no need for separate file
This commit is contained in:
parent
8ba547a1b5
commit
d61f302305
201
src/Lambert.f90
201
src/Lambert.f90
|
@ -1,201 +0,0 @@
|
||||||
! ###################################################################
|
|
||||||
! Copyright (c) 2013-2015, Marc De Graef/Carnegie Mellon University
|
|
||||||
! Modified 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
|
||||||
! All rights reserved.
|
|
||||||
!
|
|
||||||
! Redistribution and use in source and binary forms, with or without modification, are
|
|
||||||
! permitted provided that the following conditions are met:
|
|
||||||
!
|
|
||||||
! - Redistributions of source code must retain the above copyright notice, this list
|
|
||||||
! of conditions and the following disclaimer.
|
|
||||||
! - Redistributions in binary form must reproduce the above copyright notice, this
|
|
||||||
! list of conditions and the following disclaimer in the documentation and/or
|
|
||||||
! other materials provided with the distribution.
|
|
||||||
! - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
|
||||||
! of its contributors may be used to endorse or promote products derived from
|
|
||||||
! this software without specific prior written permission.
|
|
||||||
!
|
|
||||||
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
||||||
! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
||||||
! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
||||||
! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
||||||
! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
||||||
! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
||||||
! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
||||||
! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
||||||
! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
||||||
! USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
||||||
! ###################################################################
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------
|
|
||||||
!> @author Marc De Graef, Carnegie Mellon University
|
|
||||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
||||||
!> @brief Mapping homochoric <-> cubochoric
|
|
||||||
!
|
|
||||||
!> @details
|
|
||||||
!> D. Rosca, A. Morawiec, and M. De Graef. “A new method of constructing a grid
|
|
||||||
!> in the space of 3D rotations and its applications to texture analysis”.
|
|
||||||
!> Modeling and Simulations in Materials Science and Engineering 22, 075013 (2014).
|
|
||||||
!--------------------------------------------------------------------------
|
|
||||||
module Lambert
|
|
||||||
use prec
|
|
||||||
use math
|
|
||||||
|
|
||||||
implicit none
|
|
||||||
private
|
|
||||||
|
|
||||||
real(pReal), parameter :: &
|
|
||||||
SPI = sqrt(PI), &
|
|
||||||
PREF = sqrt(6.0_pReal/PI), &
|
|
||||||
A = PI**(5.0_pReal/6.0_pReal)/6.0_pReal**(1.0_pReal/6.0_pReal), &
|
|
||||||
AP = PI**(2.0_pReal/3.0_pReal), &
|
|
||||||
SC = A/AP, &
|
|
||||||
BETA = A/2.0_pReal, &
|
|
||||||
R1 = (3.0_pReal*PI/4.0_pReal)**(1.0_pReal/3.0_pReal), &
|
|
||||||
R2 = sqrt(2.0_pReal), &
|
|
||||||
PI12 = PI/12.0_pReal, &
|
|
||||||
PREK = R1 * 2.0_pReal**(1.0_pReal/4.0_pReal)/BETA
|
|
||||||
|
|
||||||
public :: &
|
|
||||||
Lambert_CubeToBall, &
|
|
||||||
Lambert_BallToCube
|
|
||||||
|
|
||||||
contains
|
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------
|
|
||||||
!> @author Marc De Graef, Carnegie Mellon University
|
|
||||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
||||||
!> @brief map from 3D cubic grid to 3D ball
|
|
||||||
!--------------------------------------------------------------------------
|
|
||||||
pure function Lambert_CubeToBall(cube) result(ball)
|
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(3) :: cube
|
|
||||||
real(pReal), dimension(3) :: ball, LamXYZ, XYZ
|
|
||||||
real(pReal), dimension(2) :: T
|
|
||||||
real(pReal) :: c, s, q
|
|
||||||
real(pReal), parameter :: eps = 1.0e-8_pReal
|
|
||||||
integer, dimension(3,2) :: p
|
|
||||||
integer, dimension(2) :: order
|
|
||||||
|
|
||||||
if (maxval(abs(cube)) > AP/2.0+eps) then
|
|
||||||
ball = IEEE_value(cube,IEEE_positive_inf)
|
|
||||||
return
|
|
||||||
end if
|
|
||||||
|
|
||||||
! transform to the sphere grid via the curved square, and intercept the zero point
|
|
||||||
center: if (all(dEq0(cube))) then
|
|
||||||
ball = 0.0_pReal
|
|
||||||
else center
|
|
||||||
! get pyramide and scale by grid parameter ratio
|
|
||||||
p = GetPyramidOrder(cube)
|
|
||||||
XYZ = cube(p(:,1)) * sc
|
|
||||||
|
|
||||||
! intercept all the points along the z-axis
|
|
||||||
special: if (all(dEq0(XYZ(1:2)))) then
|
|
||||||
LamXYZ = [ 0.0_pReal, 0.0_pReal, pref * XYZ(3) ]
|
|
||||||
else special
|
|
||||||
order = merge( [2,1], [1,2], abs(XYZ(2)) <= abs(XYZ(1))) ! order of absolute values of XYZ
|
|
||||||
q = PI12 * XYZ(order(1))/XYZ(order(2)) ! smaller by larger
|
|
||||||
c = cos(q)
|
|
||||||
s = sin(q)
|
|
||||||
q = prek * XYZ(order(2))/ sqrt(R2-c)
|
|
||||||
T = [ (R2*c - 1.0), R2 * s] * q
|
|
||||||
|
|
||||||
! transform to sphere grid (inverse Lambert)
|
|
||||||
! [note that there is no need to worry about dividing by zero, since XYZ(3) can not become zero]
|
|
||||||
c = sum(T**2)
|
|
||||||
s = Pi * c/(24.0*XYZ(3)**2)
|
|
||||||
c = sPi * c / sqrt(24.0_pReal) / XYZ(3)
|
|
||||||
q = sqrt( 1.0 - s )
|
|
||||||
LamXYZ = [ T(order(2)) * q, T(order(1)) * q, pref * XYZ(3) - c ]
|
|
||||||
endif special
|
|
||||||
|
|
||||||
! reverse the coordinates back to order according to the original pyramid number
|
|
||||||
ball = LamXYZ(p(:,2))
|
|
||||||
|
|
||||||
endif center
|
|
||||||
|
|
||||||
end function Lambert_CubeToBall
|
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------
|
|
||||||
!> @author Marc De Graef, Carnegie Mellon University
|
|
||||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
||||||
!> @brief map from 3D ball to 3D cubic grid
|
|
||||||
!--------------------------------------------------------------------------
|
|
||||||
pure function Lambert_BallToCube(xyz) result(cube)
|
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(3) :: xyz
|
|
||||||
real(pReal), dimension(3) :: cube, xyz1, xyz3
|
|
||||||
real(pReal), dimension(2) :: Tinv, xyz2
|
|
||||||
real(pReal) :: rs, qxy, q2, sq2, q, tt
|
|
||||||
integer, dimension(3,2) :: p
|
|
||||||
|
|
||||||
rs = norm2(xyz)
|
|
||||||
if (rs > R1) then
