Finalized constitutive_Assignment (orientation to subips)

This commit is contained in:
Luc Hantcherli 2007-04-04 13:57:32 +00:00
parent 6fcf763054
commit db12071577
1 changed files with 103 additions and 95 deletions

View File

@ -623,7 +623,7 @@ subroutine constitutive_Parse_MatTexDat(filename)
!********************************************************************* !*********************************************************************
use prec, only: pReal,pInt use prec, only: pReal,pInt
use IO, only: IO_error use IO, only: IO_error
!use math, only: math_Mandel3333to66, math_Voigt66to3333 use math, only: math_Mandel3333to66, math_Voigt66to3333
implicit none implicit none
!* Definition of variables !* Definition of variables
@ -631,7 +631,9 @@ character(len=*) filename
character(len=80) part,formerPart character(len=80) part,formerPart
integer(pInt) sectionCount,i,j,k integer(pInt) sectionCount,i,j,k
!-----------------------------
!* First reading: number of materials and textures !* First reading: number of materials and textures
!-----------------------------
!* determine material_maxN and texture_maxN from last respective parts !* determine material_maxN and texture_maxN from last respective parts
open(1,FILE=filename,ACTION='READ',STATUS='OLD',ERR=100) open(1,FILE=filename,ACTION='READ',STATUS='OLD',ERR=100)
part = '_dummy_' part = '_dummy_'
@ -645,7 +647,7 @@ do while (part/='')
texture_maxN = sectionCount texture_maxN = sectionCount
end select end select
enddo enddo
!* Arrays allocation !* Array allocation
allocate(material_CrystalStructure(material_maxN)) ; material_CrystalStructure=0_pInt allocate(material_CrystalStructure(material_maxN)) ; material_CrystalStructure=0_pInt
allocate(material_Nslip(material_maxN)) ; material_Nslip=0_pInt allocate(material_Nslip(material_maxN)) ; material_Nslip=0_pInt
allocate(material_C11(material_maxN)) ; material_C11=0.0_pReal allocate(material_C11(material_maxN)) ; material_C11=0.0_pReal
@ -667,7 +669,9 @@ allocate(texture_NGauss(texture_maxN)) ; texture_NGauss=0_pInt
allocate(texture_NFiber(texture_maxN)) ; texture_NFiber=0_pInt allocate(texture_NFiber(texture_maxN)) ; texture_NFiber=0_pInt
allocate(texture_NRandom(texture_maxN)) ; texture_NRandom=0_pInt allocate(texture_NRandom(texture_maxN)) ; texture_NRandom=0_pInt
!-----------------------------
!* Second reading: number of Gauss and Fiber !* Second reading: number of Gauss and Fiber
!-----------------------------
rewind(1) rewind(1)
part = '_dummy_' part = '_dummy_'
do while (part/='') do while (part/='')
@ -678,13 +682,15 @@ do while (part/='')
part = constitutive_Parse_UnknownPart(1) part = constitutive_Parse_UnknownPart(1)
end select end select
enddo enddo
!* Arrays allocation !* Array allocation
texture_maxNGauss=maxval(texture_NGauss) texture_maxNGauss=maxval(texture_NGauss)
texture_maxNFiber=maxval(texture_NFiber) texture_maxNFiber=maxval(texture_NFiber)
allocate(texture_Gauss(5,texture_maxNGauss,texture_maxN)) ; texture_Gauss=0.0_pReal allocate(texture_Gauss(5,texture_maxNGauss,texture_maxN)) ; texture_Gauss=0.0_pReal
allocate(texture_Fiber(6,texture_maxNFiber,texture_maxN)) ; texture_Fiber=0.0_pReal allocate(texture_Fiber(6,texture_maxNFiber,texture_maxN)) ; texture_Fiber=0.0_pReal
!-----------------------------
!* Third reading: materials and textures are stored !* Third reading: materials and textures are stored
!-----------------------------
rewind(1) rewind(1)
part='_dummy_' part='_dummy_'
do while (part/='') do while (part/='')
@ -725,7 +731,7 @@ do i=1,material_maxN
material_Cslip_66(5,5,i)=material_C44(i) material_Cslip_66(5,5,i)=material_C44(i)
material_Cslip_66(6,6,i)=0.5_pReal*(material_C11(i)-material_C12(i)) material_Cslip_66(6,6,i)=0.5_pReal*(material_C11(i)-material_C12(i))
end select end select
! material_Cslip_66(:,:,i) = math_Mandel3333to66(math_Voigt66to3333(material_Cslip_66(:,:,i))) material_Cslip_66(:,:,i) = math_Mandel3333to66(math_Voigt66to3333(material_Cslip_66(:,:,i)))
