some small fixes, reporting still needs update
This commit is contained in:
parent
2836b2fb35
commit
d86f091026
|
@ -32,25 +32,23 @@ def principalStresses(sigmas):
|
||||||
sorted in descending order.
|
sorted in descending order.
|
||||||
'''
|
'''
|
||||||
lambdas=np.zeros(0,'d')
|
lambdas=np.zeros(0,'d')
|
||||||
for i in xrange(np.shape(sigmas[1])):
|
for i in xrange(np.shape(sigmas)[1]):
|
||||||
eigenvalues = eigvalsh(np.array(x[:,i]).reshape(3,3))
|
eigenvalues = np.linalg.eigvalsh(np.array(sigmas[:,i]).reshape(3,3))
|
||||||
lambdas = np.append(lambdas,np.sort(eigenvalues)[::-1]) #append eigenvalues in descending order
|
lambdas = np.append(lambdas,np.sort(eigenvalues)[::-1]) #append eigenvalues in descending order
|
||||||
lambdas = lambdas.reshape(np.shape(sigmas)[1],3)
|
lambdas = lambdas.reshape(3,np.shape(sigmas)[1])
|
||||||
|
return lambdas
|
||||||
return labmdas
|
|
||||||
|
|
||||||
def stressInvariants(lambdas):
|
def stressInvariants(lambdas):
|
||||||
'''
|
'''
|
||||||
computes stress invariants (i.e. eigenvalues) for a set of principal Cauchy stresses.
|
computes stress invariants (i.e. eigenvalues) for a set of principal Cauchy stresses.
|
||||||
'''
|
'''
|
||||||
Is=np.zeros(0,'d')
|
Is=np.zeros(0,'d')
|
||||||
for i in xrange(np.shape(lambdas[1])):
|
for i in xrange(np.shape(lambdas)[1]):
|
||||||
I = np.array([lambdas[0:i]+lambdas[1:i]+lambdas[2:i],\
|
I = np.array([lambdas[0,i]+lambdas[1,i]+lambdas[2,i],\
|
||||||
lambdas[0:i]*lambdas[1:i]+lambdas[1:i]*lambdas[2:i]+lambdas[2:i]*lambdas[0:i],\
|
lambdas[0,i]*lambdas[1,i]+lambdas[1,i]*lambdas[2,i]+lambdas[2,i]*lambdas[0,i],\
|
||||||
lambdas[0:i]*lambdas[1:i]*lambdas[2:i]])
|
lambdas[0,i]*lambdas[1,i]*lambdas[2,i]])
|
||||||
Is = np.append(Is,I)
|
Is = np.append(Is,I)
|
||||||
Is = Is.reshape(np.shape(lambdas)[1],3)
|
Is = Is.reshape(3,np.shape(lambdas)[1])
|
||||||
|
|
||||||
return Is
|
return Is
|
||||||
|
|
||||||
|
|
||||||
|
@ -63,9 +61,9 @@ def Tresca(sigmas, sigma0):
|
||||||
residuum of Tresca yield criterion (eq. 2.26)
|
residuum of Tresca yield criterion (eq. 2.26)
|
||||||
'''
|
'''
|
||||||
lambdas = principalStresses(sigmas)
|
lambdas = principalStresses(sigmas)
|
||||||
r = np.amax(np.array([abs(lambdas[:,2]-lambdas[:,1]),\
|
r = np.amax(np.array([abs(lambdas[2,:]-lambdas[1,:]),\
|
||||||
abs(lambdas[:,1]-lambdas[:,0]),\
|
abs(lambdas[1,:]-lambdas[0,:]),\
|
||||||
abs(lambdas[:,0]-lambdas[:,2])]),1) - sigma0
|
abs(lambdas[0,:]-lambdas[2,:])]),0) - sigma0
|
||||||
return r.ravel()
|
return r.ravel()
|
||||||
|
|
||||||
|
|
||||||
|
@ -90,8 +88,7 @@ def generalDrucker(sigmas, sigma0, C_D, p):
|
||||||
residuum of general Drucker yield criterion (eq. 2.42, F = sigma0)
|
residuum of general Drucker yield criterion (eq. 2.42, F = sigma0)
|
||||||
'''
|
'''
|
||||||
Is = stressInvariants(principalStresses(sigmas))
|
Is = stressInvariants(principalStresses(sigmas))
|
||||||
r = (Is[:,1]**(3.0*p)-C_D*Is[:,3]**(2.0*I)) - sigma0
|
r = (Is[1,:]**(3.0*p)-C_D*Is[2,:]**(2.0*p)) - sigma0
|
||||||
|
|
||||||
return r.ravel()
|
return r.ravel()
|
||||||
|
|
||||||
|
|
||||||
|
@ -100,9 +97,9 @@ def Hosford(sigmas, sigma0, a):
|
||||||
residuum of Hershey yield criterion (eq. 2.43, Y = sigma0)
|
residuum of Hershey yield criterion (eq. 2.43, Y = sigma0)
|
||||||
'''
|
'''
|
||||||
lambdas = principalStresses(sigmas)
|
lambdas = principalStresses(sigmas)
|
||||||
r = (lambdas[:,2]-lambdas[:,1])**a\
|
r = (lambdas[2,:]-lambdas[1,:])**a\
|
||||||
+ (lambdas[:,1]-lambdas[:,0])**a\
|
+ (lambdas[1,:]-lambdas[0,:])**a\
|
||||||
+ (lambdas[:,0]-lambdas[:,2])**a\
|
+ (lambdas[0,:]-lambdas[2,:])**a\
|
||||||
-2.0*sigma0**a
|
-2.0*sigma0**a
|
||||||
return r.ravel()
|
return r.ravel()
|
||||||
|
|
||||||
|
@ -119,6 +116,7 @@ def vonMises():
|
||||||
'''
|
'''
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
def Hill1948(sigmas, F,G,H,L,M,N):
|
