diff --git a/documentation/ConstitutiveLaw/DisloTwinLaw/Tex Files/[06_10_2009]_MSU_TwinMeeting.tex b/documentation/ConstitutiveLaw/DisloTwinLaw/Tex Files/[06_10_2009]_MSU_TwinMeeting.tex index 31e0a238b..48870e08b 100644 --- a/documentation/ConstitutiveLaw/DisloTwinLaw/Tex Files/[06_10_2009]_MSU_TwinMeeting.tex +++ b/documentation/ConstitutiveLaw/DisloTwinLaw/Tex Files/[06_10_2009]_MSU_TwinMeeting.tex @@ -22,16 +22,24 @@ \usetheme{mpie} \setbeamertemplate{blocks}[rounded][shadow=true] -\title{Dislocation structure and kinetics in slip-twin model} +\title{Dislocation glide and deformation twinning as implemented in DisloTwin.f90} \date{MSU Twin Meeting, D\"usseldorf -- October 6\textsuperscript{th}, 2009} \begin{document} \frame{\titlepage} -\frame { - \frametitle{Dislocation structure parametrization} +\section[Outline]{} +\frame{\tableofcontents} +\section{Microstructure Parametrization} +\frame { + \frametitle{} + \begin{block}{\begin{center}PART I\end{center}} \begin{center}Microstructure Parametrization\end{center} \end{block} +} +\subsection{Dislocation structure} +\frame { + \frametitle{Dislocation structure} \begin{block}{Internal variables:} \begin{itemize} \item<1-> $\slip N$ edge dislocation densities $\slip\varrho_{\text{edge}}$ @@ -41,24 +49,46 @@ \begin{block}{Derived measures:} \begin{itemize} - \item<1-> $\slip\tau_{\mathrm{c}}$ threshold shear stress + \item<1-> $\slip\tau_{\text{c}}$ threshold shear stress fordislocation glide \item<1-> $\slip\lambda$ mean distance between 2 obstacles seen by a dislocation \end{itemize} \end{block} } +\subsection{Mechanical twins} \frame { - \frametitle{Dislocation structure parametrization} + \frametitle{Morphology and topology of mechanical twins} + \begin{block}{Internal variables:} + \begin{itemize} + \item<1-> $\twin N$ twin volume fractions $\twin f$ + \item<1-> ($\twin N$ twin mean thicknesses $\twin s$) + \end{itemize} + \end{block} - \begin{block}{Threshold stress $\slip\tau$:} + \begin{block}{Derived measures:} + \begin{itemize} + \item<1-> $f$ total twin volume fraction + \item<1-> $\twin l=\frac{\twin s\,(1-f)}{\twin f}$ mean distance between neighboring twins $\beta$ + \item<1-> $\twin\tau_{\text{c}}$ threshold shear stress for twinning + \item<1-> $\twin\lambda$ mean distance between 2 obstacles seen by a growing twin + \end{itemize} + \end{block} +} + +\subsection{Threshold stresses} +\frame { + \frametitle{Threshold stress for glide activity} + \begin{block}{Threshold stress $\slip\tau_{\text{c}}$:} \begin{equation} - \slip\tau_{\text{c}} = G_{\text{iso}}\,\slip b\,\sqrt{\sum_{\tilde\alpha\,=\,1}^{\slip N}\,\slipslipt\xi\,(\slipt\varrho_{\text{edge}} + \slipt\varrho_{\text{dipole}})} \nonumber + \slip\tau_{\text{c}} = k_{\text{friction}}\,G_{\text{iso}}\,\sqrt{c}\,+\,G_{\text{iso}}\,\slip b\,\sqrt{\sum_{\tilde\alpha\,=\,1}^{\slip N}\,\slipslipt\xi\,(\slipt\varrho_{\text{edge}} + \slipt\varrho_{\text{dipole}})} \nonumber \end{equation} \end{block} \begin{block}{with:} \begin{itemize} - \item<1-> $G_{\text{iso}}$ Isotropic shear modulus + \item<1-> $G_{\text{iso}}$ isotropic shear modulus + \item<1-> $c$ carbon concentration (at.