|
|
||||||
cube = IEEE_value(cube,IEEE_positive_inf)
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
|
|
||||||
center: if (all(dEq0(xyz))) then
|
|
||||||
cube = 0.0_pReal
|
|
||||||
else center
|
|
||||||
p = GetPyramidOrder(xyz)
|
|
||||||
xyz3 = xyz(p(:,1))
|
|
||||||
|
|
||||||
! inverse M_3
|
|
||||||
xyz2 = xyz3(1:2) * sqrt( 2.0*rs/(rs+abs(xyz3(3))) )
|
|
||||||
|
|
||||||
! inverse M_2
|
|
||||||
qxy = sum(xyz2**2)
|
|
||||||
|
|
||||||
special: if (dEq0(qxy)) then
|
|
||||||
Tinv = 0.0_pReal
|
|
||||||
else special
|
|
||||||
q2 = qxy + maxval(abs(xyz2))**2
|
|
||||||
sq2 = sqrt(q2)
|
|
||||||
q = (beta/R2/R1) * sqrt(q2*qxy/(q2-maxval(abs(xyz2))*sq2))
|
|
||||||
tt = (minval(abs(xyz2))**2+maxval(abs(xyz2))*sq2)/R2/qxy
|
|
||||||
Tinv = q * sign(1.0_pReal,xyz2) * merge([ 1.0_pReal, acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12], &
|
|
||||||
[ acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12, 1.0_pReal], &
|
|
||||||
abs(xyz2(2)) <= abs(xyz2(1)))
|
|
||||||
endif special
|
|
||||||
|
|
||||||
! inverse M_1
|
|
||||||
xyz1 = [ Tinv(1), Tinv(2), sign(1.0_pReal,xyz3(3)) * rs / pref ] /sc
|
|
||||||
|
|
||||||
! reverse the coordinates back to order according to the original pyramid number
|
|
||||||
cube = xyz1(p(:,2))
|
|
||||||
|
|
||||||
endif center
|
|
||||||
|
|
||||||
end function Lambert_BallToCube
|
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------
|
|
||||||
!> @author Marc De Graef, Carnegie Mellon University
|
|
||||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
||||||
!> @brief determine to which pyramid a point in a cubic grid belongs
|
|
||||||
!--------------------------------------------------------------------------
|
|
||||||
pure function GetPyramidOrder(xyz)
|
|
||||||
|
|
||||||
real(pReal),intent(in),dimension(3) :: xyz
|
|
||||||
integer, dimension(3,2) :: GetPyramidOrder
|
|
||||||
|
|
||||||
if (((abs(xyz(1)) <= xyz(3)).and.(abs(xyz(2)) <= xyz(3))) .or. &
|
|
||||||
((abs(xyz(1)) <= -xyz(3)).and.(abs(xyz(2)) <= -xyz(3)))) then
|
|
||||||
GetPyramidOrder = reshape([[1,2,3],[1,2,3]],[3,2])
|
|
||||||
else if (((abs(xyz(3)) <= xyz(1)).and.(abs(xyz(2)) <= xyz(1))) .or. &
|
|
||||||
((abs(xyz(3)) <= -xyz(1)).and.(abs(xyz(2)) <= -xyz(1)))) then
|
|
||||||
GetPyramidOrder = reshape([[2,3,1],[3,1,2]],[3,2])
|
|
||||||
else if (((abs(xyz(1)) <= xyz(2)).and.(abs(xyz(3)) <= xyz(2))) .or. &
|
|
||||||
((abs(xyz(1)) <= -xyz(2)).and.(abs(xyz(3)) <= -xyz(2)))) then
|
|
||||||
GetPyramidOrder = reshape([[3,1,2],[2,3,1]],[3,2])
|
|
||||||
else
|
|
||||||
GetPyramidOrder = -1 ! should be impossible, but might simplify debugging
|
|
||||||
end if
|
|
||||||
|
|
||||||
end function GetPyramidOrder
|
|
||||||
|
|
||||||
end module Lambert
|
|
|
@ -12,7 +12,6 @@
|
||||||
#include "LAPACK_interface.f90"
|
#include "LAPACK_interface.f90"
|
||||||
#include "math.f90"
|
#include "math.f90"
|
||||||
#include "quaternions.f90"
|
#include "quaternions.f90"
|
||||||
#include "Lambert.f90"
|
|
||||||
#include "rotations.f90"
|
#include "rotations.f90"
|
||||||
#include "FEsolving.f90"
|
#include "FEsolving.f90"
|
||||||
#include "element.f90"
|
#include "element.f90"
|
||||||
|
|
|
@ -3,27 +3,27 @@
|
||||||
! Modified 2017-2020, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
! Modified 2017-2020, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
||||||
! All rights reserved.
|
! All rights reserved.
|
||||||
!
|
!
|
||||||
! Redistribution and use in source and binary forms, with or without modification, are
|
! Redistribution and use in source and binary forms, with or without modification, are
|
||||||
! permitted provided that the following conditions are met:
|
! permitted provided that the following conditions are met:
|
||||||
!
|
!
|
||||||
! - Redistributions of source code must retain the above copyright notice, this list
|
! - Redistributions of source code must retain the above copyright notice, this list
|
||||||
! of conditions and the following disclaimer.
|
! of conditions and the following disclaimer.
|
||||||
! - Redistributions in binary form must reproduce the above copyright notice, this
|
! - Redistributions in binary form must reproduce the above copyright notice, this
|
||||||
! list of conditions and the following disclaimer in the documentation and/or
|
! list of conditions and the following disclaimer in the documentation and/or
|
||||||
! other materials provided with the distribution.
|
! other materials provided with the distribution.
|
||||||
! - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
! - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
||||||
! of its contributors may be used to endorse or promote products derived from
|
! of its contributors may be used to endorse or promote products derived from
|
||||||
! this software without specific prior written permission.
|
! this software without specific prior written permission.
|
||||||
!
|
!
|
||||||
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||||
! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||||
! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||||
! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||||
! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||||
! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||||
! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||||
! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||||
! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||||
! USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
! USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
! ###################################################################
|
! ###################################################################
|
||||||
|
|
||||||
|
@ -31,7 +31,7 @@
|
||||||
!> @author Marc De Graef, Carnegie Mellon University
|
!> @author Marc De Graef, Carnegie Mellon University
|
||||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||||
!> @brief rotation storage and conversion
|
!> @brief rotation storage and conversion
|
||||||
!> @details: rotation is internally stored as quaternion. It can be inialized from different
|
!> @details: rotation is internally stored as quaternion. It can be inialized from different
|
||||||
!> representations and also returns itself in different representations.
|
!> representations and also returns itself in different representations.
|
||||||
!
|
!
