Merge branch 'seeds-module' into 'development'

Seeds module

See merge request damask/DAMASK!236
This commit is contained in:
Philip Eisenlohr 2020-09-25 06:38:38 +02:00
commit db8f6400f8
6 changed files with 183 additions and 14 deletions

View File

@ -344,6 +344,7 @@ Phenopowerlaw_singleSlip:
Pytest_grid:
stage: grid
script:
- module load $IntelCompiler $MPICH_Intel $PETSc_MPICH_Intel
- cd pytest
- pytest
except:

View File

@ -20,6 +20,12 @@ from ._result import Result # noqa
from ._geom import Geom # noqa
from ._material import Material # noqa
from . import solver # noqa
from . import util # noqa
from . import seeds # noqa
from . import grid_filters # noqa
from . import mechanics # noqa
# deprecated
Environment = _

View File

@ -212,7 +212,7 @@ class Geom:
return np.argmin(np.sum((np.broadcast_to(point,(len(seeds),3))-seeds)**2,axis=1) - weights)
@staticmethod
def from_Laguerre_tessellation(grid,size,seeds,weights,periodic=True):
def from_Laguerre_tessellation(grid,size,seeds,weights,material=None,periodic=True):
"""
Generate geometry from Laguerre tessellation.
@ -226,6 +226,9 @@ class Geom:
Position of the seed points in meter. All points need to lay within the box.
weights : numpy.ndarray of shape (seeds.shape[0])
Weights of the seeds. Setting all weights to 1.0 gives a standard Voronoi tessellation.
material : numpy.ndarray of shape (seeds.shape[0]), optional
Material ID of the seeds. Defaults to None, in which case materials are
consecutively numbered.
periodic : Boolean, optional
Perform a periodic tessellation. Defaults to True.
@ -245,22 +248,22 @@ class Geom:
result = pool.map_async(partial(Geom._find_closest_seed,seeds_p,weights_p), [coord for coord in coords])
pool.close()
pool.join()
material = np.array(result.get())
material_ = np.array(result.get())
if periodic:
material = material.reshape(grid*3)
material = material[grid[0]:grid[0]*2,grid[1]:grid[1]*2,grid[2]:grid[2]*2]%seeds.shape[0]
material_ = material_.reshape(grid*3)
material_ = material_[grid[0]:grid[0]*2,grid[1]:grid[1]*2,grid[2]:grid[2]*2]%seeds.shape[0]
else:
material = material.reshape(grid)
material_ = material_.reshape(grid)
return Geom(material = material+1,
return Geom(material = material_+1 if material is None else material[material_],
size = size,
comments = util.execution_stamp('Geom','from_Laguerre_tessellation'),
)
@staticmethod
def from_Voronoi_tessellation(grid,size,seeds,periodic=True):
def from_Voronoi_tessellation(grid,size,seeds,material=None,periodic=True):
"""
Generate geometry from Voronoi tessellation.
@ -272,15 +275,18 @@ class Geom:
Physical size of the geometry in meter.
seeds : numpy.ndarray of shape (:,3)
Position of the seed points in meter. All points need to lay within the box.
material : numpy.ndarray of shape (seeds.shape[0]), optional
Material ID of the seeds. Defaults to None, in which case materials are
consecutively numbered.
periodic : Boolean, optional
Perform a periodic tessellation. Defaults to True.
"""
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3)
KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds)
devNull,material = KDTree.query(coords)
devNull,material_ = KDTree.query(coords)
return Geom(material = material.reshape(grid)+1,
return Geom(material = (material_+1 if material is None else material[material_]).reshape(grid),
size = size,
comments = util.execution_stamp('Geom','from_Voronoi_tessellation'),
)

113
python/damask/seeds.py Normal file
View File

@ -0,0 +1,113 @@
from scipy import spatial as _spatial
import numpy as _np
from . import util
from . import grid_filters
def from_random(size,N_seeds,grid=None,seed=None):
"""
Random seeding in space.
Parameters
----------
size : numpy.ndarray of shape (3)
Physical size of the seeding domain.
N_seeds : int
Number of seeds.
grid : numpy.ndarray of shape (3), optional.
If given, ensures that all seeds initiate one grain if using a
standard Voronoi tessellation.
seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None.
If None, then fresh, unpredictable entropy will be pulled from the OS.
"""
rng = _np.random.default_rng(seed)
if grid is None:
coords = rng.random((N_seeds,3)) * size
else:
grid_coords = grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F')
coords = grid_coords[rng.choice(_np.prod(grid),N_seeds, replace=False)] \
+ _np.broadcast_to(size/grid,(N_seeds,3))*(rng.random((N_seeds,3))*.5-.25) # wobble without leaving grid
return coords
def from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=True,seed=None):
"""
Seeding in space according to a Poisson disc distribution.
Parameters
----------
size : numpy.ndarray of shape (3)
Physical size of the seeding domain.
N_seeds : int
Number of seeds.
N_candidates : int
Number of candidates to consider for finding best candidate.
distance : float
Minimum acceptable distance to other seeds.
periodic : boolean, optional
Calculate minimum distance for periodically repeated grid.
seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None.
If None, then fresh, unpredictable entropy will be pulled from the OS.
"""
rng = _np.random.default_rng(seed)
coords = _np.empty((N_seeds,3))
coords[0] = rng.random(3) * size
i = 1
progress = util._ProgressBar(N_seeds+1,'',50)
while i < N_seeds:
candidates = rng.random((N_candidates,3))*_np.broadcast_to(size,(N_candidates,3))
tree = _spatial.cKDTree(coords[:i],boxsize=size) if periodic else \
_spatial.cKDTree(coords[:i])
distances, dev_null = tree.query(candidates)
best = distances.argmax()
if distances[best] > distance: # require minimum separation
coords[i] = candidates[best] # maximum separation to existing point cloud
i += 1
progress.update(i)
return coords
def from_geom(geom,selection=None,invert=False,average=False,periodic=True):
"""
Create seed from existing geometry description.
Parameters
----------
geom : damask.Geom
Geometry, from which the material IDs are used as seeds.
selection : iterable of integers, optional
Material IDs to consider.
invert : boolean, false
Do not consider the material IDs given in selection. Defaults to False.
average : boolean, optional
Seed corresponds to center of gravity of material ID cloud.
periodic : boolean, optional
Center of gravity with periodic boundaries.
"""
material = geom.material.reshape((-1,1),order='F')
mask = _np.full(geom.grid.prod(),True,dtype=bool) if selection is None else \
_np.isin(material,selection,invert=invert)
coords = grid_filters.cell_coord0(geom.grid,geom.size).reshape(-1,3,order='F')
if not average:
return (coords[mask],material[mask])
else:
materials = _np.unique(material[mask])
coords_ = _np.zeros((materials.size,3),dtype=float)
for i,mat in enumerate(materials):
pc = (2*_np.pi*coords[material[:,0]==mat,:]-geom.origin)/geom.size
coords_[i] = geom.origin + geom.size / 2 / _np.pi * (_np.pi +
_np.arctan2(-_np.average(_np.sin(pc),axis=0),
-_np.average(_np.cos(pc),axis=0))) \
if periodic else \
_np.average(coords[material[:,0]==mat,:],axis=0)
return (coords_,materials)