enddo enddo
@ -741,40 +747,57 @@ subroutine constitutive_Assignment()
!* This subroutine assign material parameters according to ipc,ip,el * !* This subroutine assign material parameters according to ipc,ip,el *
!********************************************************************* !*********************************************************************
use prec, only: pReal,pInt use prec, only: pReal,pInt
use math, only: math_sampleGaussOri,math_sampleFiberOri,math_sampleRandomOri,math_symmetricEulers,math_EulerToR
use mesh, only: mesh_NcpElems,FE_Nips,FE_mapElemtype,mesh_maxNips,mesh_element use mesh, only: mesh_NcpElems,FE_Nips,FE_mapElemtype,mesh_maxNips,mesh_element
use math, only: math_sampleGaussOri,math_sampleFiberOri,math_sampleRandomOri use IO, only: IO_hybridIA
!use CPFEM, only: CPFEM_Fp_old use CPFEM, only: CPFEM_Fp_old
implicit none implicit none
!* Definition of variables !* Definition of variables
integer(pInt) i,j,k,l,m,g,s,Ngrains integer(pInt) e,i,j,k,l,m,o,g,s,Ngrains
integer(pInt) matID,texID integer(pInt) matID,texID
integer(pInt), dimension(texture_maxN) :: Ncomponents,Nsym,multiplicity,sumVolfrac integer(pInt), dimension(:,:,:), allocatable :: hybridIA_population
real(pReal), dimension(3,4) :: Euler integer(pInt), dimension(texture_maxN) :: Ncomponents,Nsym,multiplicity,sumVolfrac,ODFmap,sampleCount
real(pReal), dimension(3,4*(1+texture_maxNGauss+texture_maxNfiber)) :: Euler
real(pReal), dimension(4*(1+texture_maxNGauss+texture_maxNfiber)) :: texVolfrac
! process textures
o = 0_pInt ! ODF counter
ODFmap = 0_pInt ! blank mapping
sampleCount = 0_pInt ! count orientations assigned per texture
!* Check for random components
do texID=1,texture_maxN do texID=1,texture_maxN
if (texture_ODFfile(texID)=='') then if (texture_ODFfile(texID)=='') then
sumVolfrac(texID) = sum(texture_gauss(5,:,texID))+sum(texture_fiber(6,:,texID)) sumVolfrac(texID) = sum(texture_gauss(5,:,texID))+sum(texture_fiber(6,:,texID))
if (sumVolfrac(texID)<1.0_pReal) texture_NRandom(texID) = 1_pInt if (sumVolfrac(texID)<1.0_pReal) texture_NRandom(texID) = 1_pInt ! check whether random component missing
select case (texture_symmetry(texID)) select case (texture_symmetry(texID)) ! set symmetry factor
case ('orthotropic') case ('orthotropic')
Nsym(texID) = 4 Nsym(texID) = 4_pInt
case ('monoclinic') case ('monoclinic')
Nsym(texID) = 2 Nsym(texID) = 2_pInt
case default case default
Nsym(texID) = 1 Nsym(texID) = 1_pInt
end select end select
Ncomponents(texID) = texture_NGauss(texID)+texture_NFiber(texID)+texture_NRandom(texID) Ncomponents(texID) = texture_NGauss(texID)+texture_NFiber(texID)+texture_NRandom(texID)
else ! hybrid IA
o = o+1
ODFmap(texID) = o ! remember mapping
Ncomponents(texID) = 1_pInt ! single "component"
Nsym(texID) = 1_pInt ! no symmetry (use full ODF instead)
endif
! adjust multiplicity and number of grains per IP of components
multiplicity(texID) = max(1_pInt,texture_Ngrains(texID)/Ncomponents(texID)/Nsym(texID)) multiplicity(texID) = max(1_pInt,texture_Ngrains(texID)/Ncomponents(texID)/Nsym(texID))
if (mod(texture_Ngrains(texID),Ncomponents(texID)*Nsym(texID)) /= 0_pInt) then if (mod(texture_Ngrains(texID),Ncomponents(texID)*Nsym(texID)) /= 0_pInt) then
texture_Ngrains(texID) = multiplicity(texID)*Ncomponents(texID)*Nsym(texID) texture_Ngrains(texID) = multiplicity(texID)*Ncomponents(texID)*Nsym(texID)
write (6,*) 'changed Ngrains to',texture_Ngrains(texID),' for texture',texID write (6,*) 'changed Ngrains to',texture_Ngrains(texID),' for texture',texID
endif endif
endif
enddo enddo
!* Check for texture_totalNgrains !* publish globals
constitutive_maxNgrains = maxval(texture_Ngrains)
constitutive_maxNstatevars = material_maxNslip
!* calc texture_totalNgrains
allocate(texture_totalNgrains(texture_maxN)) ; texture_totalNgrains=0_pInt allocate(texture_totalNgrains(texture_maxN)) ; texture_totalNgrains=0_pInt