|
||||||
! All methods and naming conventions based on Rowenhorst_etal2015
|
! All methods and naming conventions based on Rowenhorst_etal2015
|
||||||
|
@ -50,9 +50,8 @@ module rotations
|
||||||
use prec
|
use prec
|
||||||
use IO
|
use IO
|
||||||
use math
|
use math
|
||||||
use Lambert
|
|
||||||
use quaternions
|
use quaternions
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
private
|
private
|
||||||
|
|
||||||
|
@ -80,7 +79,19 @@ module rotations
|
||||||
procedure, public :: misorientation
|
procedure, public :: misorientation
|
||||||
procedure, public :: standardize
|
procedure, public :: standardize
|
||||||
end type rotation
|
end type rotation
|
||||||
|
|
||||||
|
real(pReal), parameter :: &
|
||||||
|
SPI = sqrt(PI), &
|
||||||
|
PREF = sqrt(6.0_pReal/PI), &
|
||||||
|
A = PI**(5.0_pReal/6.0_pReal)/6.0_pReal**(1.0_pReal/6.0_pReal), &
|
||||||
|
AP = PI**(2.0_pReal/3.0_pReal), &
|
||||||
|
SC = A/AP, &
|
||||||
|
BETA = A/2.0_pReal, &
|
||||||
|
R1 = (3.0_pReal*PI/4.0_pReal)**(1.0_pReal/3.0_pReal), &
|
||||||
|
R2 = sqrt(2.0_pReal), &
|
||||||
|
PI12 = PI/12.0_pReal, &
|
||||||
|
PREK = R1 * 2.0_pReal**(1.0_pReal/4.0_pReal)/BETA
|
||||||
|
|
||||||
public :: &
|
public :: &
|
||||||
rotations_init, &
|
rotations_init, &
|
||||||
eu2om
|
eu2om
|
||||||
|
@ -106,16 +117,16 @@ pure function asQuaternion(self)
|
||||||
|
|
||||||
class(rotation), intent(in) :: self
|
class(rotation), intent(in) :: self
|
||||||
real(pReal), dimension(4) :: asQuaternion
|
real(pReal), dimension(4) :: asQuaternion
|
||||||
|
|
||||||
asQuaternion = self%q%asArray()
|
asQuaternion = self%q%asArray()
|
||||||
|
|
||||||
end function asQuaternion
|
end function asQuaternion
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure function asEulers(self)
|
pure function asEulers(self)
|
||||||
|
|
||||||
class(rotation), intent(in) :: self
|
class(rotation), intent(in) :: self
|
||||||
real(pReal), dimension(3) :: asEulers
|
real(pReal), dimension(3) :: asEulers
|
||||||
|
|
||||||
asEulers = qu2eu(self%q%asArray())
|
asEulers = qu2eu(self%q%asArray())
|
||||||
|
|
||||||
end function asEulers
|
end function asEulers
|
||||||
|
@ -124,16 +135,16 @@ pure function asAxisAngle(self)
|
||||||
|
|
||||||
class(rotation), intent(in) :: self
|
class(rotation), intent(in) :: self
|
||||||
real(pReal), dimension(4) :: asAxisAngle
|
real(pReal), dimension(4) :: asAxisAngle
|
||||||
|
|
||||||
asAxisAngle = qu2ax(self%q%asArray())
|
asAxisAngle = qu2ax(self%q%asArray())
|
||||||
|
|
||||||
end function asAxisAngle
|
end function asAxisAngle
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure function asMatrix(self)
|
pure function asMatrix(self)
|
||||||
|
|
||||||
class(rotation), intent(in) :: self
|
class(rotation), intent(in) :: self
|
||||||
real(pReal), dimension(3,3) :: asMatrix
|
real(pReal), dimension(3,3) :: asMatrix
|
||||||
|
|
||||||
asMatrix = qu2om(self%q%asArray())
|
asMatrix = qu2om(self%q%asArray())
|
||||||
|
|
||||||
end function asMatrix
|
end function asMatrix
|
||||||
|
@ -142,20 +153,20 @@ pure function asRodrigues(self)
|
||||||
|
|
||||||
class(rotation), intent(in) :: self
|
class(rotation), intent(in) :: self
|
||||||
real(pReal), dimension(4) :: asRodrigues
|
real(pReal), dimension(4) :: asRodrigues
|
||||||
|
|
||||||
asRodrigues = qu2ro(self%q%asArray())
|
asRodrigues = qu2ro(self%q%asArray())
|
||||||
|
|
||||||
end function asRodrigues
|
end function asRodrigues
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure function asHomochoric(self)
|
pure function asHomochoric(self)
|
||||||
|
|
||||||
class(rotation), intent(in) :: self
|
class(rotation), intent(in) :: self
|
||||||
real(pReal), dimension(3) :: asHomochoric
|
real(pReal), dimension(3) :: asHomochoric
|
||||||
|
|
||||||
asHomochoric = qu2ho(self%q%asArray())
|
asHomochoric = qu2ho(self%q%asArray())
|
||||||
|
|
||||||
end function asHomochoric
|
end function asHomochoric
|
||||||
|
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
! Initialize rotation from different representations
|
! Initialize rotation from different representations
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
|
@ -207,7 +218,7 @@ subroutine fromAxisAngle(self,ax,degrees,P)
|
||||||
else
|
else
|
||||||
angle = merge(ax(4)*INRAD,ax(4),degrees)
|
angle = merge(ax(4)*INRAD,ax(4),degrees)
|
||||||
endif
|
endif
|
||||||
|
|
||||||
if (.not. present(P)) then
|
if (.not. present(P)) then
|
||||||
axis = ax(1:3)
|
axis = ax(1:3)
|
||||||
else
|
else
|
||||||
|
@ -217,7 +228,7 @@ subroutine fromAxisAngle(self,ax,degrees,P)
|
||||||
|
|
||||||
if(dNeq(norm2(axis),1.0_pReal) .or. angle < 0.0_pReal .or. angle > PI) &
|
if(dNeq(norm2(axis),1.0_pReal) .or. angle < 0.0_pReal .or. angle > PI) &
|
||||||
call IO_error(402,ext_msg='fromAxisAngle')
|
call IO_error(402,ext_msg='fromAxisAngle')
|
||||||
|
|
||||||
self%q = ax2qu([axis,angle])
|
self%q = ax2qu([axis,angle])
|
||||||
|
|
||||||
end subroutine fromAxisAngle
|
end subroutine fromAxisAngle
|
||||||
|
@ -240,10 +251,10 @@ end subroutine fromMatrix
|
||||||
!> @brief: Rotate a rotation
|
!> @brief: Rotate a rotation
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure elemental function rotRot__(self,R) result(rRot)
|
pure elemental function rotRot__(self,R) result(rRot)
|
||||||
|
|
||||||
type(rotation) :: rRot
|
type(rotation) :: rRot
|
||||||
class(rotation), intent(in) :: self,R
|
class(rotation), intent(in) :: self,R
|
||||||
|
|
||||||
rRot = rotation(self%q*R%q)
|
rRot = rotation(self%q*R%q)
|
||||||
call rRot%standardize()
|
call rRot%standardize()
|
||||||
|
|
||||||
|
@ -251,12 +262,12 @@ end function rotRot__
|
||||||
|
|
||||||
|
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
!> @brief quaternion representation with positive q
|
!> @brief quaternion representation with positive q
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure elemental subroutine standardize(self)
|
pure elemental subroutine standardize(self)
|
||||||
|
|
||||||
class(rotation), intent(inout) :: self
|
class(rotation), intent(inout) :: self
|
||||||
|
|
||||||
if (real(self%q) < 0.0_pReal) self%q = self%q%homomorphed()
|
if (real(self%q) < 0.0_pReal) self%q = self%q%homomorphed()
|
||||||
|
|
||||||
end subroutine standardize
|
end subroutine standardize
|
||||||
|
@ -267,22 +278,22 @@ end subroutine standardize
|
||||||
!> @brief rotate a vector passively (default) or actively
|
!> @brief rotate a vector passively (default) or actively
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure function rotVector(self,v,active) result(vRot)
|
pure function rotVector(self,v,active) result(vRot)
|
||||||
|
|
||||||
real(pReal), dimension(3) :: vRot
|
real(pReal), dimension(3) :: vRot
|
||||||
class(rotation), intent(in) :: self
|
class(rotation), intent(in) :: self
|
||||||
real(pReal), intent(in), dimension(3) :: v
|
real(pReal), intent(in), dimension(3) :: v
|
||||||
logical, intent(in), optional :: active
|
logical, intent(in), optional :: active
|
||||||
|
|
||||||
real(pReal), dimension(3) :: v_normed
|
real(pReal), dimension(3) :: v_normed
|
||||||
type(quaternion) :: q
|
type(quaternion) :: q
|
||||||
logical :: passive
|
logical :: passive
|
||||||
|
|
||||||
if (present(active)) then
|
if (present(active)) then
|
||||||
passive = .not. active
|
passive = .not. active
|
||||||
else
|
else
|
||||||
passive = .true.
|
passive = .true.