View File

@ -83,6 +83,13 @@ class TestGeom:
with pytest.raises(ValueError):
Geom.load(tmpdir/'no_materialpoint.vtr')
def test_invalid_material(self):
with pytest.raises(TypeError):
Geom(np.zeros((3,3,3),dtype='complex'),np.ones(3))
def test_cast_to_int(self):
g = Geom(np.zeros((3,3,3)),np.ones(3))
assert g.material.dtype in np.sctypes['int']
@pytest.mark.parametrize('compress',[True,False])
def test_compress(self,default,tmpdir,compress):
@ -324,8 +331,8 @@ class TestGeom:
size = np.random.random(3) + 1.0
N_seeds= np.random.randint(10,30)
seeds = np.random.rand(N_seeds,3) * np.broadcast_to(size,(N_seeds,3))
Voronoi = Geom.from_Voronoi_tessellation( grid,size,seeds, periodic)
Laguerre = Geom.from_Laguerre_tessellation(grid,size,seeds,np.ones(N_seeds),periodic)
Voronoi = Geom.from_Voronoi_tessellation( grid,size,seeds, np.arange(N_seeds)+5,periodic)
Laguerre = Geom.from_Laguerre_tessellation(grid,size,seeds,np.ones(N_seeds),np.arange(N_seeds)+5,periodic)
assert geom_equal(Laguerre,Voronoi)
@ -337,7 +344,7 @@ class TestGeom:
weights= np.full((N_seeds),-np.inf)
ms = np.random.randint(1, N_seeds+1)
weights[ms-1] = np.random.random()
Laguerre = Geom.from_Laguerre_tessellation(grid,size,seeds,weights,np.random.random()>0.5)
Laguerre = Geom.from_Laguerre_tessellation(grid,size,seeds,weights,periodic=np.random.random()>0.5)
assert np.all(Laguerre.material == ms)
@ -349,7 +356,7 @@ class TestGeom:
material = np.ones(grid)
material[:,grid[1]//2:,:] = 2
if approach == 'Laguerre':
geom = Geom.from_Laguerre_tessellation(grid,size,seeds,np.ones(2),np.random.random()>0.5)
geom = Geom.from_Laguerre_tessellation(grid,size,seeds,np.ones(2),periodic=np.random.random()>0.5)
elif approach == 'Voronoi':
geom = Geom.from_Voronoi_tessellation(grid,size,seeds, np.random.random()>0.5)
geom = Geom.from_Voronoi_tessellation(grid,size,seeds, periodic=np.random.random()>0.5)
assert np.all(geom.material == material)

View File

@ -0,0 +1,36 @@
import pytest
import numpy as np
from scipy.spatial import cKDTree
from damask import seeds
from damask import Geom
class TestSeeds:
@pytest.mark.parametrize('grid',[None,np.ones(3,dtype='i')*10])
def test_from_random(self,grid):
N_seeds = np.random.randint(30,300)
size = np.ones(3) + np.random.random(3)
coords = seeds.from_random(size,N_seeds,grid)
assert (0<=coords).all() and (coords<size).all()
@pytest.mark.parametrize('periodic',[True,False])
def test_from_Poisson_disc(self,periodic):
N_seeds = np.random.randint(30,300)
N_candidates = N_seeds//15
distance = np.random.random()
size = np.ones(3)*distance*N_seeds
coords = seeds.from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=periodic)
min_dists, _ = cKDTree(coords,boxsize=size).query(coords, 2) if periodic else \
cKDTree(coords).query(coords, 2)
assert (0<= coords).all() and (coords<size).all() and np.min(min_dists[:,1])>=distance
def test_from_geom(self):
grid = np.random.randint(10,20,3)
N_seeds = np.random.randint(30,300)
size = np.ones(3) + np.random.random(3)
coords = seeds.from_random(size,N_seeds,grid)
geom_1 = Geom.from_Voronoi_tessellation(grid,size,coords)
coords,material = seeds.from_geom(geom_1)
geom_2 = Geom.from_Voronoi_tessellation(grid,size,coords,material)
assert (geom_2.material==geom_1.material).all()