Merge branch 'state-integration-one-loop' into 'development'

State integration one loop

See merge request damask/DAMASK!151
This commit is contained in:
Franz Roters 2020-04-01 16:13:37 +02:00
commit db1f215150
1 changed files with 41 additions and 137 deletions

View File

@ -1021,22 +1021,41 @@ subroutine integrateStateFPI
logical :: & logical :: &
nonlocalBroken nonlocalBroken
! --+>> PREGUESS FOR STATE <<+--
call update_dotState(1.0_pReal)
call update_state(1.0_pReal)
nonlocalBroken = .false. nonlocalBroken = .false.
!$OMP PARALLEL DO PRIVATE(sizeDotState,residuum_plastic,residuum_source,zeta,p,c) !$OMP PARALLEL DO PRIVATE(sizeDotState,residuum_plastic,residuum_source,zeta,p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2) do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if(crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e) .and. & if(crystallite_todo(g,i,e) .and. (.not. nonlocalBroken .or. crystallite_localPlasticity(g,i,e)) ) then
(.not. nonlocalBroken .or. crystallite_localPlasticity(g,i,e)) ) then
iteration: do NiterationState = 1, num%nState
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e) p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e)
crystallite_todo(g,i,e) = all(.not. IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do s = 1, phase_Nsources(p)
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. all(.not. IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c)))
enddo
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
sizeDotState = plasticState(p)%sizeDotState
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
+ plasticState(p)%dotState (1:sizeDotState,c) &
* crystallite_subdt(g,i,e)
do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState
sourceState(p)%p(s)%state(1:sizeDotState,c) = sourceState(p)%p(s)%subState0(1:sizeDotState,c) &
+ sourceState(p)%p(s)%dotState (1:sizeDotState,c) &
* crystallite_subdt(g,i,e)
enddo
iteration: do NiterationState = 1, num%nState
plasticState(p)%previousDotState2(:,c) = merge(plasticState(p)%previousDotState(:,c),& plasticState(p)%previousDotState2(:,c) = merge(plasticState(p)%previousDotState(:,c),&
0.0_pReal,& 0.0_pReal,&
NiterationState > 1) NiterationState > 1)
@ -1243,9 +1262,6 @@ subroutine integrateStateAdaptiveEuler
homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: & homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: &
residuum_source residuum_source
!--------------------------------------------------------------------------------------------------
! contribution to state and relative residui and from Euler integration
call update_dotState(1.0_pReal)
nonlocalBroken = .false. nonlocalBroken = .false.
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c) !$OMP PARALLEL DO PRIVATE(sizeDotState,p,c)
@ -1255,6 +1271,20 @@ subroutine integrateStateAdaptiveEuler
if(crystallite_todo(g,i,e) .and. (.not. nonlocalBroken .or. crystallite_localPlasticity(g,i,e)) ) then if(crystallite_todo(g,i,e) .and. (.not. nonlocalBroken .or. crystallite_localPlasticity(g,i,e)) ) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e) p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e)
crystallite_todo(g,i,e) = all(.not. IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do s = 1, phase_Nsources(p)
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. all(.not. IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c)))
enddo
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
sizeDotState = plasticState(p)%sizeDotState sizeDotState = plasticState(p)%sizeDotState
residuum_plastic(1:sizeDotState,g,i,e) = plasticState(p)%dotstate(1:sizeDotState,c) & residuum_plastic(1:sizeDotState,g,i,e) = plasticState(p)%dotstate(1:sizeDotState,c) &
@ -1298,18 +1328,6 @@ subroutine integrateStateAdaptiveEuler
if(.not. crystallite_todo(g,i,e)) cycle if(.not. crystallite_todo(g,i,e)) cycle
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
if(nonlocalBroken) where(.not. crystallite_localPlasticity) crystallite_todo = .false.
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
sizeDotState = plasticState(p)%sizeDotState sizeDotState = plasticState(p)%sizeDotState
residuum_plastic(1:sizeDotState,g,i,e) = residuum_plastic(1:sizeDotState,g,i,e) & residuum_plastic(1:sizeDotState,g,i,e) = residuum_plastic(1:sizeDotState,g,i,e) &
@ -1342,7 +1360,6 @@ end subroutine integrateStateAdaptiveEuler
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 4th order explicit Runge Kutta method !> @brief integrate stress, state with 4th order explicit Runge Kutta method
! ToDo: This is totally BROKEN: RK4dotState is never used!!!
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine integrateStateRK4 subroutine integrateStateRK4
