Merge remote-tracking branch 'origin/development' into thermal-restart
This commit is contained in:
commit
d72347fe25
|
@ -1,178 +0,0 @@
|
||||||
#!/usr/bin/env python3
|
|
||||||
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
from io import StringIO
|
|
||||||
from optparse import OptionParser
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from scipy import ndimage
|
|
||||||
|
|
||||||
import damask
|
|
||||||
|
|
||||||
|
|
||||||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
|
||||||
scriptID = ' '.join([scriptName,damask.version])
|
|
||||||
|
|
||||||
|
|
||||||
getInterfaceEnergy = lambda A,B: np.float32((A != B)*1.0) # 1.0 if A & B are distinct, 0.0 otherwise
|
|
||||||
struc = ndimage.generate_binary_structure(3,1) # 3D von Neumann neighborhood
|
|
||||||
|
|
||||||
|
|
||||||
#--------------------------------------------------------------------------------------------------
|
|
||||||
# MAIN
|
|
||||||
#--------------------------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog option(s) [geomfile(s)]', description = """
|
|
||||||
Smoothen interface roughness by simulated curvature flow.
|
|
||||||
This is achieved by the diffusion of each initially sharply bounded grain volume within the periodic domain
|
|
||||||
up to a given distance 'd' voxels.
|
|
||||||
The final geometry is assembled by selecting at each voxel that grain index for which the concentration remains largest.
|
|
||||||
References 10.1073/pnas.1111557108 (10.1006/jcph.1994.1105)
|
|
||||||
|
|
||||||
""", version = scriptID)
|
|
||||||
|
|
||||||
parser.add_option('-d', '--distance',
|
|
||||||
dest = 'd',
|
|
||||||
type = 'float', metavar = 'float',
|
|
||||||
help = 'diffusion distance in voxels [%default]')
|
|
||||||
parser.add_option('-N', '--iterations',
|
|
||||||
dest = 'N',
|
|
||||||
type = 'int', metavar = 'int',
|
|
||||||
help = 'curvature flow iterations [%default]')
|
|
||||||
parser.add_option('-i', '--immutable',
|
|
||||||
action = 'extend', dest = 'immutable', metavar = '<int LIST>',
|
|
||||||
help = 'list of immutable material indices')
|
|
||||||
parser.add_option('--ndimage',
|
|
||||||
dest = 'ndimage', action='store_true',
|
|
||||||
help = 'use ndimage.gaussian_filter in lieu of explicit FFT')
|
|
||||||
|
|
||||||
parser.set_defaults(d = 1,
|
|
||||||
N = 1,
|
|
||||||
immutable = [],
|
|
||||||
ndimage = False,
|
|
||||||
)
|
|
||||||
|
|
||||||
(options, filenames) = parser.parse_args()
|
|
||||||
|
|
||||||
options.immutable = list(map(int,options.immutable))
|
|
||||||
|
|
||||||
|
|
||||||
if filenames == []: filenames = [None]
|
|
||||||
|
|
||||||
for name in filenames:
|
|
||||||
damask.util.report(scriptName,name)
|
|
||||||
|
|
||||||
geom = damask.Grid.load(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
|
||||||
|
|
||||||
grid_original = geom.cells
|
|
||||||
damask.util.croak(geom)
|
|
||||||
material = np.tile(geom.material,np.where(grid_original == 1, 2,1)) # make one copy along dimensions with grid == 1
|
|
||||||
grid = np.array(material.shape)
|
|
||||||
|
|
||||||
