diff --git a/python/damask/_rotation.py b/python/damask/_rotation.py index a2d26949d..9296f57b4 100644 --- a/python/damask/_rotation.py +++ b/python/damask/_rotation.py @@ -441,32 +441,68 @@ class Rotation: #---------- Quaternion ---------- @staticmethod def qu2om(qu): - """Quaternion to rotation matrix.""" - qq = qu[0]**2-(qu[1]**2 + qu[2]**2 + qu[3]**2) - om = np.diag(qq + 2.0*np.array([qu[1],qu[2],qu[3]])**2) + if len(qu.shape) == 1: + """Quaternion to rotation matrix.""" + qq = qu[0]**2-(qu[1]**2 + qu[2]**2 + qu[3]**2) + om = np.diag(qq + 2.0*np.array([qu[1],qu[2],qu[3]])**2) - om[1,0] = 2.0*(qu[2]*qu[1]+qu[0]*qu[3]) - om[0,1] = 2.0*(qu[1]*qu[2]-qu[0]*qu[3]) - om[2,1] = 2.0*(qu[3]*qu[2]+qu[0]*qu[1]) - om[1,2] = 2.0*(qu[2]*qu[3]-qu[0]*qu[1]) - om[0,2] = 2.0*(qu[1]*qu[3]+qu[0]*qu[2]) - om[2,0] = 2.0*(qu[3]*qu[1]-qu[0]*qu[2]) - return om if P > 0.0 else om.T + om[1,0] = 2.0*(qu[2]*qu[1]+qu[0]*qu[3]) + om[0,1] = 2.0*(qu[1]*qu[2]-qu[0]*qu[3]) + om[2,1] = 2.0*(qu[3]*qu[2]+qu[0]*qu[1]) + om[1,2] = 2.0*(qu[2]*qu[3]-qu[0]*qu[1]) + om[0,2] = 2.0*(qu[1]*qu[3]+qu[0]*qu[2]) + om[2,0] = 2.0*(qu[3]*qu[1]-qu[0]*qu[2]) + return om if P > 0.0 else om.T + else: + qq = qu[...,0:1]**2-(qu[...,1:2]**2 + qu[...,2:3]**2 + qu[...,3:4]**2) + om = np.block([qq + 2.0*qu[...,1:2]**2, + 2.0*(qu[...,2:3]*qu[...,1:2]+qu[...,0:1]*qu[...,3:4]), + 2.0*(qu[...,3:4]*qu[...,1:2]-qu[...,0:1]*qu[...,2:3]), + 2.0*(qu[...,1:2]*qu[...,2:3]-qu[...,0:1]*qu[...,3:4]), + qq + 2.0*qu[...,2:3]**2, + 2.0*(qu[...,3:4]*qu[...,2:3]+qu[...,0:1]*qu[...,1:2]), + 2.0*(qu[...,1:2]*qu[...,3:4]+qu[...,0:1]*qu[...,2:3]), + 2.0*(qu[...,2:3]*qu[...,3:4]-qu[...,0:1]*qu[...,1:2]), + qq + 2.0*qu[...,3:4]**2, + ]).reshape(qu.shape[:-1]+(3,3)) + return om # TODO: TRANSPOSE FOR P = 1 @staticmethod def qu2eu(qu): """Quaternion to Bunge-Euler angles.""" - q03 = qu[0]**2+qu[3]**2 - q12 = qu[1]**2+qu[2]**2 - chi = np.sqrt(q03*q12) - if np.abs(chi)< 1.e-6: - eu = np.array([np.arctan2(-P*2.0*qu[0]*qu[3],qu[0]**2-qu[3]**2), 0.0, 0.0]) if np.abs(q12)< 1.e-6 else \ - np.array([np.arctan2( 2.0*qu[1]*qu[2],qu[1]**2-qu[2]**2), np.pi, 0.0]) + if len(qu.shape) == 1: + q03 = qu[0]**2+qu[3]**2 + q12 = qu[1]**2+qu[2]**2 + chi = np.sqrt(q03*q12) + if np.abs(q03)< 1.e-6: + eu = np.array([np.arctan2(-P*2.0*qu[0]*qu[3],qu[0]**2-qu[3]**2), 0.0, 0.0]) + elif np.abs(q12)< 1.e-6: + eu = np.array([np.arctan2( 2.0*qu[1]*qu[2],qu[1]**2-qu[2]**2), np.pi, 0.0]) + else: + eu = np.array([np.arctan2((-P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]-qu[2]*qu[3])*chi ), + np.arctan2( 2.0*chi, q03-q12 ), + np.arctan2(( P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]+qu[2]*qu[3])*chi )]) else: - eu = np.array([np.arctan2((-P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]-qu[2]*qu[3])*chi ), - np.arctan2( 2.0*chi, q03-q12 ), - np.arctan2(( P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]+qu[2]*qu[3])*chi )]) + q02 = qu[...,0:1]*qu[...,2:3] + q13 = qu[...,1:2]*qu[...,3:4] + q01 = qu[...,0:1]*qu[...,1:2] + q23 = qu[...,2:3]*qu[...,3:4] + q03_s = qu[...,0:1]**2+qu[...,3:4]**2 + q12_s = qu[...,1:2]**2+qu[...,2:3]**2 + chi = np.sqrt(q03_s*q12_s) + eu = np.where(np.abs(q12_s) < 1.0e-6, + np.block([np.arctan2(-P*2.0*qu[...,0:1]*qu[...,3:4],qu[...,0:1]**2-qu[...,3:4]**2), + np.zeros(qu.shape[:-1]+(2,))]), + np.block([np.arctan2((-P*q02+q13)*chi, (-P*q01-q23)*chi), + np.arctan2( 2.0*chi, q03_s-q12_s ), + np.arctan2(( P*q02+q13)*chi, (-P*q01+q23)*chi)]) + ) + eu = np.where(np.abs(q03_s) < 1.0e-6, + np.block([np.arctan2( 2.0*qu[...,1:2]*qu[...,2:3],qu[...,1:2]**2-qu[...,2:3]**2), + np.ones( qu.shape[:-1]+(1,))*np.pi, + np.zeros(qu.shape[:-1]+(1,))]), + eu) # TODO: Where not needed # reduce Euler angles to definition range, i.e a lower limit of 0.0 eu[np.abs(eu)<1.e-6] = 0.0 eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu) @@ -479,38 +515,66 @@ class Rotation: Modified version of the original formulation, should be numerically more stable """ - if iszero(qu[1]**2+qu[2]**2+qu[3]**2): # set axis to [001] if the angle is 0/360 - ax = [ 0.0, 0.0, 1.0, 0.0 ] - elif np.abs(qu[0]) > 1.e-6: - s = np.sign(qu[0])/np.sqrt(qu[1]**2+qu[2]**2+qu[3]**2) - omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0)) - ax = [ qu[1]*s, qu[2]*s, qu[3]*s, omega ] + if len(qu.shape) == 1: + if iszero(np.sum(qu[1:4]**2)): # set axis to [001] if the angle is 0/360 + ax = np.array([ 0.0, 0.0, 1.0, 0.0 ]) + elif np.abs(qu[0]) > 1.e-6: + s = np.sign(qu[0])/np.sqrt(qu[1]**2+qu[2]**2+qu[3]**2) + omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0)) + ax = ax = np.array([ qu[1]*s, qu[2]*s, qu[3]*s, omega ]) + else: + ax = ax = np.array([ qu[1], qu[2], qu[3], np.pi]) else: - ax = [ qu[1], qu[2], qu[3], np.pi] - return np.array(ax) + with np.errstate(divide='ignore'): + s = np.sign(qu[...,0:1])/np.sqrt(qu[...,1:2]**2+qu[...,2:3]**2+qu[...,3:4]**2) + omega = 2.0 * np.arccos(np.clip(qu[...,0:1],-1.0,1.0)) + + ax = np.where(qu[...,0:1] < 1.0e-6, + np.block([qu[...,1:4],np.ones(qu.shape[:-1]+(1,))*np.pi]), + np.block([qu[...,1:4]*s,omega])) + ax = np.where(np.expand_dims(np.sum(np.abs(qu[:,1:4])**2,axis=-1) < 1.0e-6,-1), + [0.0, 0.0, 1.0, 0.0], ax) # TODO: Where not needed + return ax + @staticmethod def qu2ro(qu): """Quaternion to Rodrigues-Frank vector.""" - if iszero(qu[0]): - ro = [qu[1], qu[2], qu[3], np.inf] + if len(qu.shape) == 1: + if iszero(qu[0]): + ro = np.array([qu[1], qu[2], qu[3], np.inf]) + else: + s = np.linalg.norm([qu[1],qu[2],qu[3]]) + ro = np.array([0.0,0.0,P,0.0] if iszero(s) else \ + [ qu[1]/s, qu[2]/s, qu[3]/s, np.tan(np.arccos(np.clip(qu[0],-1.0,1.0)))]) else: - s = np.linalg.norm([qu[1],qu[2],qu[3]]) - ro = [0.0,0.0,P,0.0] if iszero(s) else \ - [ qu[1]/s, qu[2]/s, qu[3]/s, np.tan(np.arccos(np.clip(qu[0],-1.0,1.0)))] - - return np.array(ro) + s = np.expand_dims(np.linalg.norm(qu[...,1:4],axis=1),-1) + ro = np.where(np.abs(s) < 1.0e-12, + [0.0,0.0,P,0.0], + np.block([qu[...,1:2]/s,qu[...,2:3]/s,qu[...,3:4]/s, + np.tan(np.arccos(np.clip(qu[:,0:1],-1.0,1.0))) + ]) + ) + ro = np.where(np.abs(qu[...,0:1]) < 1.0e-12, + np.block([qu[...,1:2], qu[...,2:3], qu[...,3:4], np.ones(qu.shape[:-1]+(1,))*np.inf]),ro) # TODO: Where not needed + return ro @staticmethod def qu2ho(qu): """Quaternion to homochoric vector.""" - if np.isclose(qu[0],1.0): - ho = np.array([ 0.0, 0.0, 0.0 ]) + if len(qu.shape) == 1: + if np.isclose(qu[0],1.0): + ho = np.zeros(3) + else: + omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0)) + ho = np.array([qu[1], qu[2], qu[3]]) + f = 0.75 * ( omega - np.sin(omega) ) + ho = ho/np.linalg.norm(ho) * f**(1./3.) else: - omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0)) - ho = np.array([qu[1], qu[2], qu[3]]) - f = 0.75 * ( omega - np.sin(omega) ) - ho = ho/np.linalg.norm(ho) * f**(1./3.) + omega = 2.0 * np.arccos(np.clip(qu[...,0:1],-1.0,1.0)) + ho = np.where(np.abs(omega) < 1.0e-12, + np.zeros(3), + qu[...,1:4]/np.linalg.norm(qu[...,1:4],axis=1).reshape(qu.shape[:-1]+(1,)) * (0.75*(omega - np.sin(omega)))**(1./3.)) return ho @staticmethod @@ -555,7 +619,7 @@ class Rotation: ax[3] = np.arccos(np.clip(t,-1.0,1.0)) if np.abs(ax[3])<1.e-6: - ax = [ 0.0, 0.0, 1.0, 0.0] + ax = np.array([ 0.0, 0.0, 1.0, 0.0]) else: w,vr = np.linalg.eig(om) # next, find the eigenvalue (1,0j) @@ -563,7 +627,7 @@ class Rotation: ax[0:3] = np.real(vr[0:3,i]) diagDelta = np.array([om[1,2]-om[2,1],om[2,0]-om[0,2],om[0,1]-om[1,0]]) ax[0:3] = np.where(np.abs(diagDelta)<1.e-6, ax[0:3],np.abs(ax[0:3])*np.sign(-P*diagDelta)) - return np.array(ax) + return ax @staticmethod def om2ro(om): @@ -585,57 +649,102 @@ class Rotation: @staticmethod def eu2qu(eu): """Bunge-Euler angles to quaternion.""" - ee = 0.5*eu - cPhi = np.cos(ee[1]) - sPhi = np.sin(ee[1]) - qu = np.array([ cPhi*np.cos(ee[0]+ee[2]), - -P*sPhi*np.cos(ee[0]-ee[2]), - -P*sPhi*np.sin(ee[0]-ee[2]), - -P*cPhi*np.sin(ee[0]+ee[2]) ]) - if qu[0] < 0.0: qu*=-1 + if len(eu.shape) == 1: + ee = 0.5*eu + cPhi = np.cos(ee[1]) + sPhi = np.sin(ee[1]) + qu = np.array([ cPhi*np.cos(ee[0]+ee[2]), + -P*sPhi*np.cos(ee[0]-ee[2]), + -P*sPhi*np.sin(ee[0]-ee[2]), + -P*cPhi*np.sin(ee[0]+ee[2]) ]) + if qu[0] < 0.0: qu*=-1 + else: + ee = 0.5*eu + cPhi = np.cos(ee[...,1:2]) + sPhi = np.sin(ee[...,1:2]) + qu = np.block([ cPhi*np.cos(ee[...,0:1]+ee[...,2:3]), + -P*sPhi*np.cos(ee[...,0:1]-ee[...,2:3]), + -P*sPhi*np.sin(ee[...,0:1]-ee[...,2:3]), + -P*cPhi*np.sin(ee[...,0:1]+ee[...,2:3])]) + qu[qu[...,0]<0.0]*=-1 return qu + @staticmethod def eu2om(eu): """Bunge-Euler angles to rotation matrix.""" - c = np.cos(eu) - s = np.sin(eu) + if len(eu.shape) == 1: + c = np.cos(eu) + s = np.sin(eu) - om = np.array([[+c[0]*c[2]-s[0]*s[2]*c[1], +s[0]*c[2]+c[0]*s[2]*c[1], +s[2]*s[1]], - [-c[0]*s[2]-s[0]*c[2]*c[1], -s[0]*s[2]+c[0]*c[2]*c[1], +c[2]*s[1]], - [+s[0]*s[1], -c[0]*s[1], +c[1] ]]) - - om[np.abs(om)<1.e-6] = 0.0 + om = np.array([[+c[0]*c[2]-s[0]*s[2]*c[1], +s[0]*c[2]+c[0]*s[2]*c[1], +s[2]*s[1]], + [-c[0]*s[2]-s[0]*c[2]*c[1], -s[0]*s[2]+c[0]*c[2]*c[1], +c[2]*s[1]], + [+s[0]*s[1], -c[0]*s[1], +c[1] ]]) + else: + c = np.cos(eu) + s = np.sin(eu) + om = np.block([+c[...,0:1]*c[...,2:3]-s[...,0:1]*s[...,2:3]*c[...,1:2], + +s[...,0:1]*c[...,2:3]+c[...,0:1]*s[...,2:3]*c[...,1:2], + +s[...,2:3]*s[...,1:2], + -c[...,0:1]*s[...,2:3]-s[...,0:1]*c[...,2:3]*c[...,1:2], + -s[...,0:1]*s[...,2:3]+c[...,0:1]*c[...,2:3]*c[...,1:2], + +c[...,2:3]*s[...,1:2], + +s[...,0:1]*s[...,1:2], + -c[...,0:1]*s[...,1:2], + +c[...,1:2] + ]).reshape(eu.shape[:-1]+(3,3)) + om[np.abs(om)<1.e-12] = 0.0 return om @staticmethod def eu2ax(eu): """Bunge-Euler angles to axis angle pair.""" - t = np.tan(eu[1]*0.5) - sigma = 0.5*(eu[0]+eu[2]) - delta = 0.5*(eu[0]-eu[2]) - tau = np.linalg.norm([t,np.sin(sigma)]) - alpha = np.pi if iszero(np.cos(sigma)) else \ - 2.0*np.arctan(tau/np.cos(sigma)) + if len(eu.shape) == 1: + t = np.tan(eu[1]*0.5) + sigma = 0.5*(eu[0]+eu[2]) + delta = 0.5*(eu[0]-eu[2]) + tau = np.linalg.norm([t,np.sin(sigma)]) + alpha = np.pi if iszero(np.cos(sigma)) else \ + 2.0*np.arctan(tau/np.cos(sigma)) - if np.abs(alpha)<1.e-6: - ax = np.array([ 0.0, 0.0, 1.0, 0.0 ]) + if np.abs(alpha)<1.e-6: + ax = np.array([ 0.0, 0.0, 1.0, 0.0 ]) + else: + ax = -P/tau * np.array([ t*np.cos(delta), t*np.sin(delta), np.sin(sigma) ]) # passive axis angle pair so a minus sign in front + ax = np.append(ax,alpha) + if alpha < 0.0: ax *= -1.0 # ensure alpha is positive else: - ax = -P/tau * np.array([ t*np.cos(delta), t*np.sin(delta), np.sin(sigma) ]) # passive axis angle pair so a minus sign in front - ax = np.append(ax,alpha) - if alpha < 0.0: ax *= -1.0 # ensure alpha is positive + t = np.tan(eu[...,1:2]*0.5) + sigma = 0.5*(eu[...,0:1]+eu[...,2:3]) + delta = 0.5*(eu[...,0:1]-eu[...,2:3]) + tau = np.linalg.norm(np.block([t,np.sin(sigma)]),axis=-1).reshape(-1,1) + alpha = np.where(np.abs(np.cos(sigma))<1.e-12,np.pi,2.0*np.arctan(tau/np.cos(sigma))) + ax = np.where(np.broadcast_to(np.abs(alpha)<1.0e-12,eu.shape[:-1]+(4,)), + [0.0,0.0,1.0,0.0], + np.block([-P/tau*t*np.cos(delta), + -P/tau*t*np.sin(delta), + -P/tau* np.sin(sigma), + alpha + ])) + ax[(alpha<0.0).squeeze()] *=-1 return ax @staticmethod def eu2ro(eu): """Bunge-Euler angles to Rodrigues-Frank vector.""" - ro = Rotation.eu2ax(eu) # convert to axis angle pair representation - if ro[3] >= np.pi: # Differs from original implementation. check convention 5 - ro[3] = np.inf - elif iszero(ro[3]): - ro = np.array([ 0.0, 0.0, P, 0.0 ]) + if len(eu.shape) == 1: + ro = Rotation.eu2ax(eu) # convert to axis angle pair representation + if ro[3] >= np.pi: # Differs from original implementation. check convention 5 + ro[3] = np.inf + elif iszero(ro[3]): + ro = np.array([ 0.0, 0.0, P, 0.0 ]) + else: + ro[3] = np.tan(ro[3]*0.5) else: - ro[3] = np.tan(ro[3]*0.5) + ax = Rotation.eu2ax(eu) + ro = np.block([ax[:,:3],np.tan(ax[:,3:4]*.5)]) + ro[ax[:,3]>=np.pi,3] = np.inf + ro[np.abs(ax[:,3])<1.e-16] = [ 0.0, 0.0, P, 0.0 ] return ro @staticmethod @@ -664,9 +773,7 @@ class Rotation: else: c = np.cos(ax[...,3:4]*.5) s = np.sin(ax[...,3:4]*.5) - qu = np.where(np.abs(ax[...,3:4])<1.e-12, - [1.0, 0.0, 0.0, 0.0], - np.block([c, ax[...,:3]*s])) + qu = np.where(np.abs(ax[...,3:4])<1.e-12,[1.0, 0.0, 0.0, 0.0],np.block([c, ax[...,:3]*s])) return qu @staticmethod @@ -687,7 +794,7 @@ class Rotation: c = np.cos(ax[...,3:4]) s = np.sin(ax[...,3:4]) omc = 1. -c - ax = np.block([c+omc*ax[...,0:1]**2, + om = np.block([c+omc*ax[...,0:1]**2, omc*ax[...,0:1]*ax[...,1:2] + s*ax[...,2:3], omc*ax[...,0:1]*ax[...,2:3] - s*ax[...,1:2], omc*ax[...,0:1]*ax[...,1:2] - s*ax[...,2:3], @@ -696,7 +803,7 @@ class Rotation: omc*ax[...,0:1]*ax[...,2:3] + s*ax[...,1:2], omc*ax[...,1:2]*ax[...,2:3] - s*ax[...,0:1], c+omc*ax[...,2:3]**2]).reshape(ax.shape[:-1]+(3,3)) - return ax + return om # TODO: TRANSPOSE FOR P = 1 @staticmethod def ax2eu(ax): diff --git a/python/tests/test_Rotation.py b/python/tests/test_Rotation.py index 13c474ca7..eaf614b4e 100644 --- a/python/tests/test_Rotation.py +++ b/python/tests/test_Rotation.py @@ -150,6 +150,28 @@ class TestRotation: print(m,o,rot.asQuaternion()) assert np.allclose(m,o,atol=atol) + @pytest.mark.parametrize('conversion',[Rotation.qu2om, + Rotation.qu2eu, + Rotation.qu2ax, + Rotation.qu2ro, + Rotation.qu2ho]) + def test_quaternion_vectorization(self,default,conversion): + qu = np.array([rot.asQuaternion() for rot in default]) + co = conversion(qu) + for q,c in zip(qu,co): + assert np.allclose(conversion(q),c) + + @pytest.mark.parametrize('conversion',[Rotation.eu2qu, + Rotation.eu2om, + Rotation.eu2ax, + Rotation.eu2ro, + ]) + def test_Euler_vectorization(self,default,conversion): + qu = np.array([rot.asEulers() for rot in default]) + co = conversion(qu) + for q,c in zip(qu,co): + assert np.allclose(conversion(q),c) + @pytest.mark.parametrize('conversion',[Rotation.ax2qu, Rotation.ax2om, Rotation.ax2ro,