avoid global variables

This commit is contained in:
Martin Diehl 2020-12-30 11:03:13 +01:00
parent 9d09721689
commit dd23bec9aa
3 changed files with 41 additions and 54 deletions

View File

@ -44,8 +44,6 @@ module constitutive
type(rotation), dimension(:,:,:), allocatable :: &
crystallite_orientation !< current orientation
real(pReal), dimension(:,:,:,:,:), allocatable, public :: &
crystallite_P !< 1st Piola-Kirchhoff stress per grain
type :: tTensorContainer
real(pReal), dimension(:,:,:), allocatable :: data
@ -194,6 +192,11 @@ module constitutive
real(pReal), dimension(3,3) :: F_e
end function constitutive_mech_getF_e
module function constitutive_mech_getP(co,ip,el) result(P)
integer, intent(in) :: co, ip, el
real(pReal), dimension(3,3) :: P
end function constitutive_mech_getP
module function constitutive_thermal_T(co,ip,el) result(T)
integer, intent(in) :: co, ip, el
real(pReal) :: T
@ -411,6 +414,7 @@ module constitutive
constitutive_restartRead, &
integrateSourceState, &
constitutive_mech_setF, &
constitutive_mech_getP, &
constitutive_mech_getLp, &
constitutive_mech_getF, &
constitutive_mech_getS, &
@ -877,7 +881,6 @@ subroutine crystallite_init
iMax = discretization_nIPs
eMax = discretization_Nelems
allocate(crystallite_P(3,3,cMax,iMax,eMax),source=0.0_pReal)
allocate(crystallite_orientation(cMax,iMax,eMax))
num_crystallite => config_numerics%get('crystallite',defaultVal=emptyDict)

View File

@ -24,6 +24,7 @@ submodule(constitutive) constitutive_mech
constitutive_mech_Li, &
constitutive_mech_Lp, &
constitutive_mech_S, &
constitutive_mech_P, &
! converged value at end of last solver increment
constitutive_mech_Fi0, &
constitutive_mech_Fp0, &
@ -363,6 +364,7 @@ module subroutine mech_init
allocate(constitutive_mech_Lp0(phases%length))
allocate(constitutive_mech_Lp(phases%length))
allocate(constitutive_mech_S(phases%length))
allocate(constitutive_mech_P(phases%length))
allocate(constitutive_mech_S0(phases%length))
allocate(constitutive_mech_partitionedS0(phases%length))
@ -383,6 +385,7 @@ module subroutine mech_init
allocate(constitutive_mech_Lp0(ph)%data(3,3,Nconstituents))
allocate(constitutive_mech_Lp(ph)%data(3,3,Nconstituents))
allocate(constitutive_mech_S(ph)%data(3,3,Nconstituents),source=0.0_pReal)
allocate(constitutive_mech_P(ph)%data(3,3,Nconstituents),source=0.0_pReal)
allocate(constitutive_mech_S0(ph)%data(3,3,Nconstituents),source=0.0_pReal)
allocate(constitutive_mech_partitionedS0(ph)%data(3,3,Nconstituents),source=0.0_pReal)
allocate(constitutive_mech_F(ph)%data(3,3,Nconstituents))
@ -1027,7 +1030,7 @@ function integrateStress(F,subFp0,subFi0,Delta_t,co,ip,el) result(broken)
call math_invert33(Fp_new,devNull,error,invFp_new)
if (error) return ! error
crystallite_P (1:3,1:3,co,ip,el) = matmul(matmul(F,invFp_new),matmul(S,transpose(invFp_new)))
constitutive_mech_P(ph)%data(1:3,1:3,me) = matmul(matmul(F,invFp_new),matmul(S,transpose(invFp_new)))
constitutive_mech_S(ph)%data(1:3,1:3,me) = S
constitutive_mech_Lp(ph)%data(1:3,1:3,me) = Lpguess
constitutive_mech_Li(ph)%data(1:3,1:3,me) = Liguess
@ -1381,29 +1384,28 @@ subroutine crystallite_results(group,ph)
select case (output_constituent(ph)%label(ou))
case('F')
call results_writeDataset(group//'/mechanics/',constitutive_mech_F(ph)%data,output_constituent(ph)%label(ou),&
call results_writeDataset(group//'/mechanics/',constitutive_mech_F(ph)%data,'F',&
'deformation gradient','1')
case('F_e')
call results_writeDataset(group//'/mechanics/',constitutive_mech_Fe(ph)%data,output_constituent(ph)%label(ou),&
call results_writeDataset(group//'/mechanics/',constitutive_mech_Fe(ph)%data,'F_e',&
'elastic deformation gradient','1')
case('F_p')
call results_writeDataset(group//'/mechanics/',constitutive_mech_Fp(ph)%data,output_constituent(ph)%label(ou),&
call results_writeDataset(group//'/mechanics/',constitutive_mech_Fp(ph)%data,'F_p', &
'plastic deformation gradient','1')
case('F_i')
call results_writeDataset(group//'/mechanics/',constitutive_mech_Fi(ph)%data,output_constituent(ph)%label(ou),&
call results_writeDataset(group//'/mechanics/',constitutive_mech_Fi(ph)%data,'F_i', &
'inelastic deformation gradient','1')
case('L_p')
call results_writeDataset(group//'/mechanics/',constitutive_mech_Lp(ph)%data,output_constituent(ph)%label(ou),&
call results_writeDataset(group//'/mechanics/',constitutive_mech_Lp(ph)%data,'L_p', &
'plastic velocity gradient','1/s')
case('L_i')
call results_writeDataset(group//'/mechanics/',constitutive_mech_Li(ph)%data,output_constituent(ph)%label(ou),&
call results_writeDataset(group//'/mechanics/',constitutive_mech_Li(ph)%data,'L_i', &
'inelastic velocity gradient','1/s')
case('P')
selected_tensors = select_tensors(crystallite_P,ph)
call results_writeDataset(group//'/mechanics/',selected_tensors,output_constituent(ph)%label(ou),&
call results_writeDataset(group//'/mechanics/',constitutive_mech_P(ph)%data,'P', &
'First Piola-Kirchhoff stress','Pa')
case('S')
call results_writeDataset(group//'/mechanics/',constitutive_mech_S(ph)%data,output_constituent(ph)%label(ou),&
call results_writeDataset(group//'/mechanics/',constitutive_mech_S(ph)%data,'S', &
'Second Piola-Kirchhoff stress','Pa')
case('O')
select case(lattice_structure(ph))
@ -1430,33 +1432,6 @@ subroutine crystallite_results(group,ph)
contains
!------------------------------------------------------------------------------------------------
!> @brief select tensors for output
!------------------------------------------------------------------------------------------------
function select_tensors(dataset,ph)
integer, intent(in) :: ph
real(pReal), dimension(:,:,:,:,:), intent(in) :: dataset
real(pReal), allocatable, dimension(:,:,:) :: select_tensors
integer :: el,ip,co,j
allocate(select_tensors(3,3,count(material_phaseAt==ph)*discretization_nIPs))
j=0
do el = 1, size(material_phaseAt,2)
do ip = 1, discretization_nIPs
do co = 1, size(material_phaseAt,1) !ToDo: this needs to be changed for varying Ngrains
if (material_phaseAt(co,el) == ph) then
j = j + 1
select_tensors(1:3,1:3,j) = dataset(1:3,1:3,co,ip,el)
endif
enddo
enddo
enddo
end function select_tensors
!--------------------------------------------------------------------------------------------------
!> @brief select rotations for output
!--------------------------------------------------------------------------------------------------
@ -1918,6 +1893,19 @@ module function constitutive_mech_getF_e(co,ip,el) result(F_e)
end function constitutive_mech_getF_e
! getter for non-mech (e.g. thermal)
module function constitutive_mech_getP(co,ip,el) result(P)
integer, intent(in) :: co, ip, el
real(pReal), dimension(3,3) :: P
P = constitutive_mech_P(material_phaseAt(co,el))%data(1:3,1:3,material_phaseMemberAt(co,ip,el))
end function constitutive_mech_getP
! setter for homogenization
module subroutine constitutive_mech_setF(F,co,ip,el)

