Finalized constitutive_Assignment (orientation to subips)
This commit is contained in:
parent
6fcf763054
commit
db12071577
|
@ -623,7 +623,7 @@ subroutine constitutive_Parse_MatTexDat(filename)
|
|||
!*********************************************************************
|
||||
use prec, only: pReal,pInt
|
||||
use IO, only: IO_error
|
||||
!use math, only: math_Mandel3333to66, math_Voigt66to3333
|
||||
use math, only: math_Mandel3333to66, math_Voigt66to3333
|
||||
implicit none
|
||||
|
||||
!* Definition of variables
|
||||
|
@ -631,7 +631,9 @@ character(len=*) filename
|
|||
character(len=80) part,formerPart
|
||||
integer(pInt) sectionCount,i,j,k
|
||||
|
||||
!-----------------------------
|
||||
!* First reading: number of materials and textures
|
||||
!-----------------------------
|
||||
!* determine material_maxN and texture_maxN from last respective parts
|
||||
open(1,FILE=filename,ACTION='READ',STATUS='OLD',ERR=100)
|
||||
part = '_dummy_'
|
||||
|
@ -645,7 +647,7 @@ do while (part/='')
|
|||
texture_maxN = sectionCount
|
||||
end select
|
||||
enddo
|
||||
!* Arrays allocation
|
||||
!* Array allocation
|
||||
allocate(material_CrystalStructure(material_maxN)) ; material_CrystalStructure=0_pInt
|
||||
allocate(material_Nslip(material_maxN)) ; material_Nslip=0_pInt
|
||||
allocate(material_C11(material_maxN)) ; material_C11=0.0_pReal
|
||||
|
@ -667,7 +669,9 @@ allocate(texture_NGauss(texture_maxN)) ; texture_NGauss=0_pInt
|
|||
allocate(texture_NFiber(texture_maxN)) ; texture_NFiber=0_pInt
|
||||
allocate(texture_NRandom(texture_maxN)) ; texture_NRandom=0_pInt
|
||||
|
||||
!-----------------------------
|
||||
!* Second reading: number of Gauss and Fiber
|
||||
!-----------------------------
|
||||
rewind(1)
|
||||
part = '_dummy_'
|
||||
do while (part/='')
|
||||
|
@ -678,13 +682,15 @@ do while (part/='')
|
|||
part = constitutive_Parse_UnknownPart(1)
|
||||
end select
|
||||
enddo
|
||||
!* Arrays allocation
|
||||
!* Array allocation
|
||||
texture_maxNGauss=maxval(texture_NGauss)
|
||||
texture_maxNFiber=maxval(texture_NFiber)
|
||||
allocate(texture_Gauss(5,texture_maxNGauss,texture_maxN)) ; texture_Gauss=0.0_pReal
|
||||
allocate(texture_Fiber(6,texture_maxNFiber,texture_maxN)) ; texture_Fiber=0.0_pReal
|
||||
|
||||
!-----------------------------
|
||||
!* Third reading: materials and textures are stored
|
||||
!-----------------------------
|
||||
rewind(1)
|
||||
part='_dummy_'
|
||||
do while (part/='')
|
||||
|
@ -725,7 +731,7 @@ do i=1,material_maxN
|
|||
material_Cslip_66(5,5,i)=material_C44(i)
|
||||
material_Cslip_66(6,6,i)=0.5_pReal*(material_C11(i)-material_C12(i))
|
||||
end select
|
||||
! material_Cslip_66(:,:,i) = math_Mandel3333to66(math_Voigt66to3333(material_Cslip_66(:,:,i)))
|
||||
material_Cslip_66(:,:,i) = math_Mandel3333to66(math_Voigt66to3333(material_Cslip_66(:,:,i)))
|
||||
enddo
|
||||
|
||||
|
||||
|
@ -741,52 +747,71 @@ subroutine constitutive_Assignment()
|
|||
!* This subroutine assign material parameters according to ipc,ip,el *
|
||||
!*********************************************************************
|
||||
use prec, only: pReal,pInt
|
||||
use math, only: math_sampleGaussOri,math_sampleFiberOri,math_sampleRandomOri,math_symmetricEulers,math_EulerToR
|
||||
use mesh, only: mesh_NcpElems,FE_Nips,FE_mapElemtype,mesh_maxNips,mesh_element