|
||||||
endif
|
endif
|
||||||
|
|
||||||
if (dEq0(norm2(v))) then
|
if (dEq0(norm2(v))) then
|
||||||
vRot = v
|
vRot = v
|
||||||
else
|
else
|
||||||
|
@ -304,12 +315,12 @@ end function rotVector
|
||||||
!> @details: rotation is based on rotation matrix
|
!> @details: rotation is based on rotation matrix
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure function rotTensor2(self,T,active) result(tRot)
|
pure function rotTensor2(self,T,active) result(tRot)
|
||||||
|
|
||||||
real(pReal), dimension(3,3) :: tRot
|
real(pReal), dimension(3,3) :: tRot
|
||||||
class(rotation), intent(in) :: self
|
class(rotation), intent(in) :: self
|
||||||
real(pReal), intent(in), dimension(3,3) :: T
|
real(pReal), intent(in), dimension(3,3) :: T
|
||||||
logical, intent(in), optional :: active
|
logical, intent(in), optional :: active
|
||||||
|
|
||||||
logical :: passive
|
logical :: passive
|
||||||
|
|
||||||
if (present(active)) then
|
if (present(active)) then
|
||||||
|
@ -317,7 +328,7 @@ pure function rotTensor2(self,T,active) result(tRot)
|
||||||
else
|
else
|
||||||
passive = .true.
|
passive = .true.
|
||||||
endif
|
endif
|
||||||
|
|
||||||
if (passive) then
|
if (passive) then
|
||||||
tRot = matmul(matmul(self%asMatrix(),T),transpose(self%asMatrix()))
|
tRot = matmul(matmul(self%asMatrix(),T),transpose(self%asMatrix()))
|
||||||
else
|
else
|
||||||
|
@ -339,7 +350,7 @@ pure function rotTensor4(self,T,active) result(tRot)
|
||||||
class(rotation), intent(in) :: self
|
class(rotation), intent(in) :: self
|
||||||
real(pReal), intent(in), dimension(3,3,3,3) :: T
|
real(pReal), intent(in), dimension(3,3,3,3) :: T
|
||||||
logical, intent(in), optional :: active
|
logical, intent(in), optional :: active
|
||||||
|
|
||||||
real(pReal), dimension(3,3) :: R
|
real(pReal), dimension(3,3) :: R
|
||||||
integer :: i,j,k,l,m,n,o,p
|
integer :: i,j,k,l,m,n,o,p
|
||||||
|
|
||||||
|
@ -370,7 +381,7 @@ pure function rotTensor4sym(self,T,active) result(tRot)
|
||||||
class(rotation), intent(in) :: self
|
class(rotation), intent(in) :: self
|
||||||
real(pReal), intent(in), dimension(6,6) :: T
|
real(pReal), intent(in), dimension(6,6) :: T
|
||||||
logical, intent(in), optional :: active
|
logical, intent(in), optional :: active
|
||||||
|
|
||||||
if (present(active)) then
|
if (present(active)) then
|
||||||
tRot = math_sym3333to66(rotTensor4(self,math_66toSym3333(T),active))
|
tRot = math_sym3333to66(rotTensor4(self,math_66toSym3333(T),active))
|
||||||
else
|
else
|
||||||
|
@ -384,10 +395,10 @@ end function rotTensor4sym
|
||||||
!> @brief misorientation
|
!> @brief misorientation
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure elemental function misorientation(self,other)
|
pure elemental function misorientation(self,other)
|
||||||
|
|
||||||
type(rotation) :: misorientation
|
type(rotation) :: misorientation
|
||||||
class(rotation), intent(in) :: self, other
|
class(rotation), intent(in) :: self, other
|
||||||
|
|
||||||
misorientation%q = other%q * conjg(self%q)
|
misorientation%q = other%q * conjg(self%q)
|
||||||
|
|
||||||
end function misorientation
|
end function misorientation
|
||||||
|
@ -401,7 +412,7 @@ pure function qu2om(qu) result(om)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: qu
|
real(pReal), intent(in), dimension(4) :: qu
|
||||||
real(pReal), dimension(3,3) :: om
|
real(pReal), dimension(3,3) :: om
|
||||||
|
|
||||||
real(pReal) :: qq
|
real(pReal) :: qq
|
||||||
|
|
||||||
qq = qu(1)**2-sum(qu(2:4)**2)
|
qq = qu(1)**2-sum(qu(2:4)**2)
|
||||||
|
@ -431,13 +442,13 @@ pure function qu2eu(qu) result(eu)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: qu
|
real(pReal), intent(in), dimension(4) :: qu
|
||||||
real(pReal), dimension(3) :: eu
|
real(pReal), dimension(3) :: eu
|
||||||
|
|
||||||
real(pReal) :: q12, q03, chi
|
real(pReal) :: q12, q03, chi
|
||||||
|
|
||||||
q03 = qu(1)**2+qu(4)**2
|
q03 = qu(1)**2+qu(4)**2
|
||||||
q12 = qu(2)**2+qu(3)**2
|
q12 = qu(2)**2+qu(3)**2
|
||||||
chi = sqrt(q03*q12)
|
chi = sqrt(q03*q12)
|
||||||
|
|
||||||
degenerated: if (dEq0(q12)) then
|
degenerated: if (dEq0(q12)) then
|
||||||
eu = [atan2(-P*2.0_pReal*qu(1)*qu(4),qu(1)**2-qu(4)**2), 0.0_pReal, 0.0_pReal]
|
eu = [atan2(-P*2.0_pReal*qu(1)*qu(4),qu(1)**2-qu(4)**2), 0.0_pReal, 0.0_pReal]
|
||||||
elseif (dEq0(q03)) then
|
elseif (dEq0(q03)) then
|
||||||
|
@ -460,7 +471,7 @@ pure function qu2ax(qu) result(ax)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: qu
|
real(pReal), intent(in), dimension(4) :: qu
|
||||||
real(pReal), dimension(4) :: ax
|
real(pReal), dimension(4) :: ax
|
||||||
|
|
||||||
real(pReal) :: omega, s
|
real(pReal) :: omega, s
|
||||||
|
|
||||||
if (dEq0(sum(qu(2:4)**2))) then
|
if (dEq0(sum(qu(2:4)**2))) then
|
||||||
|
@ -481,13 +492,13 @@ end function qu2ax
|
||||||
!> @brief convert unit quaternion to Rodrigues vector
|
!> @brief convert unit quaternion to Rodrigues vector
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure function qu2ro(qu) result(ro)
|
pure function qu2ro(qu) result(ro)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: qu
|
real(pReal), intent(in), dimension(4) :: qu
|
||||||
real(pReal), dimension(4) :: ro
|
real(pReal), dimension(4) :: ro
|
||||||
|
|
||||||
real(pReal) :: s
|
real(pReal) :: s
|
||||||
real(pReal), parameter :: thr = 1.0e-8_pReal
|
real(pReal), parameter :: thr = 1.0e-8_pReal
|
||||||
|
|
||||||
if (abs(qu(1)) < thr) then
|
if (abs(qu(1)) < thr) then
|
||||||
ro = [qu(2), qu(3), qu(4), IEEE_value(1.0_pReal,IEEE_positive_inf)]
|
ro = [qu(2), qu(3), qu(4), IEEE_value(1.0_pReal,IEEE_positive_inf)]
|
||||||
else
|
else
|
||||||
|
@ -497,7 +508,7 @@ pure function qu2ro(qu) result(ro)