# --- initialize support data ---------------------------------------------------------------------
|
|
||||||
|
|
||||||
# store a copy of the initial material indices to find locations of immutable indices
|
|
||||||
material_original = np.copy(material)
|
|
||||||
|
|
||||||
if not options.ndimage:
|
|
||||||
X,Y,Z = np.mgrid[0:grid[0],0:grid[1],0:grid[2]]
|
|
||||||
|
|
||||||
# Calculates gaussian weights for simulating 3d diffusion
|
|
||||||
gauss = np.exp(-(X*X + Y*Y + Z*Z)/(2.0*options.d*options.d),dtype=np.float32) \
|
|
||||||
/np.power(2.0*np.pi*options.d*options.d,(3.0 - np.count_nonzero(grid_original == 1))/2.,dtype=np.float32)
|
|
||||||
|
|
||||||
gauss[:,:,:grid[2]//2:-1] = gauss[:,:,1:(grid[2]+1)//2] # trying to cope with uneven (odd) grid size
|
|
||||||
gauss[:,:grid[1]//2:-1,:] = gauss[:,1:(grid[1]+1)//2,:]
|
|
||||||
gauss[:grid[0]//2:-1,:,:] = gauss[1:(grid[0]+1)//2,:,:]
|
|
||||||
gauss = np.fft.rfftn(gauss).astype(np.complex64)
|
|
||||||
|
|
||||||
for smoothIter in range(options.N):
|
|
||||||
|
|
||||||
interfaceEnergy = np.zeros(material.shape,dtype=np.float32)
|
|
||||||
for i in (-1,0,1):
|
|
||||||
for j in (-1,0,1):
|
|
||||||
for k in (-1,0,1):
|
|
||||||
# assign interfacial energy to all voxels that have a differing neighbor (in Moore neighborhood)
|
|
||||||
interfaceEnergy = np.maximum(interfaceEnergy,
|
|
||||||
getInterfaceEnergy(material,np.roll(np.roll(np.roll(
|
|
||||||
material,i,axis=0), j,axis=1), k,axis=2)))
|
|
||||||
|
|
||||||
# periodically extend interfacial energy array by half a grid size in positive and negative directions
|
|
||||||
periodic_interfaceEnergy = np.tile(interfaceEnergy,(3,3,3))[grid[0]//2:-grid[0]//2,
|
|
||||||
grid[1]//2:-grid[1]//2,
|
|
||||||
grid[2]//2:-grid[2]//2]
|
|
||||||
|
|
||||||
# transform bulk volume (i.e. where interfacial energy remained zero), store index of closest boundary voxel
|
|
||||||
index = ndimage.morphology.distance_transform_edt(periodic_interfaceEnergy == 0.,
|
|
||||||
return_distances = False,
|
|
||||||
return_indices = True)
|
|
||||||
|
|
||||||
# want array index of nearest voxel on periodically extended boundary
|
|
||||||
periodic_bulkEnergy = periodic_interfaceEnergy[index[0],
|
|
||||||
index[1],
|
|
||||||
index[2]].reshape(2*grid) # fill bulk with energy of nearest interface
|
|
||||||
|
|
||||||
if options.ndimage:
|
|
||||||
periodic_diffusedEnergy = ndimage.gaussian_filter(
|
|
||||||
np.where(ndimage.morphology.binary_dilation(periodic_interfaceEnergy > 0.,
|
|
||||||
structure = struc,
|
|
||||||
iterations = int(round(options.d*2.))-1, # fat boundary
|
|
||||||
),
|
|
||||||
periodic_bulkEnergy, # ...and zero everywhere else
|
|
||||||
0.),
|
|
||||||
sigma = options.d)
|
|
||||||
else:
|
|
||||||
diffusedEnergy = np.fft.irfftn(np.fft.rfftn(
|
|
||||||
np.where(
|
|
||||||
ndimage.morphology.binary_dilation(interfaceEnergy > 0.,
|
|
||||||
structure = struc,
|
|
||||||
iterations = int(round(options.d*2.))-1),# fat boundary
|
|
||||||
periodic_bulkEnergy[grid[0]//2:-grid[0]//2, # retain filled energy on fat boundary...
