL-StressRatio_p)**(prm%q - 1.0_pREAL) &
|
||||
* StressRatio_pminus1 / prm%tau_Peierls
|
||||
dtk = -1.0_pREAL * t_k / tau_neg
|
||||
|
||||
dvel = -1.0_pREAL * prm%h * (dtk + dtn) / (t_n + t_k)**2
|
||||
|
||||
ddot_gamma_dtau_neg = b_rho_half * dvel
|
||||
else where significantNegativeTau2
|
||||
ddot_gamma_dtau_neg = 0.0_pREAL
|
||||
end where significantNegativeTau2
|
||||
ddot_gamma_dtau = -1.0_pREAL * dot_gamma * (dtn + dtk) / (t_n + t_k)
|
||||
else where
|
||||
ddot_gamma_dtau = 0.0_pREAL
|
||||
end where
|
||||
end if
|
||||
|
||||
end associate
|
||||
|
|
Loading…
Reference in New Issue