|
||||||
else
|
else
|
||||||
ro = [qu(2)/s,qu(3)/s,qu(4)/s, tan(acos(math_clip(qu(1),-1.0_pReal,1.0_pReal)))]
|
ro = [qu(2)/s,qu(3)/s,qu(4)/s, tan(acos(math_clip(qu(1),-1.0_pReal,1.0_pReal)))]
|
||||||
endif
|
endif
|
||||||
|
|
||||||
end if
|
end if
|
||||||
|
|
||||||
end function qu2ro
|
end function qu2ro
|
||||||
|
@ -511,11 +522,11 @@ pure function qu2ho(qu) result(ho)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: qu
|
real(pReal), intent(in), dimension(4) :: qu
|
||||||
real(pReal), dimension(3) :: ho
|
real(pReal), dimension(3) :: ho
|
||||||
|
|
||||||
real(pReal) :: omega, f
|
real(pReal) :: omega, f
|
||||||
|
|
||||||
omega = 2.0 * acos(math_clip(qu(1),-1.0_pReal,1.0_pReal))
|
omega = 2.0 * acos(math_clip(qu(1),-1.0_pReal,1.0_pReal))
|
||||||
|
|
||||||
if (dEq0(omega)) then
|
if (dEq0(omega)) then
|
||||||
ho = [ 0.0_pReal, 0.0_pReal, 0.0_pReal ]
|
ho = [ 0.0_pReal, 0.0_pReal, 0.0_pReal ]
|
||||||
else
|
else
|
||||||
|
@ -532,7 +543,7 @@ end function qu2ho
|
||||||
!> @brief convert unit quaternion to cubochoric
|
!> @brief convert unit quaternion to cubochoric
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure function qu2cu(qu) result(cu)
|
pure function qu2cu(qu) result(cu)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: qu
|
real(pReal), intent(in), dimension(4) :: qu
|
||||||
real(pReal), dimension(3) :: cu
|
real(pReal), dimension(3) :: cu
|
||||||
|
|
||||||
|
@ -565,18 +576,18 @@ pure function om2eu(om) result(eu)
|
||||||
real(pReal), intent(in), dimension(3,3) :: om
|
real(pReal), intent(in), dimension(3,3) :: om
|
||||||
real(pReal), dimension(3) :: eu
|
real(pReal), dimension(3) :: eu
|
||||||
real(pReal) :: zeta
|
real(pReal) :: zeta
|
||||||
|
|
||||||
if (abs(om(3,3)) < 1.0_pReal) then
|
if (abs(om(3,3)) < 1.0_pReal) then
|
||||||
zeta = 1.0_pReal/sqrt(1.0_pReal-om(3,3)**2.0_pReal)
|
zeta = 1.0_pReal/sqrt(1.0_pReal-om(3,3)**2.0_pReal)
|
||||||
eu = [atan2(om(3,1)*zeta,-om(3,2)*zeta), &
|
eu = [atan2(om(3,1)*zeta,-om(3,2)*zeta), &
|
||||||
acos(om(3,3)), &
|
acos(om(3,3)), &
|
||||||
atan2(om(1,3)*zeta, om(2,3)*zeta)]
|
atan2(om(1,3)*zeta, om(2,3)*zeta)]
|
||||||
else
|
else
|
||||||
eu = [atan2(om(1,2),om(1,1)), 0.5_pReal*PI*(1.0_pReal-om(3,3)),0.0_pReal ]
|
eu = [atan2(om(1,2),om(1,1)), 0.5_pReal*PI*(1.0_pReal-om(3,3)),0.0_pReal ]
|
||||||
end if
|
end if
|
||||||
|
|
||||||
where(eu<0.0_pReal) eu = mod(eu+2.0_pReal*PI,[2.0_pReal*PI,PI,2.0_pReal*PI])
|
where(eu<0.0_pReal) eu = mod(eu+2.0_pReal*PI,[2.0_pReal*PI,PI,2.0_pReal*PI])
|
||||||
|
|
||||||
end function om2eu
|
end function om2eu
|
||||||
|
|
||||||
|
|
||||||
|
@ -588,19 +599,19 @@ function om2ax(om) result(ax)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(3,3) :: om
|
real(pReal), intent(in), dimension(3,3) :: om
|
||||||
real(pReal), dimension(4) :: ax
|
real(pReal), dimension(4) :: ax
|
||||||
|
|
||||||
real(pReal) :: t
|
real(pReal) :: t
|
||||||
real(pReal), dimension(3) :: Wr, Wi
|
real(pReal), dimension(3) :: Wr, Wi
|
||||||
real(pReal), dimension((64+2)*3) :: work
|
real(pReal), dimension((64+2)*3) :: work
|
||||||
real(pReal), dimension(3,3) :: VR, devNull, om_
|
real(pReal), dimension(3,3) :: VR, devNull, om_
|
||||||
integer :: ierr, i
|
integer :: ierr, i
|
||||||
|
|
||||||
om_ = om
|
om_ = om
|
||||||
|
|
||||||
! first get the rotation angle
|
! first get the rotation angle
|
||||||
t = 0.5_pReal * (math_trace33(om) - 1.0_pReal)
|
t = 0.5_pReal * (math_trace33(om) - 1.0_pReal)
|
||||||
ax(4) = acos(math_clip(t,-1.0_pReal,1.0_pReal))
|
ax(4) = acos(math_clip(t,-1.0_pReal,1.0_pReal))
|
||||||
|
|
||||||
if (dEq0(ax(4))) then
|
if (dEq0(ax(4))) then
|
||||||
ax(1:3) = [ 0.0_pReal, 0.0_pReal, 1.0_pReal ]
|
ax(1:3) = [ 0.0_pReal, 0.0_pReal, 1.0_pReal ]
|
||||||
else
|
else
|
||||||
|
@ -674,7 +685,7 @@ pure function eu2qu(eu) result(qu)
|
||||||
real(pReal) :: cPhi, sPhi
|
real(pReal) :: cPhi, sPhi
|
||||||
|
|
||||||
ee = 0.5_pReal*eu
|
ee = 0.5_pReal*eu
|
||||||
|
|
||||||
cPhi = cos(ee(2))
|
cPhi = cos(ee(2))
|
||||||
sPhi = sin(ee(2))
|
sPhi = sin(ee(2))
|
||||||
|
|
||||||
|
@ -692,15 +703,15 @@ end function eu2qu
|
||||||
!> @brief Euler angles to orientation matrix
|
!> @brief Euler angles to orientation matrix
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure function eu2om(eu) result(om)
|
pure function eu2om(eu) result(om)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(3) :: eu
|
real(pReal), intent(in), dimension(3) :: eu
|
||||||
real(pReal), dimension(3,3) :: om
|
real(pReal), dimension(3,3) :: om
|
||||||
|
|
||||||
real(pReal), dimension(3) :: c, s
|
real(pReal), dimension(3) :: c, s
|
||||||
|
|
||||||
c = cos(eu)
|
c = cos(eu)
|
||||||
s = sin(eu)
|
s = sin(eu)
|
||||||
|
|
||||||
om(1,1) = c(1)*c(3)-s(1)*s(3)*c(2)
|
om(1,1) = c(1)*c(3)-s(1)*s(3)*c(2)
|
||||||
om(1,2) = s(1)*c(3)+c(1)*s(3)*c(2)
|
om(1,2) = s(1)*c(3)+c(1)*s(3)*c(2)
|
||||||
om(1,3) = s(3)*s(2)
|
om(1,3) = s(3)*s(2)
|
||||||
|
@ -710,7 +721,7 @@ pure function eu2om(eu) result(om)
|
||||||
om(3,1) = s(1)*s(2)
|
om(3,1) = s(1)*s(2)
|
||||||
om(3,2) = -c(1)*s(2)
|
om(3,2) = -c(1)*s(2)
|
||||||
om(3,3) = c(2)
|
om(3,3) = c(2)
|
||||||
|
|
||||||
where(dEq0(om)) om = 0.0_pReal
|
where(dEq0(om)) om = 0.0_pReal
|
||||||
|
|
||||||
end function eu2om
|
end function eu2om
|
||||||
|
@ -721,19 +732,19 @@ end function eu2om
|
||||||
!> @brief convert euler to axis angle
|
!> @brief convert euler to axis angle
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure function eu2ax(eu) result(ax)
|
pure function eu2ax(eu) result(ax)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(3) :: eu
|
real(pReal), intent(in), dimension(3) :: eu
|
||||||
real(pReal), dimension(4) :: ax