|
|
||||||
grid[1]//2:-grid[1]//2,
|
|
||||||
grid[2]//2:-grid[2]//2], # ...and zero everywhere else
|
|
||||||
0.)).astype(np.complex64) *
|
|
||||||
gauss).astype(np.float32)
|
|
||||||
|
|
||||||
periodic_diffusedEnergy = np.tile(diffusedEnergy,(3,3,3))[grid[0]//2:-grid[0]//2,
|
|
||||||
grid[1]//2:-grid[1]//2,
|
|
||||||
grid[2]//2:-grid[2]//2] # periodically extend the smoothed bulk energy
|
|
||||||
|
|
||||||
|
|
||||||
# transform voxels close to interface region
|
|
||||||
index = ndimage.morphology.distance_transform_edt(periodic_diffusedEnergy >= 0.95*np.amax(periodic_diffusedEnergy),
|
|
||||||
return_distances = False,
|
|
||||||
return_indices = True) # want index of closest bulk grain
|
|
||||||
|
|
||||||
periodic_material = np.tile(material,(3,3,3))[grid[0]//2:-grid[0]//2,
|
|
||||||
grid[1]//2:-grid[1]//2,
|
|
||||||
grid[2]//2:-grid[2]//2] # periodically extend the geometry
|
|
||||||
|
|
||||||
material = periodic_material[index[0],
|
|
||||||
index[1],
|
|
||||||
index[2]].reshape(2*grid)[grid[0]//2:-grid[0]//2,
|
|
||||||
grid[1]//2:-grid[1]//2,
|
|
||||||
grid[2]//2:-grid[2]//2] # extent grains into interface region
|
|
||||||
|
|
||||||
# replace immutable materials with closest mutable ones
|
|
||||||
index = ndimage.morphology.distance_transform_edt(np.in1d(material,options.immutable).reshape(grid),
|
|
||||||
return_distances = False,
|
|
||||||
return_indices = True)
|
|
||||||
material = material[index[0],
|
|
||||||
index[1],
|
|
||||||
index[2]]
|
|
||||||
|
|
||||||
immutable = np.zeros(material.shape, dtype=np.bool)
|
|
||||||
# find locations where immutable materials have been in original structure
|
|
||||||
for micro in options.immutable:
|
|
||||||
immutable += material_original == micro
|
|
||||||
|
|
||||||
# undo any changes involving immutable materials
|
|
||||||
material = np.where(immutable, material_original,material)
|
|
||||||
|
|
||||||
damask.Grid(material = material[0:grid_original[0],0:grid_original[1],0:grid_original[2]],
|
|
||||||
size = geom.size,
|
|
||||||
origin = geom.origin,
|
|
||||||
comments = geom.comments + [scriptID + ' ' + ' '.join(sys.argv[1:])],
|
|
||||||
)\
|
|
||||||
.save(sys.stdout if name is None else name)
|
|
|
@ -1 +1 @@
|
||||||
v3.0.0-alpha5-545-gad74f5dbe
|
v3.0.0-alpha5-552-ga6e78c5b6
|
||||||
|
|
|
@ -9,3 +9,4 @@ import numpy as np
|
||||||
FloatSequence = Union[np.ndarray,Sequence[float]]
|
FloatSequence = Union[np.ndarray,Sequence[float]]
|
||||||
IntSequence = Union[np.ndarray,Sequence[int]]
|
IntSequence = Union[np.ndarray,Sequence[int]]
|
||||||
FileHandle = Union[TextIO, str, Path]
|
FileHandle = Union[TextIO, str, Path]
|
||||||
|
NumpyRngSeed = Union[int, IntSequence, np.random.SeedSequence, np.random.BitGenerator, np.random.Generator]
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
|
||||||
"""Functionality for generation of seed points for Voronoi or Laguerre tessellation."""
|
"""Functionality for generation of seed points for Voronoi or Laguerre tessellation."""
