shortened from_fiber_component algorithm
This commit is contained in:
parent
3f823ca717
commit
d6378ec9bc
|
@ -434,10 +434,11 @@ class Rotation:
|
|||
|
||||
if P == 1: ax[...,0:3] *= -1
|
||||
if degrees: ax[..., 3] = np.radians(ax[...,3])
|
||||
if normalize: ax[...,0:3] /= np.linalg.norm(ax[...,0:3],axis=-1)
|
||||
if normalize: ax[...,0:3] /= np.linalg.norm(ax[...,0:3],axis=-1,keepdims=True)
|
||||
if np.any(ax[...,3] < 0.0) or np.any(ax[...,3] > np.pi):
|
||||
raise ValueError('Axis angle rotation angle outside of [0..π].')
|
||||
if not np.all(np.isclose(np.linalg.norm(ax[...,0:3],axis=-1), 1.0)):
|
||||
print(np.linalg.norm(ax[...,0:3],axis=-1))
|
||||
raise ValueError('Axis angle rotation axis is not of unit length.')
|
||||
|
||||
return Rotation(Rotation._ax2qu(ax))
|
||||
|
@ -516,7 +517,7 @@ class Rotation:
|
|||
raise ValueError('P ∉ {-1,1}')
|
||||
|
||||
if P == 1: ro[...,0:3] *= -1
|
||||
if normalize: ro[...,0:3] /= np.linalg.norm(ro[...,0:3],axis=-1)
|
||||
if normalize: ro[...,0:3] /= np.linalg.norm(ro[...,0:3],axis=-1,keepdims=True)
|
||||
if np.any(ro[...,3] < 0.0):
|
||||
raise ValueError('Rodrigues vector rotation angle not positive.')
|
||||
if not np.all(np.isclose(np.linalg.norm(ro[...,0:3],axis=-1), 1.0)):
|
||||
|
@ -686,7 +687,7 @@ class Rotation:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def from_fiber_component(alpha,beta,FWHM,N_samples=500,degrees=True,seed=None):
|
||||
def from_fiber_component(alpha,beta,FWHM=0.0,N=500,degrees=True,seed=None):
|
||||
"""
|
||||
Calculate set of rotations with Gaussian distribution around direction.
|
||||
|
||||
|
@ -701,8 +702,9 @@ class Rotation:
|
|||
tbd.
|
||||
beta : numpy.ndarray of size 2
|
||||
tbd.
|
||||
FWHM : float
|
||||
FWHM : float, optional
|
||||
Full width at half maximum of the Gaussian distribution.
|
||||
Defaults to 0.
|
||||
N_samples : int, optional
|
||||
Number of samples, defaults to 500.
|
||||
degrees : boolean, optional
|
||||
|
@ -713,48 +715,26 @@ class Rotation:
|
|||
|
||||
"""
|
||||
rng = np.random.default_rng(seed)
|
||||
FWHM_,alpha_,beta_ = np.radians((FWHM,alpha,beta)) if degrees else (FWHM,alpha,beta)
|
||||
FWHM_,alpha_,beta_ = map(np.radians,(FWHM,alpha,beta)) if degrees else (FWHM,alpha,beta)
|
||||
|
||||
f_in_C = np.array([np.sin(alpha_[0])*np.cos(alpha_[1]), np.sin(alpha_[0])*np.sin(alpha_[1]), np.cos(alpha_[0])])
|
||||
f_in_S = np.array([np.sin(beta_[0] )*np.cos(beta_[1] ), np.sin(beta_[0] )*np.sin(beta_[1] ), np.cos(beta_[0] )])
|
||||
ax = np.append(np.cross(f_in_C,f_in_S), - np.arccos(np.dot(f_in_C,f_in_S)))
|
||||
R_align = Rotation.from_axis_angle(ax if ax[3] > 0.0 else ax*-1.0 ,normalize=True) # rotation to align fiber axis in crystal and sample system
|
||||
d_cr = np.array([np.sin(alpha_[0])*np.cos(alpha_[1]), np.sin(alpha_[0])*np.sin(alpha_[1]), np.cos(alpha_[0])])
|
||||
d_lab = np.array([np.sin(beta_[0] )*np.cos(beta_[1] ), np.sin(beta_[0] )*np.sin(beta_[1] ), np.cos(beta_[0] )])
|
||||
ax_align = np.append(np.cross(d_lab,d_cr), np.arccos(np.dot(d_lab,d_cr)))
|
||||
if np.isclose(ax_align[3],0.0): ax_align[:3] = np.array([1,0,0])
|
||||
R_align = Rotation.from_axis_angle(ax_align if ax_align[3] > 0.0 else -ax_align,normalize=True) # rotation to align fiber axis in crystal and sample system
|
||||
|
||||
rotations = []
|
||||
for i in range(N_samples):
|
||||
rnd = rng.random(3)
|
||||
ax = np.append(f_in_S,rnd[0]*np.pi*2.0)
|
||||
if ax[3] > np.pi: ax = np.append(ax[:3]*-1,np.pi*2-ax[3])
|
||||
R = R_align @ Rotation.from_axis_angle(ax) # rotation (0..360deg) perpendicular to fiber axis
|
||||
u,v,b = (np.random.random((N,3)) * 2 * np.array([1,np.pi,np.pi]) - np.array([1,0,np.pi])).T
|
||||
a = abs(np.random.normal(scale=FWHM_,size=N))
|
||||
p = np.vstack((np.sqrt(1-u**2)*np.cos(v),
|
||||
np.sqrt(1-u**2)*np.sin(v),
|
||||
u,
|
||||
a)).T
|
||||
|
||||
if FWHM_ > np.radians(0.1):
|
||||
|
||||
i_smallest = np.argmin(np.abs(f_in_S))
|
||||
i_non_smallest = list(filter(lambda x: x!=i_smallest, [0,1,2]))
|
||||
|
||||
s = f_in_S[i_smallest]
|
||||
a = f_in_S[i_non_smallest]
|
||||
x = np.sum(a**2)
|
||||
|
||||
u = np.empty(3)
|
||||
while True: # rejection sampling
|
||||
angle = (rnd[1] - 0.5)*4 *FWHM_
|
||||
# solve cos(angle) = dot_product(fInS,u) for u. This is underdetermined, hence assume that
|
||||
# they share the smallest component.
|
||||
c = np.cos(angle) - s**2
|
||||
u[i_non_smallest[1]] = -(2.0*c*a[1] + np.sqrt(4*((c*a[1])**2.0-x*(c**2.0-a[0]**2*(1.0-s**2)))))/(2*x)
|
||||
u[i_non_smallest[0]] = np.sqrt(1.0-u[i_non_smallest[1]]**2.0-s**2.0)
|
||||
u[i_smallest] = s
|
||||
|
||||
if (rnd[2] <= np.exp(-4.0*np.log(2.0)*(angle/FWHM_)**2)):
|
||||
ax = np.append(np.cross(u,f_in_S),angle)
|
||||
R = R @ Rotation.from_axis_angle(ax if ax[3] > 0.0 else ax*-1.0,normalize=True) # tilt around direction of smallest component
|
||||
break
|
||||
else:
|
||||
rnd = rng.random(3)
|
||||
rotations.append(R.as_quaternion())
|
||||
|
||||
return Rotation.from_quaternion(rotations)
|
||||
f = np.hstack((np.broadcast_to(d_cr,(N,3)),b.reshape(N,1)))
|
||||
f[f[:,3]<0] *= -1.
|
||||
return Rotation.from_axis_angle(p) \
|
||||
* Rotation.from_axis_angle(f) \
|
||||
* R_align
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue