outsourced multiple repetitive functions into ASCIItable class.

changed ASCIItable API from file-handles to filenames.

adopted these changes in pre and post processing scripts.

unified behavior and look.

fixed bugs here and there.

improved functionality.
This commit is contained in:
Philip Eisenlohr 2015-08-07 19:03:26 +00:00
parent 563d9e64dd
commit d4e748b654
52 changed files with 4015 additions and 4152 deletions

View File

@ -12,40 +12,60 @@ class ASCIItable():
__slots__ = ['__IO__',
'info',
'labels',
'labeled',
'data',
]
# ------------------------------------------------------------------
def __init__(self,
fileIn = sys.stdin,
fileOut = sys.stdout,
buffered = False, # flush writes
labels = True): # assume table has labels
self.__IO__ = {'in': fileIn,
'out':fileOut,
'output':[],
'buffered':buffered,
'labels':labels,
'validReadSize': 0,
'readBuffer': [], # buffer to hold non-advancing reads
name = 'STDIN',
outname = None,
buffered = False, # flush writes
labeled = True, # assume table has labels
readonly = False, # no reading from file
writeonly = False, # no writing to file
):
self.__IO__ = {'output': [],
'buffered': buffered,
'labeled': labeled, # header contains labels
'labels': [], # labels according to file info
'readBuffer': [], # buffer to hold non-advancing reads
'dataStart': 0,
}
self.info = []
self.labels = []
self.data = []
self.__IO__ .update({'in': sys.stdin,
'out': sys.stdout,
} if name == 'STDIN' else
{'in': sys.stdin if writeonly else open(name,'r') ,
'out': sys.stdout if readonly else open(outname,'w'),
}
)
self.info = []
self.labels = []
self.data = []
# ------------------------------------------------------------------
def _transliterateToFloat(self,x):
def _transliterateToFloat(self,
x):
try:
return float(x)
except:
return 0.0
# ------------------------------------------------------------------
def close(self,dismiss = False):
def croak(self,
what, newline = True):
sys.stderr.write(('\n'.join(map(str,what)) if not hasattr(what, "strip")
and hasattr(what, "__getitem__")
or hasattr(what, "__iter__") else str(what))
+('\n' if newline else '')),
# ------------------------------------------------------------------
def close(self,
dismiss = False):
self.input_close()
self.output_flush()
self.output_close(dismiss)
# ------------------------------------------------------------------
@ -86,7 +106,8 @@ class ASCIItable():
self.__IO__['output'] = []
# ------------------------------------------------------------------
def output_close(self, dismiss = False):
def output_close(self,
dismiss = False):
try:
self.__IO__['out'].close()
except:
@ -96,50 +117,95 @@ class ASCIItable():
# ------------------------------------------------------------------
def head_read(self):
'''
get column labels by either read the first row, or
--if keyword "head[*]" is present-- the last line of the header
get column labels by either reading
the first row or, if keyword "head[*]" is present,
the last line of the header
'''
import re
try:
self.__IO__['in'].seek(0)
except:
pass
firstline = self.__IO__['in'].readline()
m = re.search('(\d+)\s+head', firstline.lower())
if self.__IO__['labels']: # table features labels
if m: # found header info
self.info = [self.__IO__['in'].readline().strip() for i in xrange(1,int(m.group(1)))]
self.labels = self.__IO__['in'].readline().split()
else: # no header info (but labels)
self.labels = firstline.split()
self.__IO__['validReadSize'] = len(self.labels)
firstline = self.__IO__['in'].readline()
m = re.search('(\d+)\s+head', firstline.lower()) # search for "head" keyword
if self.__IO__['labeled']: # table features labels
if m: # found header info
self.info = [self.__IO__['in'].readline().strip() for i in xrange(1,int(m.group(1)))]
self.labels = self.__IO__['in'].readline().split() # store labels found in last line
else: # no header info (but labels)
self.labels = firstline.split() # store labels from first line
self.__IO__['labels'] = list(self.labels) # backup labels (make COPY, not link)
else: # no labels present in table
if m: # found header info
self.info = [self.__IO__['in'].readline().strip() for i in xrange(0,int(m.group(1)))] # all header is info
self.info = [self.__IO__['in'].readline().strip() for i in xrange(0,int(m.group(1)))] # all header is info ...
# ... without any labels
else: # otherwise file starts with data right away
try:
self.__IO__['in'].seek(0) # try to rewind
except:
self.__IO__['readBuffer'] = firstline # or at least save data in buffer
try:
self.__IO__['dataStart'] = self.__IO__['in'].tell() # current file position is at start of data
except(IOError):
pass
# ------------------------------------------------------------------
def head_write(self):
def head_write(self,
header = True):
'''
write current header information (info + labels)
'''
if self.__IO__['labels']:
return self.output_write ([
'%i\theader'%(len(self.info)+1),
self.info,
'\t'.join(self.labels),
])
else:
return self.output_write ([
'%i\theader'%(len(self.info)),
self.info,
])
head = ['{}\theader'.format(len(self.info)+self.__IO__['labeled'])] if header else []
head.append(self.info)
if self.__IO__['labeled']: head.append('\t'.join(self.labels))
return self.output_write(head)
# ------------------------------------------------------------------
def head_getGeom(self):
'''
interpret geom header
'''
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
info = {
'grid': np.zeros(3,'i'),
'size': np.zeros(3,'d'),
'origin': np.zeros(3,'d'),
'homogenization': 0,
'microstructures': 0,
}
extra_header = []
for header in self.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue # skip blank lines
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
else:
extra_header.append(header)
return info,extra_header
# ------------------------------------------------------------------
def labels_append(self,
@ -155,7 +221,7 @@ class ASCIItable():
else:
self.labels += [what]
self.__IO__['labels'] = True # switch on processing (in particular writing) of labels
self.__IO__['labeled'] = True # switch on processing (in particular writing) of labels
# ------------------------------------------------------------------
def labels_clear(self):
@ -163,7 +229,7 @@ class ASCIItable():
delete existing labels and switch to no labeling
'''
self.labels = []
self.__IO__['labels'] = False
self.__IO__['labeled'] = False
# ------------------------------------------------------------------
def label_index(self,
@ -175,20 +241,20 @@ class ASCIItable():
'''
from collections import Iterable
if isinstance(labels, Iterable) and not isinstance(labels, str): # check whether list of labels is requested
if isinstance(labels, Iterable) and not isinstance(labels, str): # check whether list of labels is requested
idx = []
for label in labels:
if label != None:
try:
idx.append(int(label)) # column given as integer number?
idx.append(int(label)) # column given as integer number?
except ValueError:
try:
idx.append(self.labels.index(label)) # locate string in label list
idx.append(self.labels.index(label)) # locate string in label list
except ValueError:
try:
idx.append(self.labels.index('1_'+label)) # locate '1_'+string in label list
idx.append(self.labels.index('1_'+label)) # locate '1_'+string in label list
except ValueError:
idx.append(-1) # not found...
idx.append(-1) # not found...
else:
try:
idx = int(labels)
@ -197,7 +263,7 @@ class ASCIItable():
idx = self.labels.index(labels)
except ValueError:
try:
idx = self.labels.index('1_'+labels) # locate '1_'+string in label list
idx = self.labels.index('1_'+labels) # locate '1_'+string in label list
except ValueError:
idx = None if labels == None else -1
@ -214,47 +280,64 @@ class ASCIItable():
from collections import Iterable
if isinstance(labels, Iterable) and not isinstance(labels, str): # check whether list of labels is requested
if isinstance(labels, Iterable) and not isinstance(labels, str): # check whether list of labels is requested
dim = []
for label in labels:
if label != None:
myDim = -1
try: # column given as number?
try: # column given as number?
idx = int(label)
myDim = 1 # if found has at least dimension 1
if self.labels[idx][:2] == '1_': # column has multidim indicator?
myDim = 1 # if found has at least dimension 1
if self.labels[idx][:2] == '1_': # column has multidim indicator?
while idx+myDim < len(self.labels) and self.labels[idx+myDim][:2] == "%i_"%(myDim+1):
myDim += 1 # add while found
except ValueError: # column has string label
if label in self.labels: # can be directly found?
myDim = 1 # scalar by definition
elif '1_'+label in self.labels: # look for first entry of possible multidim object
idx = self.labels.index('1_'+label) # get starting column
myDim = 1 # (at least) one-dimensional
myDim += 1 # add while found
except ValueError: # column has string label
if label in self.labels: # can be directly found?
myDim = 1 # scalar by definition
elif '1_'+label in self.labels: # look for first entry of possible multidim object
idx = self.labels.index('1_'+label) # get starting column
myDim = 1 # (at least) one-dimensional
while idx+myDim < len(self.labels) and self.labels[idx+myDim][:2] == "%i_"%(myDim+1):
myDim += 1 # keep adding while going through object
myDim += 1 # keep adding while going through object
dim.append(myDim)
else:
dim = -1 # assume invalid label
dim = -1 # assume invalid label
idx = -1
try: # column given as number?
try: # column given as number?
idx = int(labels)
dim = 1 # if found has at least dimension 1
if self.labels[idx][:2] == '1_': # column has multidim indicator?
dim = 1 # if found has at least dimension 1
if self.labels[idx][:2] == '1_': # column has multidim indicator?
while idx+dim < len(self.labels) and self.labels[idx+dim][:2] == "%i_"%(dim+1):
dim += 1 # add as long as found
except ValueError: # column has string label
if labels in self.labels: # can be directly found?
dim = 1 # scalar by definition
elif '1_'+labels in self.labels: # look for first entry of possible multidim object
idx = self.labels.index('1_'+labels) # get starting column
dim = 1 # is (at least) one-dimensional
dim += 1 # add as long as found
except ValueError: # column has string label
if labels in self.labels: # can be directly found?
dim = 1 # scalar by definition
elif '1_'+labels in self.labels: # look for first entry of possible multidim object
idx = self.labels.index('1_'+labels) # get starting column
dim = 1 # is (at least) one-dimensional
while idx+dim < len(self.labels) and self.labels[idx+dim][:2] == "%i_"%(dim+1):
dim += 1 # keep adding while going through object
dim += 1 # keep adding while going through object
return np.array(dim) if isinstance(dim,list) else dim
# ------------------------------------------------------------------
def label_indexrange(self,
labels):
'''
tell index range for given label(s).
return numpy array if asked for list of labels.
transparently deals with label positions implicitly given as numbers or their headings given as strings.
'''
from collections import Iterable
start = self.label_index(labels)
dim = self.label_dimension(labels)
return map(lambda a,b: xrange(a,a+b), zip(start,dim)) if isinstance(labels, Iterable) and not isinstance(labels, str) \
else xrange(start,start+dim)
# ------------------------------------------------------------------
def info_append(self,
what):
@ -278,11 +361,14 @@ class ASCIItable():
# ------------------------------------------------------------------
def data_rewind(self):
self.__IO__['in'].seek(self.__IO__['dataStart']) # position file to start of data section
self.__IO__['readBuffer'] = [] # delete any non-advancing data reads
self.__IO__['in'].seek(self.__IO__['dataStart']) # position file to start of data section
self.__IO__['readBuffer'] = [] # delete any non-advancing data reads
self.labels = list(self.__IO__['labels']) # restore label info found in header (as COPY, not link)
self.__IO__['labeled'] = len(self.labels) > 0
# ------------------------------------------------------------------
def data_skipLines(self,count):
def data_skipLines(self,
count):
'''
wind forward by count number of lines
'''
@ -292,36 +378,27 @@ class ASCIItable():
return alive
# ------------------------------------------------------------------
def data_read(self,advance = True):
def data_read(self,
advance = True):
'''
read next line (possibly buffered) and parse it into data array
'''
if len(self.__IO__['readBuffer']) > 0:
line = self.__IO__['readBuffer'].pop(0) # take buffered content
line = self.__IO__['readBuffer'].pop(0) # take buffered content
else:
line = self.__IO__['in'].readline() # get next data row from file
line = self.__IO__['in'].readline() # get next data row from file
if not advance:
self.__IO__['readBuffer'].append(line) # keep line just read in buffer
self.__IO__['readBuffer'].append(line) # keep line just read in buffer
if self.__IO__['labels']:
items = line.split()[:self.__IO__['validReadSize']] # use up to valid size (label count)
self.data = items if len(items) == self.__IO__['validReadSize'] else [] # take if correct number of entries
if self.__IO__['labeled']: # if table has labels
items = line.split()[:len(self.__IO__['labels'])] # use up to label count (from original file info)
self.data = items if len(items) == len(self.__IO__['labels']) else [] # take entries if correct number, i.e. not too few compared to label count
else:
self.data = line.split() # take all
self.data = line.split() # otherwise take all
return self.data != []
# ------------------------------------------------------------------
def data_readLine(self,line):
'''
seek beginning of data and wind forward to selected line
'''
self.__IO__['in'].seek(self.__IO__['dataStart'])
for i in xrange(line-1):
self.__IO__['in'].readline()
self.data_read()
# ------------------------------------------------------------------
def data_readArray(self,
labels = []):
@ -329,36 +406,37 @@ class ASCIItable():
read whole data of all (given) labels as numpy array
'''
if not isinstance(labels,list):
labels = [labels]
if labels == [None] or labels == []:
try:
self.data_rewind() # try to wind back to start of data
except:
pass # assume/hope we are at data start already...
if labels == None or labels == []:
use = None # use all columns (and keep labels intact)
labels_missing = []
else:
indices = self.label_index(labels) # check requested labels
indices = self.label_index(labels) # check requested labels ...
dimensions = self.label_dimension(labels) # ... and remember their dimension
present = np.where(indices >= 0)[0] # positions in request list of labels that are present ...
missing = np.where(indices < 0)[0] # ... and missing in table
labels_missing = np.array(labels)[missing] # labels of missing data
columns = []
for i,c in enumerate(indices[present]): # for all valid labels ...
for i,(c,d) in enumerate(zip(indices[present],dimensions[present])): # for all valid labels ...
columns += range(c,c + \
(self.label_dimension(c) if str(c) != str(labels[present[i]]) \
else 1)) # ... transparently add all components unless column referenced by number
(d if str(c) != str(labels[present[i]]) else \
1)) # ... transparently add all components unless column referenced by number or with explicit dimension
use = np.array(columns)
self.labels = list(np.array(self.labels)[use]) if use != [] else [] # ... for missing and present columns
self.__IO__['validReadSize'] = len(use) # update data width
self.labels = list(np.array(self.labels)[use]) # update labels with valid subset
try:
self.data_rewind() # try to wind back to start of data
except:
pass # assume/hope we are at data start already...
self.data = np.loadtxt(self.__IO__['in'], usecols=use,ndmin=2)
return labels_missing
# ------------------------------------------------------------------
def data_write(self,delimiter = '\t'):
def data_write(self,
delimiter = '\t'):
'''
write current data array and report alive output back
'''
@ -370,7 +448,8 @@ class ASCIItable():
return self.output_write(delimiter.join(map(str,self.data)))
# ------------------------------------------------------------------
def data_writeArray(self,format = '%g',delimiter = '\t'):
def data_writeArray(self,
format = '%g', delimiter = '\t'):
'''
write whole numpy array data
'''
@ -389,10 +468,13 @@ class ASCIItable():
# ------------------------------------------------------------------
def data_set(self,
what,where):
what, where):
'''
update data entry in column "where". grows data array if needed.
'''
idx = -1
try:
idx = self.labels.index(where)
idx = self.label_index(where)
if len(self.data) <= idx:
self.data_append(['n/a' for i in xrange(idx+1-len(self.data))]) # grow data if too short
self.data[idx] = str(what)
@ -408,3 +490,30 @@ class ASCIItable():
# ------------------------------------------------------------------
def data_asFloat(self):
return map(self._transliterateToFloat,self.data)
# ------------------------------------------------------------------
def microstructure_read(self,
grid):
'''
read microstructure data (from .geom format)
'''
N = grid.prod() # expected number of microstructure indices in data
microstructure = np.zeros(N,'i') # initialize as flat array
i = 0
while i < N and self.data_read():
items = self.data
if len(items) > 2:
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
elif items[1].lower() == 'to': items = range(int(items[0]),1+int(items[2]))
else: items = map(int,items)
else: items = map(int,items)
s = min(len(items), N-i) # prevent overflow of microstructure array
microstructure[i:i+s] = items[:s]
i += s
return microstructure

View File

@ -18,104 +18,111 @@ def unravel(item):
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Add column(s) with derived values according to user defined arithmetic operation between column(s).
Columns can be specified either by label or index. Use ';' for ',' in functions.
Add column(s) with derived values according to user-defined arithmetic operation between column(s).
Column labels are tagged by '#label#' in formulas. Use ';' for ',' in functions.
Numpy is available as np.
Example: distance to IP coordinates -- "math.sqrt( #ip.x#**2 + #ip.y#**2 + round(#ip.z#;3)**2 )"
Special variables: #_row_# -- row index
Examples: (1) magnitude of vector -- "np.linalg.norm(#vec#)" (2) rounded root of row number -- "round(math.sqrt(#_row_#);3)"
""", version = scriptID)
parser.add_option('-l','--label', dest='labels', action='extend', metavar='<string LIST>',
help='(list of) new column labels')
parser.add_option('-f','--formula', dest='formulas', action='extend', metavar='<string LIST>',
help='(list of) formulas corresponding to labels')
parser.add_option('-l','--label',
dest = 'labels',
action = 'extend', metavar = '<string LIST>',
help = '(list of) new column labels')
parser.add_option('-f','--formula',
dest = 'formulas',
action = 'extend', metavar = '<string LIST>',
help = '(list of) formulas corresponding to labels')
(options,filenames) = parser.parse_args()
if options.labels == None or options.formulas == None:
parser.error('no formulas and/or labels specified')
elif len(options.labels) != len(options.formulas):
parser.error('number of labels (%i) and formulas (%i) do not match'%(len(options.labels),len(options.formulas)))
parser.error('no formulas and/or labels specified.')
if len(options.labels) != len(options.formulas):
parser.error('number of labels ({}) and formulas ({}) do not match.'.format(len(options.labels),len(options.formulas)))
for i in xrange(len(options.formulas)):
options.formulas[i]=options.formulas[i].replace(';',',')
options.formulas[i] = options.formulas[i].replace(';',',')
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
# --- loop over input files -------------------------------------------------------------------------
#--- loop over input files ------------------------------------------------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
if filenames == []: filenames = ['STDIN']
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# ------------------------------------------ read header -------------------------------------------
table.head_read()
# ------------------------------------------ build formulae ----------------------------------------
specials = { \
'_row_': 0,
}
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
evaluator = {}
brokenFormula = {}
for label,formula in zip(options.labels,options.formulas):
interpolator = []
for column in re.findall(r'#(.+?)#',formula): # loop over column labels in formula
formula = formula.replace('#'+column+'#','%f')
idx = table.label_index(column)
dim = table.label_dimension(column)
if column in specials:
interpolator += ['specials["%s"]'%column]
elif column.isdigit():
if len(table.labels) > int(column):
interpolator += ['float(table.data[%i])'%(int(column))]
else:
file['croak'].write('column %s not found...\n'%column)
brokenFormula[label] = True
replacement = 'specials["{}"]'.format(column)
elif dim == 1: # scalar input
replacement = 'float(table.data[{}])'.format(idx) # take float value of data column
elif dim > 1: # multidimensional input (vector, tensor, etc.)
replacement = 'np.array(table.data[{}:{}],dtype=float)'.format(idx,idx+dim) # use (flat) array representation
else:
try:
interpolator += ['float(table.data[%i])'%table.labels.index(column)]
except:
file['croak'].write('column %s not found...\n'%column)
brokenFormula[label] = True
table.croak('column {} not found...'.format(column))
brokenFormula[label] = True
break
formula = formula.replace('#'+column+'#',replacement)
if label not in brokenFormula:
evaluator[label] = "'" + formula + "'%(" + ','.join(interpolator) + ")"
evaluator[label] = formula
# ------------------------------------------ process data ------------------------------------------
firstLine=True
firstLine = True
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
specials['_row_'] += 1 # count row
# ------------------------------------------ calculate one result to get length of labels ---------
if firstLine:
labelLen = {}
for label in options.labels:
labelLen[label] = np.size(eval(eval(evaluator[label])))
firstLine = False
labelDim = {}
for label in [x for x in options.labels if x not in set(brokenFormula)]:
labelDim[label] = np.size(eval(evaluator[label]))
if labelDim[label] == 0: brokenFormula[label] = True
# ------------------------------------------ assemble header ---------------------------------------
for label,formula in zip(options.labels,options.formulas):
if labelLen[label] == 0:
brokenFormula[label] = True
if label not in brokenFormula:
table.labels_append(['%i_%s'%(i+1,label) for i in xrange(labelLen[label])] if labelLen[label]>1
else label)
table.head_write()
firstLine = False
for label in options.labels: table.data_append(unravel(eval(eval(evaluator[label]))))
if label not in brokenFormula:
table.labels_append(['{}_{}'.format(i+1,label) for i in xrange(labelDim[label])] if labelDim[label] > 1
else label)
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.head_write()
# ------------------------------------------ process data ------------------------------------------
for label in [x for x in options.labels if x not in set(brokenFormula)]:
table.data_append(unravel(eval(evaluator[label])))
# table.data_append(unravel(eval(eval(evaluator[label]))))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -18,59 +18,67 @@ Add column(s) containing Cauchy stress based on given column(s) of deformation g
""", version = scriptID)