|
real(pReal), dimension(4) :: ax
|
||||||
|
|
||||||
real(pReal) :: t, delta, tau, alpha, sigma
|
real(pReal) :: t, delta, tau, alpha, sigma
|
||||||
|
|
||||||
t = tan(eu(2)*0.5_pReal)
|
t = tan(eu(2)*0.5_pReal)
|
||||||
sigma = 0.5_pReal*(eu(1)+eu(3))
|
sigma = 0.5_pReal*(eu(1)+eu(3))
|
||||||
delta = 0.5_pReal*(eu(1)-eu(3))
|
delta = 0.5_pReal*(eu(1)-eu(3))
|
||||||
tau = sqrt(t**2+sin(sigma)**2)
|
tau = sqrt(t**2+sin(sigma)**2)
|
||||||
|
|
||||||
alpha = merge(PI, 2.0_pReal*atan(tau/cos(sigma)), dEq(sigma,PI*0.5_pReal,tol=1.0e-15_pReal))
|
alpha = merge(PI, 2.0_pReal*atan(tau/cos(sigma)), dEq(sigma,PI*0.5_pReal,tol=1.0e-15_pReal))
|
||||||
|
|
||||||
if (dEq0(alpha)) then ! return a default identity axis-angle pair
|
if (dEq0(alpha)) then ! return a default identity axis-angle pair
|
||||||
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ]
|
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ]
|
||||||
else
|
else
|
||||||
|
@ -741,7 +752,7 @@ pure function eu2ax(eu) result(ax)
|
||||||
ax(4) = alpha
|
ax(4) = alpha
|
||||||
if (alpha < 0.0_pReal) ax = -ax ! ensure alpha is positive
|
if (alpha < 0.0_pReal) ax = -ax ! ensure alpha is positive
|
||||||
end if
|
end if
|
||||||
|
|
||||||
end function eu2ax
|
end function eu2ax
|
||||||
|
|
||||||
|
|
||||||
|
@ -753,7 +764,7 @@ pure function eu2ro(eu) result(ro)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(3) :: eu
|
real(pReal), intent(in), dimension(3) :: eu
|
||||||
real(pReal), dimension(4) :: ro
|
real(pReal), dimension(4) :: ro
|
||||||
|
|
||||||
ro = eu2ax(eu)
|
ro = eu2ax(eu)
|
||||||
if (ro(4) >= PI) then
|
if (ro(4) >= PI) then
|
||||||
ro(4) = IEEE_value(ro(4),IEEE_positive_inf)
|
ro(4) = IEEE_value(ro(4),IEEE_positive_inf)
|
||||||
|
@ -762,7 +773,7 @@ pure function eu2ro(eu) result(ro)
|
||||||
else
|
else
|
||||||
ro(4) = tan(ro(4)*0.5_pReal)
|
ro(4) = tan(ro(4)*0.5_pReal)
|
||||||
end if
|
end if
|
||||||
|
|
||||||
end function eu2ro
|
end function eu2ro
|
||||||
|
|
||||||
|
|
||||||
|
@ -799,7 +810,7 @@ end function eu2cu
|
||||||
!> @brief convert axis angle pair to quaternion
|
!> @brief convert axis angle pair to quaternion
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure function ax2qu(ax) result(qu)
|
pure function ax2qu(ax) result(qu)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: ax
|
real(pReal), intent(in), dimension(4) :: ax
|
||||||
real(pReal), dimension(4) :: qu
|
real(pReal), dimension(4) :: qu
|
||||||
|
|
||||||
|
@ -825,7 +836,7 @@ pure function ax2om(ax) result(om)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: ax
|
real(pReal), intent(in), dimension(4) :: ax
|
||||||
real(pReal), dimension(3,3) :: om
|
real(pReal), dimension(3,3) :: om
|
||||||
|
|
||||||
real(pReal) :: q, c, s, omc
|
real(pReal) :: q, c, s, omc
|
||||||
|
|
||||||
c = cos(ax(4))
|
c = cos(ax(4))
|
||||||
|
@ -839,11 +850,11 @@ pure function ax2om(ax) result(om)
|
||||||
q = omc*ax(1)*ax(2)
|
q = omc*ax(1)*ax(2)
|
||||||
om(1,2) = q + s*ax(3)
|
om(1,2) = q + s*ax(3)
|
||||||
om(2,1) = q - s*ax(3)
|
om(2,1) = q - s*ax(3)
|
||||||
|
|
||||||
q = omc*ax(2)*ax(3)
|
q = omc*ax(2)*ax(3)
|
||||||
om(2,3) = q + s*ax(1)
|
om(2,3) = q + s*ax(1)
|
||||||
om(3,2) = q - s*ax(1)
|
om(3,2) = q - s*ax(1)
|
||||||
|
|
||||||
q = omc*ax(3)*ax(1)
|
q = omc*ax(3)*ax(1)
|
||||||
om(3,1) = q + s*ax(2)
|
om(3,1) = q + s*ax(2)
|
||||||
om(1,3) = q - s*ax(2)
|
om(1,3) = q - s*ax(2)
|
||||||
|
@ -875,12 +886,12 @@ pure function ax2ro(ax) result(ro)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: ax
|
real(pReal), intent(in), dimension(4) :: ax
|
||||||
real(pReal), dimension(4) :: ro
|
real(pReal), dimension(4) :: ro
|
||||||
|
|
||||||
real(pReal), parameter :: thr = 1.0e-7_pReal
|
real(pReal), parameter :: thr = 1.0e-7_pReal
|
||||||
|
|
||||||
if (dEq0(ax(4))) then
|
if (dEq0(ax(4))) then
|
||||||
ro = [ 0.0_pReal, 0.0_pReal, P, 0.0_pReal ]
|
ro = [ 0.0_pReal, 0.0_pReal, P, 0.0_pReal ]
|
||||||
else
|
else
|
||||||
ro(1:3) = ax(1:3)
|
ro(1:3) = ax(1:3)
|
||||||
! we need to deal with the 180 degree case
|
! we need to deal with the 180 degree case
|
||||||
ro(4) = merge(IEEE_value(ro(4),IEEE_positive_inf),tan(ax(4)*0.5_pReal),abs(ax(4)-PI) < thr)
|
ro(4) = merge(IEEE_value(ro(4),IEEE_positive_inf),tan(ax(4)*0.5_pReal),abs(ax(4)-PI) < thr)
|
||||||
|
@ -897,9 +908,9 @@ pure function ax2ho(ax) result(ho)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: ax
|
real(pReal), intent(in), dimension(4) :: ax
|
||||||
real(pReal), dimension(3) :: ho
|
real(pReal), dimension(3) :: ho
|
||||||
|
|
||||||
real(pReal) :: f
|
real(pReal) :: f
|
||||||
|
|
||||||
f = 0.75_pReal * ( ax(4) - sin(ax(4)) )
|
f = 0.75_pReal * ( ax(4) - sin(ax(4)) )
|
||||||
f = f**(1.0_pReal/3.0_pReal)
|
f = f**(1.0_pReal/3.0_pReal)
|
||||||
ho = ax(1:3) * f
|
ho = ax(1:3) * f
|
||||||
|
@ -929,7 +940,7 @@ pure function ro2qu(ro) result(qu)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: ro
|
real(pReal), intent(in), dimension(4) :: ro
|
||||||
real(pReal), dimension(4) :: qu
|
real(pReal), dimension(4) :: qu
|
||||||
|
|
||||||
qu = ax2qu(ro2ax(ro))
|
qu = ax2qu(ro2ax(ro))
|
||||||
|
|
||||||
end function ro2qu
|
end function ro2qu
|
||||||
|
@ -957,7 +968,7 @@ pure function ro2eu(ro) result(eu)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: ro
|
real(pReal), intent(in), dimension(4) :: ro
|
||||||
real(pReal), dimension(3) :: eu
|
real(pReal), dimension(3) :: eu
|
||||||
|
|
||||||
eu = om2eu(ro2om(ro))
|
eu = om2eu(ro2om(ro))
|
||||||
|
|
||||||
end function ro2eu
|
end function ro2eu
|
||||||
|
@ -971,14 +982,14 @@ pure function ro2ax(ro) result(ax)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: ro
|
