clear separation between OO and imperative arguments

This commit is contained in:
Martin Diehl 2020-01-14 11:52:22 +01:00
parent 9d1c1fdb92
commit d722c6db4a
1 changed files with 26 additions and 29 deletions

View File

@ -48,10 +48,7 @@ module quaternions
procedure, private :: pow_scal__
generic, public :: operator(**) => pow_quat__, pow_scal__
procedure, public :: abs__
procedure, public :: dot_product__
procedure, public :: exp__
procedure, public :: log__
procedure, public :: abs => abs__
procedure, public :: conjg => conjg__
procedure, public :: real => real__
procedure, public :: aimag => aimag__
@ -317,17 +314,17 @@ end function pow_scal__
!---------------------------------------------------------------------------------------------------
!> take exponential
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function exp__(self)
type(quaternion) elemental pure function exp__(a)
class(quaternion), intent(in) :: self
class(quaternion), intent(in) :: a
real(pReal) :: absImag
absImag = norm2(aimag(self))
absImag = norm2(aimag(a))
exp__ = merge(exp(self%w) * [ cos(absImag), &
self%x/absImag * sin(absImag), &
self%y/absImag * sin(absImag), &
self%z/absImag * sin(absImag)], &
exp__ = merge(exp(a%w) * [ cos(absImag), &
a%x/absImag * sin(absImag), &
a%y/absImag * sin(absImag), &
a%z/absImag * sin(absImag)], &
IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), &
dNeq0(absImag))
@ -337,17 +334,17 @@ end function exp__
!---------------------------------------------------------------------------------------------------
!> take logarithm
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function log__(self)
type(quaternion) elemental pure function log__(a)
class(quaternion), intent(in) :: self
class(quaternion), intent(in) :: a
real(pReal) :: absImag
absImag = norm2(aimag(self))
absImag = norm2(aimag(a))
log__ = merge([log(abs(self)), &
self%x/absImag * acos(self%w/abs(self)), &
self%y/absImag * acos(self%w/abs(self)), &
self%z/absImag * acos(self%w/abs(self))], &
log__ = merge([log(abs(a)), &
a%x/absImag * acos(a%w/abs(a)), &
a%y/absImag * acos(a%w/abs(a)), &
a%z/absImag * acos(a%w/abs(a))], &
IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), &
dNeq0(absImag))
@ -357,11 +354,11 @@ end function log__
!---------------------------------------------------------------------------------------------------
!> return norm
!---------------------------------------------------------------------------------------------------
real(pReal) elemental pure function abs__(a)
real(pReal) elemental pure function abs__(self)
class(quaternion), intent(in) :: a
class(quaternion), intent(in) :: self
abs__ = norm2([a%w,a%x,a%y,a%z])
abs__ = norm2([self%w,self%x,self%y,self%z])
end function abs__
@ -381,11 +378,11 @@ end function dot_product__
!---------------------------------------------------------------------------------------------------
!> take conjugate complex
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function conjg__(a)
type(quaternion) elemental pure function conjg__(self)
class(quaternion), intent(in) :: a
class(quaternion), intent(in) :: self
conjg__ = [a%w, -a%x, -a%y, -a%z]
conjg__ = [self%w,-self%x,-self%y,-self%z]
end function conjg__