|
||||||
|
|
||||||
from typing import Tuple as _Tuple
|
from typing import Tuple as _Tuple
|
||||||
|
@ -5,7 +6,7 @@ from typing import Tuple as _Tuple
|
||||||
from scipy import spatial as _spatial
|
from scipy import spatial as _spatial
|
||||||
import numpy as _np
|
import numpy as _np
|
||||||
|
|
||||||
from ._typehints import FloatSequence as _FloatSequence, IntSequence as _IntSequence
|
from ._typehints import FloatSequence as _FloatSequence, IntSequence as _IntSequence, NumpyRngSeed as _NumpyRngSeed
|
||||||
from . import util as _util
|
from . import util as _util
|
||||||
from . import grid_filters as _grid_filters
|
from . import grid_filters as _grid_filters
|
||||||
|
|
||||||
|
@ -13,7 +14,7 @@ from . import grid_filters as _grid_filters
|
||||||
def from_random(size: _FloatSequence,
|
def from_random(size: _FloatSequence,
|
||||||
N_seeds: int,
|
N_seeds: int,
|
||||||
cells: _IntSequence = None,
|
cells: _IntSequence = None,
|
||||||
rng_seed=None) -> _np.ndarray:
|
rng_seed: _NumpyRngSeed = None) -> _np.ndarray:
|
||||||
"""
|
"""
|
||||||
Place seeds randomly in space.
|
Place seeds randomly in space.
|
||||||
|
|
||||||
|
@ -53,7 +54,7 @@ def from_Poisson_disc(size: _FloatSequence,
|
||||||
N_candidates: int,
|
N_candidates: int,
|
||||||
distance: float,
|
distance: float,
|
||||||
periodic: bool = True,
|
periodic: bool = True,
|
||||||
rng_seed=None) -> _np.ndarray:
|
rng_seed: _NumpyRngSeed = None) -> _np.ndarray:
|
||||||
"""
|
"""
|
||||||
Place seeds according to a Poisson disc distribution.
|
Place seeds according to a Poisson disc distribution.
|
||||||
|
|
||||||
|
|
|
@ -16,7 +16,7 @@ import numpy as np
|
||||||
import h5py
|
import h5py
|
||||||
|
|
||||||
from . import version
|
from . import version
|
||||||
from ._typehints import IntSequence, FloatSequence
|
from ._typehints import FloatSequence, NumpyRngSeed
|
||||||
|
|
||||||
# limit visibility
|
# limit visibility
|
||||||
__all__=[
|
__all__=[
|
||||||
|
@ -396,7 +396,7 @@ def execution_stamp(class_name: str,
|
||||||
|
|
||||||
def hybrid_IA(dist: np.ndarray,
|
def hybrid_IA(dist: np.ndarray,
|
||||||
N: int,
|
N: int,
|
||||||
rng_seed: Union[int, IntSequence] = None) -> np.ndarray:
|
rng_seed: NumpyRngSeed = None) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Hybrid integer approximation.
|
Hybrid integer approximation.
|
||||||
|
|
||||||
|
|
|
@ -287,7 +287,7 @@ class TestOrientation:
|
||||||
@pytest.mark.parametrize('family',crystal_families)
|
@pytest.mark.parametrize('family',crystal_families)
|
||||||
@pytest.mark.parametrize('proper',[True,False])
|
@pytest.mark.parametrize('proper',[True,False])
|
||||||
def test_in_SST(self,family,proper):
|
def test_in_SST(self,family,proper):
|
||||||
assert Orientation(family=family).in_SST(np.zeros(3),proper) # noqa
|
assert Orientation(family=family).in_SST(np.zeros(3),proper)
|
||||||
|
|
||||||