real(pReal), intent(in), dimension(4) :: ro
|
||||||
real(pReal), dimension(4) :: ax
|
real(pReal), dimension(4) :: ax
|
||||||
|
|
||||||
real(pReal) :: ta, angle
|
real(pReal) :: ta, angle
|
||||||
|
|
||||||
ta = ro(4)
|
ta = ro(4)
|
||||||
|
|
||||||
if (.not. IEEE_is_finite(ta)) then
|
if (.not. IEEE_is_finite(ta)) then
|
||||||
ax = [ ro(1), ro(2), ro(3), PI ]
|
ax = [ ro(1), ro(2), ro(3), PI ]
|
||||||
elseif (dEq0(ta)) then
|
elseif (dEq0(ta)) then
|
||||||
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ]
|
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ]
|
||||||
else
|
else
|
||||||
angle = 2.0_pReal*atan(ta)
|
angle = 2.0_pReal*atan(ta)
|
||||||
|
@ -997,9 +1008,9 @@ pure function ro2ho(ro) result(ho)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(4) :: ro
|
real(pReal), intent(in), dimension(4) :: ro
|
||||||
real(pReal), dimension(3) :: ho
|
real(pReal), dimension(3) :: ho
|
||||||
|
|
||||||
real(pReal) :: f
|
real(pReal) :: f
|
||||||
|
|
||||||
if (dEq0(norm2(ro(1:3)))) then
|
if (dEq0(norm2(ro(1:3)))) then
|
||||||
ho = [ 0.0_pReal, 0.0_pReal, 0.0_pReal ]
|
ho = [ 0.0_pReal, 0.0_pReal, 0.0_pReal ]
|
||||||
else
|
else
|
||||||
|
@ -1074,26 +1085,26 @@ pure function ho2ax(ho) result(ax)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(3) :: ho
|
real(pReal), intent(in), dimension(3) :: ho
|
||||||
real(pReal), dimension(4) :: ax
|
real(pReal), dimension(4) :: ax
|
||||||
|
|
||||||
integer :: i
|
integer :: i
|
||||||
real(pReal) :: hmag_squared, s, hm
|
real(pReal) :: hmag_squared, s, hm
|
||||||
real(pReal), parameter, dimension(16) :: &
|
real(pReal), parameter, dimension(16) :: &
|
||||||
tfit = [ 1.0000000000018852_pReal, -0.5000000002194847_pReal, &
|
tfit = [ 1.0000000000018852_pReal, -0.5000000002194847_pReal, &
|
||||||
-0.024999992127593126_pReal, -0.003928701544781374_pReal, &
|
-0.024999992127593126_pReal, -0.003928701544781374_pReal, &
|
||||||
-0.0008152701535450438_pReal, -0.0002009500426119712_pReal, &
|
-0.0008152701535450438_pReal, -0.0002009500426119712_pReal, &
|
||||||
-0.00002397986776071756_pReal, -0.00008202868926605841_pReal, &
|
-0.00002397986776071756_pReal, -0.00008202868926605841_pReal, &
|
||||||
+0.00012448715042090092_pReal, -0.0001749114214822577_pReal, &
|
+0.00012448715042090092_pReal, -0.0001749114214822577_pReal, &
|
||||||
+0.0001703481934140054_pReal, -0.00012062065004116828_pReal, &
|
+0.0001703481934140054_pReal, -0.00012062065004116828_pReal, &
|
||||||
+0.000059719705868660826_pReal, -0.00001980756723965647_pReal, &
|
+0.000059719705868660826_pReal, -0.00001980756723965647_pReal, &
|
||||||
+0.000003953714684212874_pReal, -0.00000036555001439719544_pReal ]
|
+0.000003953714684212874_pReal, -0.00000036555001439719544_pReal ]
|
||||||
|
|
||||||
! normalize h and store the magnitude
|
! normalize h and store the magnitude
|
||||||
hmag_squared = sum(ho**2.0_pReal)
|
hmag_squared = sum(ho**2.0_pReal)
|
||||||
if (dEq0(hmag_squared)) then
|
if (dEq0(hmag_squared)) then
|
||||||
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ]
|
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ]
|
||||||
else
|
else
|
||||||
hm = hmag_squared
|
hm = hmag_squared
|
||||||
|
|
||||||
! convert the magnitude to the rotation angle
|
! convert the magnitude to the rotation angle
|
||||||
s = tfit(1) + tfit(2) * hmag_squared
|
s = tfit(1) + tfit(2) * hmag_squared
|
||||||
do i=3,16
|
do i=3,16
|
||||||
|
@ -1217,12 +1228,147 @@ pure function cu2ho(cu) result(ho)
|
||||||
|
|
||||||
end function cu2ho
|
end function cu2ho
|
||||||
|
|
||||||
|
!--------------------------------------------------------------------------
|
||||||
|
!> @author Marc De Graef, Carnegie Mellon University
|
||||||
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||||
|
!> @brief map from 3D cubic grid to 3D ball
|
||||||
|
!--------------------------------------------------------------------------
|
||||||
|
pure function Lambert_CubeToBall(cube) result(ball)
|
||||||
|
|
||||||
|
real(pReal), intent(in), dimension(3) :: cube
|
||||||
|
real(pReal), dimension(3) :: ball, LamXYZ, XYZ
|
||||||
|
real(pReal), dimension(2) :: T
|
||||||
|
real(pReal) :: c, s, q
|
||||||
|
real(pReal), parameter :: eps = 1.0e-8_pReal
|
||||||
|
integer, dimension(3,2) :: p
|
||||||
|
integer, dimension(2) :: order
|
||||||
|
|
||||||
|
if (maxval(abs(cube)) > AP/2.0+eps) then
|
||||||
|
ball = IEEE_value(cube,IEEE_positive_inf)
|
||||||
|
return
|
||||||
|
end if
|
||||||
|
|
||||||
|
! transform to the sphere grid via the curved square, and intercept the zero point
|
||||||
|
center: if (all(dEq0(cube))) then
|
||||||
|
ball = 0.0_pReal
|
||||||
|
else center
|
||||||
|
! get pyramide and scale by grid parameter ratio
|
||||||
|
p = GetPyramidOrder(cube)
|
||||||
|
XYZ = cube(p(:,1)) * sc
|
||||||
|
|
||||||
|
! intercept all the points along the z-axis
|
||||||
|
special: if (all(dEq0(XYZ(1:2)))) then
|
||||||
|
LamXYZ = [ 0.0_pReal, 0.0_pReal, pref * XYZ(3) ]
|
||||||
|
else special
|
||||||
|
order = merge( [2,1], [1,2], abs(XYZ(2)) <= abs(XYZ(1))) ! order of absolute values of XYZ
|
||||||
|
q = PI12 * XYZ(order(1))/XYZ(order(2)) ! smaller by larger
|
||||||
|
c = cos(q)
|
||||||
|
s = sin(q)
|
||||||
|
q = prek * XYZ(order(2))/ sqrt(R2-c)
|
||||||
|
T = [ (R2*c - 1.0), R2 * s] * q
|
||||||
|
|
||||||
|
! transform to sphere grid (inverse Lambert)
|
||||||
|
! [note that there is no need to worry about dividing by zero, since XYZ(3) can not become zero]
|
||||||
|
c = sum(T**2)
|
||||||
|
s = Pi * c/(24.0*XYZ(3)**2)
|
||||||
|
c = sPi * c / sqrt(24.0_pReal) / XYZ(3)
|
||||||
|
q = sqrt( 1.0 - s )
|
||||||
|
LamXYZ = [ T(order(2)) * q, T(order(1)) * q, pref * XYZ(3) - c ]