do i=1,mesh_NcpElems do i=1,mesh_NcpElems
texID = mesh_element(4,i) texID = mesh_element(4,i)
@ -782,11 +805,13 @@ do i=1,mesh_NcpElems
enddo enddo
! generate hybridIA samplings for ODFfile textures to later draw from these populations ! generate hybridIA samplings for ODFfile textures to later draw from these populations
! needs texture_sampleID(texID) which gets inc for each grain assigned allocate(hybridIA_population(3,maxval(texture_totalNgrains,ODFmap /= 0),o))
do texID = 1,texture_maxN
if (ODFmap(texID) > 0) &
hybridIA_population(:,:,ODFmap(texID)) = IO_hybridIA(texture_totalNgrains(texID),texture_ODFfile(texID))
enddo
!* Arrays allocation !* Array allocation
constitutive_maxNgrains=maxval(texture_Ngrains)
constitutive_maxNstatevars=material_maxNslip
allocate(constitutive_Ngrains(mesh_maxNips,mesh_NcpElems)) ; constitutive_Ngrains=0_pInt allocate(constitutive_Ngrains(mesh_maxNips,mesh_NcpElems)) ; constitutive_Ngrains=0_pInt
allocate(constitutive_matID(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_matID=0_pInt allocate(constitutive_matID(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_matID=0_pInt
allocate(constitutive_texID(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_texID=0_pInt allocate(constitutive_texID(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_texID=0_pInt
@ -800,82 +825,65 @@ constitutive_state_new=0.0_pReal
allocate(constitutive_Nresults(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_Nresults=0_pInt allocate(constitutive_Nresults(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_Nresults=0_pInt
!* Assignment !* Assignment
g = 0_pInt do e=1,mesh_NcpElems
do i=1,mesh_NcpElems matID=mesh_element(3,e)
matID=mesh_element(3,i) texID=mesh_element(4,e)
texID=mesh_element(4,i) do i=1,FE_Nips(FE_mapElemtype(mesh_element(2,e)))
if (texture_ODFfile(texID)=='') then g = 0_pInt ! grain counter
do j=1,FE_Nips(FE_mapElemtype(mesh_element(2,i)))
do m = 1,multiplicity(texID) do m = 1,multiplicity(texID)
! *** gauss *** o = 0_pInt
do k = 1,texture_nGauss(texID) if (texture_ODFfile(texID)=='') then
Euler(:,1) = math_sampleGaussOri(texture_Gauss(1:3,k,texID),texture_Gauss(4,k,texID)) do k = 1,texture_nGauss(texID) ! *** gauss ***
Euler(:,2:4) = math_symmetricEulers(texture_symmetry(texID),Euler(:,1)) !always return 3x3 even if empty!!! o = o+1
do s = 1,Nsym(texID) Euler(:,o) = math_sampleGaussOri(texture_Gauss(1:3,k,texID),texture_Gauss(4,k,texID))
g = g+1_pInt texVolFrac(o) = texture_Gauss(5,k,texID)
constitutive_matID(g,j,i)=matID
constitutive_texID(g,j,i)=texID
constitutive_MatVolFrac(g,j,i)=1.0_pReal
constitutive_TexVolFrac(g,j,i)=texture_Gauss(5,k,texID)/multiplicity(texID)/Nsym(texID)
! CPFEM_Fp_old(:,:,g,j,i) = math_EulerToR(Euler(:,s))
enddo enddo
do k = 1,texture_nFiber(texID) ! *** fiber ***
o = o+1
Euler(:,o) = math_sampleFiberOri(texture_Fiber(1:2,k,texID),texture_Fiber(3:4,k,texID),texture_Fiber(5,k,texID))
texVolFrac(o) = texture_Fiber(6,k,texID)
enddo enddo
! *** fiber *** do k = 1,texture_nRandom(texID) ! *** random ***
do k = 1,texture_nFiber(texID) o = o+1
Euler(:,1) = math_sampleFiberOri(texture_Fiber(1:2,k,texID),texture_Fiber(3:4,k,texID),texture_Fiber(5,k,texID)) Euler(:,o) = math_sampleRandomOri()
Euler(:,2:4) = math_symmetricEulers(texture_symmetry(texID),Euler(:,1)) !always return 3x3 even if empty!!! texVolfrac(o) = 1.0_pReal-sumVolfrac(texID)
do s = 1,Nsym(texID)
g = g+1_pInt
constitutive_matID(g,j,i)=matID
constitutive_texID(g,j,i)=texID
constitutive_MatVolFrac(g,j,i)=1.0_pReal
constitutive_TexVolFrac(g,j,i)=texture_Fiber(6,k,texID)/multiplicity(texID)/Nsym(texID)
! CPFEM_Fp_old(:,:,g,j,i) = math_EulerToR(Euler(:,s))
enddo
enddo
! *** random ***
do k = 1,texture_nRandom(texID)
Euler(:,1) = math_sampleRandomOri()
Euler(:,2:4) = math_symmetricEulers(texture_symmetry(texID),Euler(:,1)) !always return 3x3 even if empty!!!