@pytest.mark.parametrize('function',['in_SST','IPF_color'])
|
@pytest.mark.parametrize('function',['in_SST','IPF_color'])
|
||||||
def test_invalid_argument(self,function):
|
def test_invalid_argument(self,function):
|
||||||
|
|
|
@ -367,13 +367,13 @@ class TestResult:
|
||||||
|
|
||||||
@pytest.mark.parametrize('mode',['cell','node'])
|
@pytest.mark.parametrize('mode',['cell','node'])
|
||||||
def test_coordinates(self,default,mode):
|
def test_coordinates(self,default,mode):
|
||||||
if mode == 'cell': # noqa
|
if mode == 'cell':
|
||||||
a = grid_filters.coordinates0_point(default.cells,default.size,default.origin)
|
a = grid_filters.coordinates0_point(default.cells,default.size,default.origin)
|
||||||
b = default.coordinates0_point.reshape(tuple(default.cells)+(3,),order='F')
|
b = default.coordinates0_point.reshape(tuple(default.cells)+(3,),order='F')
|
||||||
elif mode == 'node':
|
elif mode == 'node':
|
||||||
a = grid_filters.coordinates0_node(default.cells,default.size,default.origin)
|
a = grid_filters.coordinates0_node(default.cells,default.size,default.origin)
|
||||||
b = default.coordinates0_node.reshape(tuple(default.cells+1)+(3,),order='F')
|
b = default.coordinates0_node.reshape(tuple(default.cells+1)+(3,),order='F')
|
||||||
assert np.allclose(a,b)
|
assert np.allclose(a,b)
|
||||||
|
|
||||||
@pytest.mark.parametrize('output',['F','*',['P'],['P','F']],ids=range(4))
|
@pytest.mark.parametrize('output',['F','*',['P'],['P','F']],ids=range(4))
|
||||||
@pytest.mark.parametrize('fname',['12grains6x7x8_tensionY.hdf5'],ids=range(1))
|
@pytest.mark.parametrize('fname',['12grains6x7x8_tensionY.hdf5'],ids=range(1))
|
||||||
|
@ -421,7 +421,7 @@ class TestResult:
|
||||||
def test_XDMF_datatypes(self,tmp_path,single_phase,update,ref_path):
|
def test_XDMF_datatypes(self,tmp_path,single_phase,update,ref_path):
|
||||||
for shape in [('scalar',()),('vector',(3,)),('tensor',(3,3)),('matrix',(12,))]:
|
for shape in [('scalar',()),('vector',(3,)),('tensor',(3,3)),('matrix',(12,))]:
|
||||||
for dtype in ['f4','f8','i1','i2','i4','i8','u1','u2','u4','u8']:
|
for dtype in ['f4','f8','i1','i2','i4','i8','u1','u2','u4','u8']:
|
||||||
single_phase.add_calculation(f"np.ones(np.shape(#F#)[0:1]+{shape[1]},'{dtype}')",f'{shape[0]}_{dtype}') # noqa
|
single_phase.add_calculation(f"np.ones(np.shape(#F#)[0:1]+{shape[1]},'{dtype}')",f'{shape[0]}_{dtype}')
|
||||||
fname = os.path.splitext(os.path.basename(single_phase.fname))[0]+'.xdmf'
|
fname = os.path.splitext(os.path.basename(single_phase.fname))[0]+'.xdmf'
|
||||||
os.chdir(tmp_path)
|
os.chdir(tmp_path)
|
||||||
single_phase.export_XDMF()
|
single_phase.export_XDMF()
|
||||||
|
|
|
@ -1076,19 +1076,19 @@ class TestRotation:
|
||||||
def test_from_fiber_component(self,N,sigma):
|
def test_from_fiber_component(self,N,sigma):
|
||||||
p = []
|
p = []
|
||||||
for run in range(5):
|
for run in range(5):