View File

@ -111,7 +111,7 @@ module subroutine mech_partition(subF,ip,el)
integer, intent(in) :: &
ip, & !< integration point
el !< element number
integer :: co
real(pReal) :: F(3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
@ -149,35 +149,36 @@ module subroutine mech_homogenize(dt,ip,el)
integer :: co,ce
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
real(pReal) :: Ps(3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
ce = (el-1)* discretization_nIPs + ip
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
homogenization_P(1:3,1:3,ce) = crystallite_P(1:3,1:3,1,ip,el)
homogenization_P(1:3,1:3,ce) = constitutive_mech_getP(1,ip,el)
homogenization_dPdF(1:3,1:3,1:3,1:3,ce) = constitutive_mech_dPdF(dt,1,ip,el)
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
dPdFs(:,:,:,:,co) = constitutive_mech_dPdF(dt,co,ip,el)
Ps(:,:,co) = constitutive_mech_getP(co,ip,el)
enddo
call mech_isostrain_averageStressAndItsTangent(&
homogenization_P(1:3,1:3,ce), &
homogenization_dPdF(1:3,1:3,1:3,1:3,ce),&
crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
dPdFs, &
Ps,dPdFs, &
homogenization_typeInstance(material_homogenizationAt(el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
dPdFs(:,:,:,:,co) = constitutive_mech_dPdF(dt,co,ip,el)
Ps(:,:,co) = constitutive_mech_getP(co,ip,el)
enddo
call mech_RGC_averageStressAndItsTangent(&
homogenization_P(1:3,1:3,ce), &
homogenization_dPdF(1:3,1:3,1:3,1:3,ce),&
crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
dPdFs, &
Ps,dPdFs, &
homogenization_typeInstance(material_homogenizationAt(el)))
end select chosenHomogenization
@ -203,21 +204,16 @@ module function mech_updateState(subdt,subF,ip,el) result(doneAndHappy)
integer :: co
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
real(pReal) :: Fs(3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
real(pReal) :: Ps(3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
if (homogenization_type(material_homogenizationAt(el)) == HOMOGENIZATION_RGC_ID) then
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
dPdFs(:,:,:,:,co) = constitutive_mech_dPdF(subdt,co,ip,el)
Fs(:,:,co) = constitutive_mech_getF(co,ip,el)
Ps(:,:,co) = constitutive_mech_getP(co,ip,el)
enddo
doneAndHappy = &
mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
Fs, &
subF,&
subdt, &
dPdFs, &
ip, &
el)
doneAndHappy = mech_RGC_updateState(Ps,Fs,subF,subdt,dPdFs,ip,el)
else
doneAndHappy = .true.
endif