do s = 1,Nsym(texID)
g = g+1_pInt
constitutive_matID(g,j,i)=matID
constitutive_texID(g,j,i)=texID
constitutive_MatVolFrac(g,j,i)=1.0_pReal
constitutive_TexVolFrac(g,j,i)=(1.0_pReal-sumVolfrac(texID))/multiplicity(texID)/Nsym(texID)
! CPFEM_Fp_old(:,:,g,j,i) = math_EulerToR(Euler(:,s))
enddo enddo
else ! hybrid IA
o = 1 ! only singular orientation
Euler(:,o) = hybridIA_population(:,1+sampleCount(texID),ODFmap(texID))
texVolfrac(o) = 1.0_pReal
endif
if (Nsym(texID) > 1) then ! symmetry generates additional orientations
forall (k=1:o)
Euler(:,1+o+(Nsym(texID)-1)*(k-1):3+o+(Nsym(texID)-1)*(k-1)) = &
math_symmetricEulers(texture_symmetry(texID),Euler(:,k))
texVolfrac(1+o+(Nsym(texID)-1)*(k-1):3+o+(Nsym(texID)-1)*(k-1)) = texVolfrac(k)
end forall
endif
do s = 1,Nsym(texID)*o ! loop over orientations to be assigned to ip (ex multiplicity)
g = g+1 ! next "grain"
sampleCount(texID) = sampleCount(texID)+1 ! next member of population
constitutive_matID(g,i,e) = matID ! copy matID of element
constitutive_texID(g,i,e) = texID ! copy texID of element
constitutive_MatVolFrac(g,i,e) = 1.0_pReal ! singular material (so far)
constitutive_TexVolFrac(g,i,e) = texVolfrac(s)/multiplicity(texID)/Nsym(texID)
CPFEM_Fp_old(:,:,g,i,e) = math_EulerToR(Euler(:,s)) ! set plastic deformation gradient at t_0
forall (l=1:constitutive_Nstatevars(g,i,e)) ! initialize state variables
constitutive_state_old(l,g,i,e) = material_s0_slip(matID)
constitutive_state_new(l,g,i,e) = material_s0_slip(matID)
end forall
enddo enddo
enddo ! multiplicity enddo ! multiplicity
enddo ! ip enddo ! ip
else enddo ! cp_element
do j=1,FE_Nips(FE_mapElemtype(mesh_element(2,i)))
do g=1,texture_Ngrains(texID)
constitutive_matID(g,j,i)=matID
constitutive_texID(g,j,i)=texID
constitutive_MatVolFrac(g,j,i)=1.0_pReal
constitutive_TexVolFrac(g,j,i)=1.0_pReal/texture_Ngrains(texID)
CPFEM_Fp_old(:,:,g,j,i) = math_EulerToR(hybridIA_population(:,texture_hybridIAsample(texID)+g,texID))
enddo
texture_hybridIAsample(texID) = texture_hybridIAsample(texID) + texture_Ngrains(textID)
enddo
endif
enddo ! End of cp_element
! MISSING case of symmetry
! MISSING
!* Initialization of state variables
!do l=1,material_Nstatevars(k,j,i)
! constitutive_state_old(l,k,j,i)=material_s0_slip(constitutive_matID(k,j,i))
! constitutive_state_new(l,k,j,i)=material_s0_slip(constitutive_matID(k,j,i))
!enddo
end subroutine end subroutine
function constitutive_HomogenizedC(ipc,ip,el) function constitutive_HomogenizedC(ipc,ip,el)
!********************************************************************* !*********************************************************************
!* This function gives the homogenized elacticity matrix back * !* This function returns the homogenized elacticity matrix *
!* INPUT: * !* INPUT: *
!* - ipc : component-ID of current integration point * !* - ipc : component-ID of current integration point *
!* - ip : current integration point * !* - ip : current integration point *