\%) + \item<1-> $k_{\text{friction}}$ adjusting parameter for solute atome friction stress \item<1-> $\slip b$ Burgers vector of slip system $\alpha$ \item<1-> $\slipslipt\xi$ interaction strength (Kubin et al. 2008) \end{itemize} @@ -66,8 +96,69 @@ } \frame { - \frametitle{Orowan's kinetics} + \frametitle{Threshold stress for twinning:} + \begin{block}{Threshold stress $\twin\tau_{\text{c}}$:} + \begin{equation} + \twin\tau_{\text{c}} = \frac{\gamma_{\text{sfe}}}{3\,\twin b}\,+\,\frac{G_{\text{iso}}\,\twin b}{L_0} \nonumber + \end{equation} + \end{block} + \begin{block}{with:} + \begin{itemize} + \item<1-> $\gamma_{\text{sfe}}$ temperature-dependant stacking fault energy + \item<1-> $\twin b$ Burgers vector of twin system $\beta$ + \item<1-> $L_0$ twin source length + \end{itemize} + \end{block} +} + +\subsection{Mean free distances} +\frame { + \frametitle{Dislocation mean free distance between two obstacles} + \begin{block}{Harmonic averaging:} + \begin{eqnarray} + \frac{1}{\slip\lambda} & = & + \frac{1}{d_{\text{grain}}} + \,+\,\frac{\sqrt{\slip\varrho_{\text{edge}}\,+\,\slip\varrho_{\text{dipole}}}}{k_\lambda} + \,+\,\frac{1}{\sliptwin d} \nonumber \\ + & = & + \frac{1}{d_{\text{grain}}} + \,+\,\frac{\sqrt{\slip\varrho_{\text{edge}}\,+\,\slip\varrho_{\text{dipole}}}}{k_\lambda} \,+\,\sum_{\beta\,=\,1}^{\slip{N}}\,\sliptwin{I}\,\frac{1}{\twin l} \nonumber + \end{eqnarray} + \end{block} + + \begin{block}{with:} + \begin{itemize} + \item<1-> $d_{\text{grain}}$ grain size + \item<1-> $\sliptwin{I}$ slip--twin interactions (0 if $\alpha$,$\beta$ coplanars or cross-slip; 1 otherwise) + \end{itemize} + \end{block} +} + +\frame { + \frametitle{Twin mean free distance between two obstacles} + \begin{block}{Harmonic averaging:} + \begin{eqnarray} + \frac{1}{\twin\lambda} & = & \frac{1}{d_{\text{grain}}} + \dfrac{1}{\twin d} \nonumber \\ + & = & \dfrac{1}{d_{\mathrm{grain}}} + \sum_{\tilde\beta\,=\,1}^{\twin{N}}\,\twintwint{I}\,\dfrac{1}{\twint l} \nonumber + \end{eqnarray} + \end{block} + + \begin{block}{with:} + \begin{itemize} + \item<1-> $\twintwint{I}$ twin--twin interactions (0 if $\beta$,$\tilde\beta$ coplanars; 1 otherwise) + \end{itemize} + \end{block} +} + +\section{Kinetics} +\frame { + \frametitle{} + \begin{block}{\begin{center}PART II\end{center}} \begin{center}Kinetics\end{center} \end{block} +} +\subsection{Thermally-activated dislocation motion} +\frame { + \frametitle{Orowan's kinetics} \begin{block}{Shear rate $\slip{\dot\gamma}$:} \begin{equation} \slip{\dot\gamma} = \slip\varrho_{\text{edge}}\,\slip b\,\slip v_{\text{glide}} \nonumber @@ -83,33 +174,63 @@ \begin{block}{with:} \begin{itemize} - \item<1-> $v_0$ Velocity pre-factor - \item<1-> $Q$ Activation energy for dislocation glide + \item<1-> $v_0$ velocity pre-factor + \item<1-> $Q$ activation energy for dislocation glide \item<1-> $k_{\text{B}}\,T$ Boltzmann energy \end{itemize} \end{block} } +\subsection{Twin kinetics} +\frame { + \frametitle{Twin nucleation law} + \begin{block}{Shear rate $\twin{\dot\gamma}$:} + \begin{equation} + \twin{\dot\gamma} = \twin\gamma_{\text{c}}\,\twin{\dot f} = \twin\gamma_{\text{c}}\,(1-f)\,\twin V\,\twin{\dot N} \nonumber + \end{equation} + \end{block} + + \begin{block}{Nucleation rate $\twin{\dot N}$:} + \begin{equation} + \twin{\dot