|
||||
use math, only: math_sampleGaussOri,math_sampleFiberOri,math_sampleRandomOri
|
||||
!use CPFEM, only: CPFEM_Fp_old
|
||||
use IO, only: IO_hybridIA
|
||||
use CPFEM, only: CPFEM_Fp_old
|
||||
implicit none
|
||||
|
||||
!* Definition of variables
|
||||
integer(pInt) i,j,k,l,m,g,s,Ngrains
|
||||
integer(pInt) e,i,j,k,l,m,o,g,s,Ngrains
|
||||
integer(pInt) matID,texID
|
||||
integer(pInt), dimension(texture_maxN) :: Ncomponents,Nsym,multiplicity,sumVolfrac
|
||||
real(pReal), dimension(3,4) :: Euler
|
||||
integer(pInt), dimension(:,:,:), allocatable :: hybridIA_population
|
||||
integer(pInt), dimension(texture_maxN) :: Ncomponents,Nsym,multiplicity,sumVolfrac,ODFmap,sampleCount
|
||||
real(pReal), dimension(3,4*(1+texture_maxNGauss+texture_maxNfiber)) :: Euler
|
||||
real(pReal), dimension(4*(1+texture_maxNGauss+texture_maxNfiber)) :: texVolfrac
|
||||
|
||||
! process textures
|
||||
o = 0_pInt ! ODF counter
|
||||
ODFmap = 0_pInt ! blank mapping
|
||||
sampleCount = 0_pInt ! count orientations assigned per texture
|
||||
|
||||
!* Check for random components
|
||||
do texID=1,texture_maxN
|
||||
if (texture_ODFfile(texID)=='') then
|
||||
sumVolfrac(texID) = sum(texture_gauss(5,:,texID))+sum(texture_fiber(6,:,texID))
|
||||
if (sumVolfrac(texID)<1.0_pReal) texture_NRandom(texID) = 1_pInt
|
||||
select case (texture_symmetry(texID))
|
||||
if (sumVolfrac(texID)<1.0_pReal) texture_NRandom(texID) = 1_pInt ! check whether random component missing
|
||||
select case (texture_symmetry(texID)) ! set symmetry factor
|
||||
case ('orthotropic')
|
||||
Nsym(texID) = 4
|
||||
Nsym(texID) = 4_pInt
|
||||
case ('monoclinic')
|
||||
Nsym(texID) = 2
|
||||
Nsym(texID) = 2_pInt
|
||||
case default
|
||||
Nsym(texID) = 1
|
||||
Nsym(texID) = 1_pInt
|
||||
end select
|
||||
Ncomponents(texID) = texture_NGauss(texID)+texture_NFiber(texID)+texture_NRandom(texID)
|
||||
else ! hybrid IA
|
||||
o = o+1
|
||||
ODFmap(texID) = o ! remember mapping
|
||||
Ncomponents(texID) = 1_pInt ! single "component"
|
||||
Nsym(texID) = 1_pInt ! no symmetry (use full ODF instead)
|
||||
endif
|
||||
! adjust multiplicity and number of grains per IP of components
|
||||
multiplicity(texID) = max(1_pInt,texture_Ngrains(texID)/Ncomponents(texID)/Nsym(texID))
|
||||
if (mod(texture_Ngrains(texID),Ncomponents(texID)*Nsym(texID)) /= 0_pInt) then
|
||||
texture_Ngrains(texID) = multiplicity(texID)*Ncomponents(texID)*Nsym(texID)
|
||||
write (6,*) 'changed Ngrains to',texture_Ngrains(texID),' for texture',texID
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
||||
!* Check for texture_totalNgrains
|
||||
!* publish globals
|
||||
constitutive_maxNgrains = maxval(texture_Ngrains)
|
||||
constitutive_maxNstatevars = material_maxNslip
|
||||
|
||||
!* calc texture_totalNgrains
|
||||
allocate(texture_totalNgrains(texture_maxN)) ; texture_totalNgrains=0_pInt
|
||||
do i=1,mesh_NcpElems
|
||||
texID=mesh_element(4,i)
|
||||
texID = mesh_element(4,i)
|
||||
texture_totalNgrains(texID) = texture_totalNgrains(texID) + FE_Nips(FE_mapElemtype(mesh_element(2,i)))*texture_Ngrains(texID)
|
||||
enddo
|
||||
|
||||
! generate hybridIA samplings for ODFfile textures to later draw from these populations
|
||||
! needs texture_sampleID(texID) which gets inc for each grain assigned
|
||||