@ -1661,10 +1678,6 @@ subroutine integrateStateRKCK45
crystallite_Fp(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e) g, i, e)
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
crystallite_todo(g,i,e) = integrateStress(g,i,e) crystallite_todo(g,i,e) = integrateStress(g,i,e)
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) & if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true. nonlocalBroken = .true.
@ -1692,29 +1705,6 @@ subroutine nonlocalConvergenceCheck
end subroutine nonlocalConvergenceCheck end subroutine nonlocalConvergenceCheck
!--------------------------------------------------------------------------------------------------
!> @brief Sets convergence flag based on "todo": every point that survived the integration (todo is
! still .true. is considered as converged
!> @details: For explicitEuler, RK4 and RKCK45, adaptive Euler and FPI have their on criteria
!--------------------------------------------------------------------------------------------------
subroutine setConvergenceFlag
integer :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g !< grain index in grain loop
!OMP DO PARALLEL PRIVATE
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
crystallite_converged(g,i,e) = crystallite_todo(g,i,e) .or. crystallite_converged(g,i,e) ! if still "to do" then converged per definition
enddo; enddo; enddo
!OMP END DO PARALLEL
end subroutine setConvergenceFlag
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief determines whether a point is converged !> @brief determines whether a point is converged
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -1732,92 +1722,6 @@ logical pure function converged(residuum,state,atol)
end function converged end function converged
!--------------------------------------------------------------------------------------------------
!> @brief Standard forwarding of state as state = state0 + dotState * (delta t)
!--------------------------------------------------------------------------------------------------
subroutine update_state(timeFraction)
real(pReal), intent(in) :: &
timeFraction
integer :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g, & !< grain index in grain loop
p, &
c, &
s, &
mySize
!$OMP PARALLEL DO PRIVATE(mySize,p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
mySize = plasticState(p)%sizeDotState
plasticState(p)%state(1:mySize,c) = plasticState(p)%subState0(1:mySize,c) &
+ plasticState(p)%dotState (1:mySize,c) &
* crystallite_subdt(g,i,e) * timeFraction
do s = 1, phase_Nsources(p)
mySize = sourceState(p)%p(s)%sizeDotState
sourceState(p)%p(s)%state(1:mySize,c) = sourceState(p)%p(s)%subState0(1:mySize,c) &
+ sourceState(p)%p(s)%dotState (1:mySize,c) &
* crystallite_subdt(g,i,e) * timeFraction
enddo
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
end subroutine update_state
!---------------------------------------------------------------------------------------------------
!> @brief Trigger calculation of all new rates
!> if NaN occurs, crystallite_todo is set to FALSE. Any NaN in a nonlocal propagates to all others
!---------------------------------------------------------------------------------------------------
subroutine update_dotState(timeFraction)
real(pReal), intent(in) :: &
timeFraction
integer :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g, & !< grain index in grain loop
p, &
c, &
s
logical :: &
nonlocalBroken
nonlocalBroken = .false.
!$OMP PARALLEL DO PRIVATE (p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if(crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e) .and. &
(.not. nonlocalBroken .or. crystallite_localPlasticity(g,i,e)) ) then
call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, &
crystallite_subdt(g,i,e)*timeFraction, g,i,e)
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
crystallite_todo(g,i,e) = all(.not. IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do s = 1, phase_Nsources(p)
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. all(.not. IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c)))
enddo
if (.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
if(nonlocalBroken) where(.not. crystallite_localPlasticity) crystallite_todo = .false.
end subroutine update_DotState
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates a jump in the state according to the current state and the current stress !> @brief calculates a jump in the state according to the current state and the current stress
!> returns true, if state jump was successfull or not needed. false indicates NaN in delta state !> returns true, if state jump was successfull or not needed. false indicates NaN in delta state