N} = \dot{N}_0\,\exp\left[-\left(\frac{\twin\tau_{\text{c}}}{\twin\tau}\right)^r\right] \nonumber + \end{equation} + \end{block} + + \begin{block}{with:} + \begin{itemize} + \item<1-> $\twin\gamma_{\text{c}}$ characteristical twin shear + \item<1-> $\twin V$ volume of grown-up twins + \item<1-> $\dot{N}_0$ constant twin nucleation rate per time and volume + \end{itemize} + \end{block} +} + +\frame { + \frametitle{Spontaneous twin growth} + \begin{block}{Volume of grown-up twins $\twin V$:} + \begin{equation} + \twin V = \frac{\pi}{6}\,\twin s\,{\twin\lambda}^2 \nonumber + \end{equation} + \end{block} +} + +\section{Evolution laws for microstructure} +\frame { + \frametitle{} + \begin{block}{\begin{center}PART III\end{center}} \begin{center}Evolution laws for microstructure\end{center} \end{block} +} +\subsection{Multiplication and annihilation mechanisms} \frame { \frametitle{Dislocation multiplication} - \begin{block}{Multiplication:} \begin{equation} \slip{\dot\varrho_{\text{multiplication}}} = \dfrac{|\slip{\dot\gamma}|}{\slip b\,\slip\lambda} \nonumber \end{equation} \end{block} - - \begin{block}{Multiplication constant:} - \begin{equation} - \slip\lambda = k_{\lambda} \left(\slip\varrho\right)^{-1/2} -\nonumber - \end{equation} - \end{block} } \frame { - \frametitle{Dislocation dipole formation} - + \frametitle{Dipole formation} \begin{block}{Dipole formation:} \begin{equation} \slip{\dot\varrho_{\text{formation}}} = 2\,\dfrac{2\,\operatorname{max}(\slip{\hat d},\slip{\check d})}{\slip b}\,\dfrac{\slip\varrho_{\text{edge}}}{2}\,|\slip{\dot\gamma}| \nonumber @@ -125,7 +246,6 @@ \frame { \frametitle{Spontaneous annihilation of 2 single dislocations} - \begin{block}{Single--single annihilation:} \begin{equation} \slip{\dot\varrho_{\text{single--single}}} = 2\,\dfrac{2\,\slip{\check d}}{\slip b}\,\dfrac{\slip\varrho_{\text{edge}}}{2}\,|\slip{\dot\gamma}| \nonumber @@ -141,7 +261,6 @@ \frame { \frametitle{Spontaneous annihilation of one single dislocation with a dipole constituent} - \begin{block}{Single--dipole constituent annihilation:} \begin{equation} \slip{\dot\varrho_{\text{single--dipole}}} = 2\,\dfrac{2\,\slip{\check d}}{\slip b}\,\dfrac{\slip\varrho_{\text{dipole}}}{2}\,|\slip{\dot\gamma}| \nonumber @@ -150,8 +269,7 @@ } \frame { - \frametitle{Dislocation dipole climb} - + \frametitle{Dipole climb} \begin{block}{Dipole climb:} \begin{equation} \slip{\dot\varrho_{\text{climb}}} = \slip\varrho_{\text{dipole}}\,\dfrac{2\,v_{\text{climb}}}{(\slip{\hat d}-\slip{\check d})/2} \nonumber @@ -165,9 +283,9 @@ \end{block} } +\subsection{Evolution of dislocation densities} \frame { \frametitle{Evolution of dislocation densities} - \begin{block}{Edge dislocation density rate:} \begin{equation} \slip{\dot\varrho_{\text{edge}}} = \slip{\dot\varrho_{\text{multiplication}}} - \slip{\dot\varrho_{\text{formation}}} - \slip{\dot\varrho_{\text{single--single}}} \nonumber diff --git a/documentation/ConstitutiveLaw/DisloTwinLaw/[06_10_2009]_MSU_TwinMeeting.pdf b/documentation/ConstitutiveLaw/DisloTwinLaw/[06_10_2009]_MSU_TwinMeeting.pdf index 879d5c26e..86dd8044e 100644 Binary files a/documentation/ConstitutiveLaw/DisloTwinLaw/[06_10_2009]_MSU_TwinMeeting.pdf and b/documentation/ConstitutiveLaw/DisloTwinLaw/[06_10_2009]_MSU_TwinMeeting.pdf differ