def Hill1948(sigmas, F,G,H,L,M,N):
|
||||||
'''
|
'''
|
||||||
residuum of Hill 1948 quadratic yield criterion (eq. 2.48)
|
residuum of Hill 1948 quadratic yield criterion (eq. 2.48)
|
||||||
|
@ -148,7 +146,6 @@ def generalHosford(sigmas, sigma0, a):
|
||||||
return r.ravel()
|
return r.ravel()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def Barlat1991(sigmas, sigma0, a):
|
def Barlat1991(sigmas, sigma0, a):
|
||||||
'''
|
'''
|
||||||
residuum of Hershey yield criterion (eq. 2.104, sigma_e = sigma0)
|
residuum of Hershey yield criterion (eq. 2.104, sigma_e = sigma0)
|
||||||
|
@ -156,6 +153,7 @@ def Barlat1991(sigmas, sigma0, a):
|
||||||
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
def Barlat1994(sigmas, sigma0, a):
|
def Barlat1994(sigmas, sigma0, a):
|
||||||
'''
|
'''
|
||||||
residuum of Hershey yield criterion (eq. 2.104, sigma_e = sigma0)
|
residuum of Hershey yield criterion (eq. 2.104, sigma_e = sigma0)
|
||||||
|
@ -165,8 +163,6 @@ def Barlat1994(sigmas, sigma0, a):
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
fittingCriteria = {
|
fittingCriteria = {
|
||||||
'vonMises':{'fit':np.ones(1,'d'),'err':np.inf},
|
'vonMises':{'fit':np.ones(1,'d'),'err':np.inf},
|
||||||
'hill48' :{'fit':np.ones(6,'d'),'err':np.inf},
|
'hill48' :{'fit':np.ones(6,'d'),'err':np.inf},
|
||||||
|
@ -235,6 +231,7 @@ class Criterion(object):
|
||||||
except Exception as detail:
|
except Exception as detail:
|
||||||
print detail
|
print detail
|
||||||
pass
|
pass
|
||||||
|
|
||||||
try:
|
try:
|
||||||
popt, pcov = curve_fit(HuberHenckyMises, stress, np.zeros(np.shape(stress)[1]))
|
popt, pcov = curve_fit(HuberHenckyMises, stress, np.zeros(np.shape(stress)[1]))
|
||||||
print '--\nHuberHenckyMises:'
|
print '--\nHuberHenckyMises:'
|
||||||
|
@ -242,15 +239,17 @@ class Criterion(object):
|
||||||
except Exception as detail:
|
except Exception as detail:
|
||||||
print detail
|
print detail
|
||||||
pass
|
pass
|
||||||
|
|
||||||
try:
|
try:
|
||||||
popt, pcov = curve_fit(Drucker, stress, np.zeros(np.shape(stress)[1]))
|
popt, pcov = curve_fit(Drucker, stress, np.zeros(np.shape(stress)[1]))
|
||||||
print '--\nDrucker:'
|
print '--\nDrucker:'
|
||||||
print 'sigma0 %f, C_D'%(popt[0].popt[1])
|
print 'sigma0 , C_D ', popt
|
||||||
except Exception as detail:
|
except Exception as detail:
|
||||||
print detail
|
print detail
|
||||||
pass
|
pass
|
||||||
|
|
||||||
try:
|
try:
|
||||||
popt, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[1]))
|
popt, pcov = curve_fit(Hill1948, stress, np.zeros(np.shape(stress)[1]))
|
||||||
print 'Hill48', popt
|
print 'Hill48', popt
|
||||||
except Exception as detail:
|
except Exception as detail:
|
||||||
print detail
|
print detail
|
||||||
|
@ -340,6 +339,7 @@ def doSim(delay,thread):
|
||||||
|
|
||||||
s.acquire()
|
s.acquire()
|
||||||
global stressAll
|
global stressAll
|
||||||
|
print len(yieldStress)
|
||||||
print('starting fitting for sim %i from %s'%(me,thread))
|
print('starting fitting for sim %i from %s'%(me,thread))
|
||||||
try:
|
try:
|
||||||
for i in xrange(int(options.yieldValue[2])):
|
for i in xrange(int(options.yieldValue[2])):
|
||||||
|
@ -392,7 +392,7 @@ parser.add_option('--threads', dest='threads', type='int',
|
||||||
parser.set_defaults(min = 12)
|
parser.set_defaults(min = 12)
|
||||||
parser.set_defaults(max = 30)
|
parser.set_defaults(max = 30)
|
||||||
parser.set_defaults(threads = 4)
|
parser.set_defaults(threads = 4)
|
||||||
parser.set_defaults(yieldValue = (0.002,0.002,1))
|
parser.set_defaults(yieldValue = (0.002,0.004,2))
|
||||||
parser.set_defaults(load = (0.010,100,100.0))
|
parser.set_defaults(load = (0.010,100,100.0))
|
||||||
parser.set_defaults(criterion = 'worst')
|
parser.set_defaults(criterion = 'worst')
|
||||||
parser.set_defaults(fitting = 'totalshear')
|
parser.set_defaults(fitting = 'totalshear')
|
||||||
|
|
Loading…
Reference in New Issue