|
||||||
|
endif special
|
||||||
|
|
||||||
|
! reverse the coordinates back to order according to the original pyramid number
|
||||||
|
ball = LamXYZ(p(:,2))
|
||||||
|
|
||||||
|
endif center
|
||||||
|
|
||||||
|
end function Lambert_CubeToBall
|
||||||
|
|
||||||
|
|
||||||
|
!--------------------------------------------------------------------------
|
||||||
|
!> @author Marc De Graef, Carnegie Mellon University
|
||||||
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||||
|
!> @brief map from 3D ball to 3D cubic grid
|
||||||
|
!--------------------------------------------------------------------------
|
||||||
|
pure function Lambert_BallToCube(xyz) result(cube)
|
||||||
|
|
||||||
|
real(pReal), intent(in), dimension(3) :: xyz
|
||||||
|
real(pReal), dimension(3) :: cube, xyz1, xyz3
|
||||||
|
real(pReal), dimension(2) :: Tinv, xyz2
|
||||||
|
real(pReal) :: rs, qxy, q2, sq2, q, tt
|
||||||
|
integer, dimension(3,2) :: p
|
||||||
|
|
||||||
|
rs = norm2(xyz)
|
||||||
|
if (rs > R1) then
|
||||||
|
cube = IEEE_value(cube,IEEE_positive_inf)
|
||||||
|
return
|
||||||
|
endif
|
||||||
|
|
||||||
|
center: if (all(dEq0(xyz))) then
|
||||||
|
cube = 0.0_pReal
|
||||||
|
else center
|
||||||
|
p = GetPyramidOrder(xyz)
|
||||||
|
xyz3 = xyz(p(:,1))
|
||||||
|
|
||||||
|
! inverse M_3
|
||||||
|
xyz2 = xyz3(1:2) * sqrt( 2.0*rs/(rs+abs(xyz3(3))) )
|
||||||
|
|
||||||
|
! inverse M_2
|
||||||
|
qxy = sum(xyz2**2)
|
||||||
|
|
||||||
|
special: if (dEq0(qxy)) then
|
||||||
|
Tinv = 0.0_pReal
|
||||||
|
else special
|
||||||
|
q2 = qxy + maxval(abs(xyz2))**2
|
||||||
|
sq2 = sqrt(q2)
|
||||||
|
q = (beta/R2/R1) * sqrt(q2*qxy/(q2-maxval(abs(xyz2))*sq2))
|
||||||
|
tt = (minval(abs(xyz2))**2+maxval(abs(xyz2))*sq2)/R2/qxy
|
||||||
|
Tinv = q * sign(1.0_pReal,xyz2) * merge([ 1.0_pReal, acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12], &
|
||||||
|
[ acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12, 1.0_pReal], &
|
||||||
|
abs(xyz2(2)) <= abs(xyz2(1)))
|
||||||
|
endif special
|
||||||
|
|
||||||
|
! inverse M_1
|
||||||
|
xyz1 = [ Tinv(1), Tinv(2), sign(1.0_pReal,xyz3(3)) * rs / pref ] /sc
|
||||||
|
|
||||||
|
! reverse the coordinates back to order according to the original pyramid number
|
||||||
|
cube = xyz1(p(:,2))
|
||||||
|
|
||||||
|
endif center
|
||||||
|
|
||||||
|
end function Lambert_BallToCube
|
||||||
|
|
||||||
|
|
||||||
|
!--------------------------------------------------------------------------
|
||||||
|
!> @author Marc De Graef, Carnegie Mellon University
|
||||||
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||||
|
!> @brief determine to which pyramid a point in a cubic grid belongs
|
||||||
|
!--------------------------------------------------------------------------
|
||||||
|
pure function GetPyramidOrder(xyz)
|
||||||
|
|
||||||
|
real(pReal),intent(in),dimension(3) :: xyz
|
||||||
|
integer, dimension(3,2) :: GetPyramidOrder
|
||||||
|
|
||||||
|
if (((abs(xyz(1)) <= xyz(3)).and.(abs(xyz(2)) <= xyz(3))) .or. &
|
||||||
|
((abs(xyz(1)) <= -xyz(3)).and.(abs(xyz(2)) <= -xyz(3)))) then
|
||||||
|
GetPyramidOrder = reshape([[1,2,3],[1,2,3]],[3,2])
|
||||||
|
else if (((abs(xyz(3)) <= xyz(1)).and.(abs(xyz(2)) <= xyz(1))) .or. &
|
||||||
|
((abs(xyz(3)) <= -xyz(1)).and.(abs(xyz(2)) <= -xyz(1)))) then
|
||||||
|
GetPyramidOrder = reshape([[2,3,1],[3,1,2]],[3,2])
|
||||||
|
else if (((abs(xyz(1)) <= xyz(2)).and.(abs(xyz(3)) <= xyz(2))) .or. &
|
||||||
|
((abs(xyz(1)) <= -xyz(2)).and.(abs(xyz(3)) <= -xyz(2)))) then
|
||||||
|
GetPyramidOrder = reshape([[3,1,2],[2,3,1]],[3,2])
|
||||||
|
else
|
||||||
|
GetPyramidOrder = -1 ! should be impossible, but might simplify debugging
|
||||||
|
end if
|
||||||
|
|
||||||
|
end function GetPyramidOrder
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief check correctness of some rotations functions
|
!> @brief check correctness of some rotations functions
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
subroutine unitTest
|
subroutine unitTest
|
||||||
|
|
||||||
type(rotation) :: R
|
type(rotation) :: R
|
||||||
real(pReal), dimension(4) :: qu, ax, ro
|
real(pReal), dimension(4) :: qu, ax, ro
|
||||||
real(pReal), dimension(3) :: x, eu, ho, v3
|
real(pReal), dimension(3) :: x, eu, ho, v3
|
||||||
|
@ -1233,7 +1379,7 @@ subroutine unitTest
|
||||||
integer :: i
|
integer :: i
|
||||||
|
|
||||||
do i=1,10
|
do i=1,10
|
||||||
|
|
||||||
msg = ''
|
msg = ''
|
||||||
|
|
||||||
#if defined(__GFORTRAN__) && __GNUC__<9
|
#if defined(__GFORTRAN__) && __GNUC__<9
|
||||||
|
@ -1307,15 +1453,15 @@ subroutine unitTest
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
call R%fromMatrix(om)
|
call R%fromMatrix(om)
|
||||||
|
|
||||||
call random_number(v3)
|
call random_number(v3)
|
||||||
if(all(dNeq(R%rotVector(R%rotVector(v3),active=.true.),v3,1.0e-12_pReal))) &
|
if(all(dNeq(R%rotVector(R%rotVector(v3),active=.true.),v3,1.0e-12_pReal))) &
|
||||||
msg = trim(msg)//'rotVector,'
|
msg = trim(msg)//'rotVector,'
|
||||||
|
|
||||||
call random_number(t33)
|
call random_number(t33)
|
||||||
if(all(dNeq(R%rotTensor2(R%rotTensor2(t33),active=.true.),t33,1.0e-12_pReal))) &
|
if(all(dNeq(R%rotTensor2(R%rotTensor2(t33),active=.true.),t33,1.0e-12_pReal))) &
|
||||||
msg = trim(msg)//'rotTensor2,'
|
msg = trim(msg)//'rotTensor2,'
|
||||||
|
|
||||||
call random_number(t3333)
|
call random_number(t3333)
|
||||||
if(all(dNeq(R%rotTensor4(R%rotTensor4(t3333),active=.true.),t3333,1.0e-12_pReal))) &
|
if(all(dNeq(R%rotTensor4(R%rotTensor4(t3333),active=.true.),t3333,1.0e-12_pReal))) &
|
||||||
msg = trim(msg)//'rotTensor4,'
|
msg = trim(msg)//'rotTensor4,'
|
||||||
|
|
Loading…
Reference in New Issue