allocate(hybridIA_population(3,maxval(texture_totalNgrains,ODFmap /= 0),o))
|
||||
do texID = 1,texture_maxN
|
||||
if (ODFmap(texID) > 0) &
|
||||
hybridIA_population(:,:,ODFmap(texID)) = IO_hybridIA(texture_totalNgrains(texID),texture_ODFfile(texID))
|
||||
enddo
|
||||
|
||||
!* Arrays allocation
|
||||
constitutive_maxNgrains=maxval(texture_Ngrains)
|
||||
constitutive_maxNstatevars=material_maxNslip
|
||||
!* Array allocation
|
||||
allocate(constitutive_Ngrains(mesh_maxNips,mesh_NcpElems)) ; constitutive_Ngrains=0_pInt
|
||||
allocate(constitutive_matID(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_matID=0_pInt
|
||||
allocate(constitutive_texID(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_texID=0_pInt
|
||||
|
@ -800,82 +825,65 @@ constitutive_state_new=0.0_pReal
|
|||
allocate(constitutive_Nresults(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_Nresults=0_pInt
|
||||
|
||||
!* Assignment
|
||||
g = 0_pInt
|
||||
do i=1,mesh_NcpElems
|
||||
matID=mesh_element(3,i)
|
||||
texID=mesh_element(4,i)
|
||||
if (texture_ODFfile(texID)=='') then
|
||||
do j=1,FE_Nips(FE_mapElemtype(mesh_element(2,i)))
|
||||
do e=1,mesh_NcpElems
|
||||
matID=mesh_element(3,e)
|
||||
texID=mesh_element(4,e)
|
||||
do i=1,FE_Nips(FE_mapElemtype(mesh_element(2,e)))
|
||||
g = 0_pInt ! grain counter
|
||||
do m = 1,multiplicity(texID)
|
||||
! *** gauss ***
|
||||
do k = 1,texture_nGauss(texID)
|
||||
Euler(:,1) = math_sampleGaussOri(texture_Gauss(1:3,k,texID),texture_Gauss(4,k,texID))
|
||||
Euler(:,2:4) = math_symmetricEulers(texture_symmetry(texID),Euler(:,1)) !always return 3x3 even if empty!!!
|
||||
do s = 1,Nsym(texID)
|
||||
g = g+1_pInt
|
||||
constitutive_matID(g,j,i)=matID
|
||||
constitutive_texID(g,j,i)=texID
|
||||
constitutive_MatVolFrac(g,j,i)=1.0_pReal
|
||||
constitutive_TexVolFrac(g,j,i)=texture_Gauss(5,k,texID)/multiplicity(texID)/Nsym(texID)
|
||||
! CPFEM_Fp_old(:,:,g,j,i) = math_EulerToR(Euler(:,s))
|
||||
o = 0_pInt
|
||||
if (texture_ODFfile(texID)=='') then
|
||||
do k = 1,texture_nGauss(texID) ! *** gauss ***
|
||||
o = o+1
|
||||
Euler(:,o) = math_sampleGaussOri(texture_Gauss(1:3,k,texID),texture_Gauss(4,k,texID))
|
||||
texVolFrac(o) = texture_Gauss(5,k,texID)
|
||||
enddo
|
||||
do k = 1,texture_nFiber(texID) ! *** fiber ***
|
||||
o = o+1
|
||||
Euler(:,o) = math_sampleFiberOri(texture_Fiber(1:2,k,texID),texture_Fiber(3:4,k,texID),texture_Fiber(5,k,texID))
|
||||
texVolFrac(o) = texture_Fiber(6,k,texID)
|
||||
enddo
|
||||
! *** fiber ***
|
||||
do k = 1,texture_nFiber(texID)
|
||||
Euler(:,1) = math_sampleFiberOri(texture_Fiber(1:2,k,texID),texture_Fiber(3:4,k,texID),texture_Fiber(5,k,texID))
|
||||
Euler(:,2:4) = math_symmetricEulers(texture_symmetry(texID),Euler(:,1)) !always return 3x3 even if empty!!!
|
||||
do s = 1,Nsym(texID)
|
||||
g = g+1_pInt
|
||||
constitutive_matID(g,j,i)=matID
|
||||
constitutive_texID(g,j,i)=texID
|
||||
constitutive_MatVolFrac(g,j,i)=1.0_pReal
|
||||
constitutive_TexVolFrac(g,j,i)=texture_Fiber(6,k,texID)/multiplicity(texID)/Nsym(texID)
|
||||
! CPFEM_Fp_old(:,:,g,j,i) = math_EulerToR(Euler(:,s))
|
||||
enddo
|
||||
enddo
|
||||
! *** random ***
|
||||
do k = 1,texture_nRandom(texID)
|
||||
Euler(:,1) = math_sampleRandomOri()
|
||||
Euler(:,2:4) = math_symmetricEulers(texture_symmetry(texID),Euler(:,1)) !always return 3x3 even if empty!!!
|
||||
do s = 1,Nsym(texID)
|
||||
g = g+1_pInt
|
||||
constitutive_matID(g,j,i)=matID
|
||||
constitutive_texID(g,j,i)=texID
|
||||
constitutive_MatVolFrac(g,j,i)=1.0_pReal
|
||||
constitutive_TexVolFrac(g,j,i)=(1.0_pReal-sumVolfrac(texID))/multiplicity(texID)/Nsym(texID)
|
||||
! CPFEM_Fp_old(:,:,g,j,i) = math_EulerToR(Euler(:,s))
|
||||
do k = 1,texture_nRandom(texID) ! *** random ***
|
||||
o = o+1
|
||||
Euler(:,o) = math_sampleRandomOri()
|
||||
texVolfrac(o) = 1.0_pReal-sumVolfrac(texID)
|
||||
enddo
|
||||
else ! hybrid IA
|
||||
o = 1 ! only singular orientation
|
||||
Euler(:,o) = hybridIA_population(:,1+sampleCount(texID),ODFmap(texID))
|
||||
texVolfrac(o) = 1.0_pReal
|
||||
endif
|
||||
if (Nsym(texID) > 1) then ! symmetry generates additional orientations
|
||||
forall (k=1:o)
|
||||
Euler(:,1+o+(Nsym(texID)-1)*(k-1):3+o+(Nsym(texID)-1)*(k-1)) = &
|
||||
math_symmetricEulers(texture_symmetry(texID),Euler(:,k))
|
||||
texVolfrac(1+o+(Nsym(texID)-1)*(k-1):3+o+(Nsym(texID)-1)*(k-1)) = texVolfrac(k)
|
||||
end forall
|
||||
endif
|
||||
do s = 1,Nsym(texID)*o ! loop over orientations to be assigned to ip (ex multiplicity)
|
||||
g = g+1 ! next "grain"
|
||||
sampleCount(texID) = sampleCount(texID)+1 ! next member of population
|
||||
constitutive_matID(g,i,e) = matID ! copy matID of element
|
||||
constitutive_texID(g,i,e) = texID ! copy texID of element
|
||||
constitutive_MatVolFrac(g,i,e) = 1.0_pReal ! singular material (so far)
|
||||
constitutive_TexVolFrac(g,i,e) = texVolfrac(s)/multiplicity(texID)/Nsym(texID)
|
||||
CPFEM_Fp_old(:,:,g,i,e) = math_EulerToR(Euler(:,s)) ! set plastic deformation gradient at t_0
|
||||
forall (l=1:constitutive_Nstatevars(g,i,e)) ! initialize state variables
|
||||
constitutive_state_old(l,g,i,e) = material_s0_slip(matID)
|
||||
constitutive_state_new(l,g,i,e) = material_s0_slip(matID)
|
||||
end forall
|
||||
enddo
|
||||
enddo ! multiplicity
|
||||
enddo ! ip
|
||||
else
|
||||
do j=1,FE_Nips(FE_mapElemtype(mesh_element(2,i)))
|
||||
do g=1,texture_Ngrains(texID)
|
||||
constitutive_matID(g,j,i)=matID
|
||||
constitutive_texID(g,j,i)=texID
|
||||
constitutive_MatVolFrac(g,j,i)=1.0_pReal
|
||||
constitutive_TexVolFrac(g,j,i)=1.0_pReal/texture_Ngrains(texID)
|
||||
CPFEM_Fp_old(:,:,g,j,i) = math_EulerToR(hybridIA_population(:,texture_hybridIAsample(texID)+g,texID))
|
||||
enddo
|
||||
texture_hybridIAsample(texID) = texture_hybridIAsample(texID) + texture_Ngrains(textID)
|
||||
enddo
|
||||
endif
|
||||
enddo ! End of cp_element
|
||||
enddo ! cp_element
|
||||
|
||||
! MISSING case of symmetry
|
||||
! MISSING
|
||||
!* Initialization of state variables
|
||||
!do l=1,material_Nstatevars(k,j,i)
|
||||
! constitutive_state_old(l,k,j,i)=material_s0_slip(constitutive_matID(k,j,i))
|
||||
! constitutive_state_new(l,k,j,i)=material_s0_slip(constitutive_matID(k,j,i))
|
||||
!enddo
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
function constitutive_HomogenizedC(ipc,ip,el)
|
||||
!*********************************************************************
|
||||
!* This function gives the homogenized elacticity matrix back *
|
||||
!* This function returns the homogenized elacticity matrix *
|
||||
!* INPUT: *
|
||||
!* - ipc : component-ID of current integration point *
|
||||
!* - ip : current integration point *
|
||||
|
|
Loading…
Reference in New Issue