|
||||||
alpha = np.random.random()*2*np.pi,np.arccos(np.random.random()) # noqa
|
alpha = np.random.random()*2*np.pi,np.arccos(np.random.random())
|
||||||
beta = np.random.random()*2*np.pi,np.arccos(np.random.random())
|
beta = np.random.random()*2*np.pi,np.arccos(np.random.random())
|
||||||
|
|
||||||
f_in_C = np.array([np.sin(alpha[0])*np.cos(alpha[1]), np.sin(alpha[0])*np.sin(alpha[1]), np.cos(alpha[0])])
|
f_in_C = np.array([np.sin(alpha[0])*np.cos(alpha[1]), np.sin(alpha[0])*np.sin(alpha[1]), np.cos(alpha[0])])
|
||||||
f_in_S = np.array([np.sin(beta[0] )*np.cos(beta[1] ), np.sin(beta[0] )*np.sin(beta[1] ), np.cos(beta[0] )])
|
f_in_S = np.array([np.sin(beta[0] )*np.cos(beta[1] ), np.sin(beta[0] )*np.sin(beta[1] ), np.cos(beta[0] )])
|
||||||
ax = np.append(np.cross(f_in_C,f_in_S), - np.arccos(np.dot(f_in_C,f_in_S)))
|
ax = np.append(np.cross(f_in_C,f_in_S), - np.arccos(np.dot(f_in_C,f_in_S)))
|
||||||
n = Rotation.from_axis_angle(ax if ax[3] > 0.0 else ax*-1.0 ,normalize=True) # rotation to align fiber axis in crystal and sample system
|
n = Rotation.from_axis_angle(ax if ax[3] > 0.0 else ax*-1.0 ,normalize=True) # rotation to align fiber axis in crystal and sample system
|
||||||
|
|
||||||
o = Rotation.from_fiber_component(alpha,beta,np.radians(sigma),N,False)
|
o = Rotation.from_fiber_component(alpha,beta,np.radians(sigma),N,False)
|
||||||
angles = np.arccos(np.clip(np.dot(o@np.broadcast_to(f_in_S,(N,3)),n@f_in_S),-1,1))
|
angles = np.arccos(np.clip(np.dot(o@np.broadcast_to(f_in_S,(N,3)),n@f_in_S),-1,1))
|
||||||
dist = np.array(angles) * (np.random.randint(0,2,N)*2-1)
|
dist = np.array(angles) * (np.random.randint(0,2,N)*2-1)
|
||||||
|
|
||||||
p.append(stats.normaltest(dist)[1])
|
p.append(stats.normaltest(dist)[1])
|
||||||
|
|
||||||
sigma_out = np.degrees(np.std(dist))
|
sigma_out = np.degrees(np.std(dist))
|
||||||
p = np.average(p)
|
p = np.average(p)
|
||||||
|
|
|
@ -173,11 +173,11 @@ class TestVTK:
|
||||||
polyData = VTK.from_poly_data(points)
|
polyData = VTK.from_poly_data(points)
|
||||||
polyData.add(points,'coordinates')
|
polyData.add(points,'coordinates')
|
||||||
if update:
|
if update:
|
||||||
polyData.save(ref_path/'polyData') # noqa
|
polyData.save(ref_path/'polyData')
|
||||||
else:
|
else:
|
||||||
reference = VTK.load(ref_path/'polyData.vtp') # noqa
|
reference = VTK.load(ref_path/'polyData.vtp')
|
||||||
assert polyData.__repr__() == reference.__repr__() and \
|
assert polyData.__repr__() == reference.__repr__() and \
|
||||||
np.allclose(polyData.get('coordinates'),points)
|
np.allclose(polyData.get('coordinates'),points)
|
||||||
|
|
||||||
@pytest.mark.xfail(int(vtk.vtkVersion.GetVTKVersion().split('.')[0])<8, reason='missing METADATA')
|
@pytest.mark.xfail(int(vtk.vtkVersion.GetVTKVersion().split('.')[0])<8, reason='missing METADATA')
|
||||||
def test_compare_reference_rectilinearGrid(self,update,ref_path,tmp_path):
|
def test_compare_reference_rectilinearGrid(self,update,ref_path,tmp_path):
|
||||||
|
@ -189,8 +189,8 @@ class TestVTK:
|
||||||
rectilinearGrid.add(np.ascontiguousarray(c),'cell')
|
rectilinearGrid.add(np.ascontiguousarray(c),'cell')
|
||||||
rectilinearGrid.add(np.ascontiguousarray(n),'node')
|
rectilinearGrid.add(np.ascontiguousarray(n),'node')
|
||||||
if update:
|
if update:
|
||||||
rectilinearGrid.save(ref_path/'rectilinearGrid') # noqa
|
rectilinearGrid.save(ref_path/'rectilinearGrid')
|
||||||
else:
|
else:
|
||||||
reference = VTK.load(ref_path/'rectilinearGrid.vtr') # noqa
|
reference = VTK.load(ref_path/'rectilinearGrid.vtr')
|
||||||
assert rectilinearGrid.__repr__() == reference.__repr__() and \
|
assert rectilinearGrid.__repr__() == reference.__repr__() and \
|
||||||
np.allclose(rectilinearGrid.get('cell'),c)
|
np.allclose(rectilinearGrid.get('cell'),c)
|
||||||
|
|
|
@ -8,10 +8,9 @@ submodule(phase:eigen) thermalexpansion
|
||||||
integer, dimension(:), allocatable :: kinematics_thermal_expansion_instance
|
integer, dimension(:), allocatable :: kinematics_thermal_expansion_instance
|
||||||
|
|
||||||
type :: tParameters
|
type :: tParameters
|
||||||
real(pReal) :: &
|
type(tPolynomial) :: &
|
||||||
T_ref
|
A_11, &
|
||||||
real(pReal), dimension(3,3,3) :: &
|
A_33
|
||||||
A = 0.0_pReal
|
|
||||||
end type tParameters
|
end type tParameters
|
||||||
|
|
||||||
type(tParameters), dimension(:), allocatable :: param
|
type(tParameters), dimension(:), allocatable :: param
|
||||||
|
@ -34,7 +33,7 @@ module function thermalexpansion_init(kinematics_length) result(myKinematics)
|
||||||
phase, &
|
phase, &
|
||||||
mech, &
|
mech, &
|
||||||
kinematics, &
|
kinematics, &
|
||||||
kinematic_type
|
myConfig
|
||||||
|
|
||||||
print'(/,1x,a)', '<<<+- phase:mechanical:eigen:thermalexpansion init -+>>>'
|
print'(/,1x,a)', '<<<+- phase:mechanical:eigen:thermalexpansion init -+>>>'
|
||||||
|
|
||||||
|
@ -56,21 +55,13 @@ module function thermalexpansion_init(kinematics_length) result(myKinematics)
|
||||||
do k = 1, kinematics%length
|
do k = 1, kinematics%length
|
||||||
if (myKinematics(k,p)) then
|
if (myKinematics(k,p)) then
|
||||||
associate(prm => param(kinematics_thermal_expansion_instance(p)))
|
associate(prm => param(kinematics_thermal_expansion_instance(p)))
|
||||||
kinematic_type => kinematics%get(k)
|
|
||||||
|
|
||||||
prm%T_ref = kinematic_type%get_asFloat('T_ref', defaultVal=T_ROOM)
|
myConfig => kinematics%get(k)
|
||||||
|
|
||||||
|
prm%A_11 = polynomial(myConfig%asDict(),'A_11','T')
|
||||||
|
if (any(phase_lattice(p) == ['hP','tI'])) &
|
||||||
|
prm%A_33 = polynomial(myConfig%asDict(),'A_33','T')
|
||||||
|
|
||||||
prm%A(1,1,1) = kinematic_type%get_asFloat('A_11')
|
|
||||||
prm%A(1,1,2) = kinematic_type%get_asFloat('A_11,T', defaultVal=0.0_pReal)
|
|
||||||
prm%A(1,1,3) = kinematic_type%get_asFloat('A_11,T^2',defaultVal=0.0_pReal)
|
|
||||||
if (any(phase_lattice(p) == ['hP','tI'])) then
|
|
||||||
prm%A(3,3,1) = kinematic_type%get_asFloat('A_33')
|
|
||||||
prm%A(3,3,2) = kinematic_type%get_asFloat('A_33,T', defaultVal=0.0_pReal)
|
|
||||||
prm%A(3,3,3) = kinematic_type%get_asFloat('A_33,T^2',defaultVal=0.0_pReal)
|
|
||||||
end if
|
|
||||||
do i=1, size(prm%A,3)
|
|
||||||
prm%A(1:3,1:3,i) = lattice_symmetrize_33(prm%A(1:3,1:3,i),phase_lattice(p))
|
|
||||||
end do
|
|
||||||
end associate
|
end associate
|
||||||
end if
|
end if
|
||||||
end do
|
end do
|
||||||
|
@ -91,22 +82,20 @@ module subroutine thermalexpansion_LiAndItsTangent(Li, dLi_dTstar, ph,me)
|
||||||
dLi_dTstar !< derivative of Li with respect to Tstar (4th-order tensor defined to be zero)
|
dLi_dTstar !< derivative of Li with respect to Tstar (4th-order tensor defined to be zero)
|
||||||
|
|
||||||
real(pReal) :: T, dot_T
|
real(pReal) :: T, dot_T
|
||||||
|
real(pReal), dimension(3,3) :: A
|
||||||
|
|
||||||
|
|
||||||
T = thermal_T(ph,me)
|
T = thermal_T(ph,me)
|
||||||
dot_T = thermal_dot_T(ph,me)
|
dot_T = thermal_dot_T(ph,me)
|
||||||
|
|
||||||
associate(prm => param(kinematics_thermal_expansion_instance(ph)))
|
associate(prm => param(kinematics_thermal_expansion_instance(ph)))
|
||||||
Li = dot_T * ( &
|
|
||||||
prm%A(1:3,1:3,1) & ! constant coefficient
|
A = 0.0_pReal
|
||||||
+ prm%A(1:3,1:3,2)*(T - prm%T_ref) & ! linear coefficient
|
A(1,1) = prm%A_11%at(T)
|
||||||
+ prm%A(1:3,1:3,3)*(T - prm%T_ref)**2 & ! quadratic coefficient
|
if (any(phase_lattice(ph) == ['hP','tI'])) A(3,3) = prm%A_33%at(T)
|
||||||
) / &
|
A = lattice_symmetrize_33(A,phase_lattice(ph))
|
||||||
(1.0_pReal &
|
Li = dot_T * A
|
||||||
+ prm%A(1:3,1:3,1)*(T - prm%T_ref) / 1.0_pReal &
|
|
||||||
+ prm%A(1:3,1:3,2)*(T - prm%T_ref)**2 / 2.0_pReal &
|
|
||||||
+ prm%A(1:3,1:3,3)*(T - prm%T_ref)**3 / 3.0_pReal &
|
|
||||||
)
|
|
||||||
end associate
|
end associate
|
||||||
dLi_dTstar = 0.0_pReal
|
dLi_dTstar = 0.0_pReal
|
||||||
|
|
||||||
|
|
|
@ -163,7 +163,7 @@ subroutine selfTest
|
||||||
'T_ref: '//trim(adjustl(x_ref_s))//IO_EOL
|
'T_ref: '//trim(adjustl(x_ref_s))//IO_EOL
|
||||||
Dict => YAML_parse_str(trim(YAML_s))
|
Dict => YAML_parse_str(trim(YAML_s))
|
||||||
p2 = polynomial(dict%asDict(),'C','T')
|
p2 = polynomial(dict%asDict(),'C','T')
|
||||||
if (dNeq(p1%at(x),p2%at(x),1.0e-12_pReal)) error stop 'polynomials: init'
|
if (dNeq(p1%at(x),p2%at(x),1.0e-10_pReal)) error stop 'polynomials: init'
|
||||||
|
|
||||||
p1 = polynomial(coef*[0.0_pReal,1.0_pReal,0.0_pReal],x_ref)
|
p1 = polynomial(coef*[0.0_pReal,1.0_pReal,0.0_pReal],x_ref)
|
||||||
if (dNeq(p1%at(x_ref+x),-p1%at(x_ref-x),1.0e-10_pReal)) error stop 'polynomials: eval(odd)'
|
if (dNeq(p1%at(x_ref+x),-p1%at(x_ref-x),1.0e-10_pReal)) error stop 'polynomials: eval(odd)'
|
||||||
|
|
Loading…
Reference in New Issue