parser.add_option('-f','--defgrad', dest='defgrad', metavar='string',
help='heading of columns containing deformation gradient [%default]')
parser.add_option('-p','--stress', dest='stress', metavar='string',
help='heading of columns containing first Piola--Kirchhoff stress [%default]')
parser.set_defaults(defgrad = 'f')
parser.set_defaults(stress = 'p')
parser.add_option('-f','--defgrad',
dest = 'defgrad',
type = 'string', metavar = 'string',
help = 'heading of columns containing deformation gradient [%default]')
parser.add_option('-p','--stress',
dest = 'stress',
type = 'string', metavar = 'string',
help = 'heading of columns containing first Piola--Kirchhoff stress [%default]')
parser.set_defaults(defgrad = 'f',
stress = 'p',
)
(options,filenames) = parser.parse_args()
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
# --- loop over input files -------------------------------------------------------------------------
# ------------------------------------------ loop over input files ---------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
if filenames == []: filenames = ['STDIN']
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# --------------- figure out columns to process ---------------------------------------------------
missingColumns = False
column={ 'defgrad': table.labels.index('1_'+options.defgrad),
'stress': table.labels.index('1_'+options.stress)}
for key in column:
if column[key]<1:
file['croak'].write('column %s not found...\n'%key)
missingColumns=True
if missingColumns: continue
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
errors = []
column = {}
for tensor in [options.defgrad,options.stress]:
dim = table.label_dimension(tensor)
if dim < 0: errors.append('column {} not found.'.format(tensor))
elif dim != 9: errors.append('column {} is not a tensor.'.format(tensor))
else:
column[tensor] = table.label_index(tensor)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append(['%i_Cauchy'%(i+1) for i in xrange(9)]) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
F = np.array(map(float,table.data[column['defgrad']:column['defgrad']+9]),'d').reshape(3,3)
P = np.array(map(float,table.data[column['stress'] :column['stress']+9]),'d').reshape(3,3)
F = np.array(map(float,table.data[column[options.defgrad]:column[options.defgrad]+9]),'d').reshape(3,3)
P = np.array(map(float,table.data[column[options.stress ]:column[options.stress ]+9]),'d').reshape(3,3)
table.data_append(list(1.0/np.linalg.det(F)*np.dot(P,F.T).reshape(9))) # [Cauchy] = (1/det(F)) * [P].[F_transpose]
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close input ASCII table (works for stdin)
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -14,107 +14,110 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options file[s]', description = """
Add column containing debug information.
Operates on periodic ordered three-dimensional data sets.
Add column(s) containing the shape and volume mismatch resulting from given deformation gradient.
Operates on periodic three-dimensional x,y,z-ordered data sets.
""", version = scriptID)
parser.add_option('--no-shape','-s', dest='noShape', action='store_false',
help='do not calcuate shape mismatch')
parser.add_option('--no-volume','-v', dest='noVolume', action='store_false',
help='do not calculate volume mismatch')
parser.add_option('-c','--coordinates', dest='coords', metavar='string',
help='column heading for coordinates [%default]')
parser.add_option('-f','--defgrad', dest='defgrad', metavar='string ',
help='column heading for coordinates [%default]')
parser.set_defaults(coords = 'ipinitialcoord')
parser.set_defaults(defgrad = 'f')
parser.add_option('-c','--coordinates',
dest = 'coords',
type = 'string', metavar = 'string',
help = 'column heading of coordinates [%default]')
parser.add_option('-f','--defgrad',
dest = 'defgrad',
type = 'string', metavar = 'string ',
help = 'column heading of deformation gradient [%default]')
parser.add_option('--no-shape','-s',
dest = 'shape',
action = 'store_false',
help = 'omit shape mismatch')
parser.add_option('--no-volume','-v',
dest = 'volume',
action = 'store_false',
help = 'omit volume mismatch')
parser.set_defaults(coords = 'ipinitialcoord',
defgrad = 'f',
shape = True,
volume = True,
)
(options,filenames) = parser.parse_args()
# ------------------------------------------ setup file handles ------------------------------------
files = []
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = ['STDIN']
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
#--- loop over input files -------------------------------------------------------------------------
for file in files:
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
errors = []
remarks = []
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
else: colCoord = table.label_index(options.coords)
if table.label_dimension(options.defgrad) != 9: errors.append('deformation gradient {} is not a tensor.'.format(options.defgrad))
else: colF = table.label_index(options.defgrad)
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
if options.shape: table.labels_append('shapeMismatch({})'.format(options.defgrad))
if options.volume: table.labels_append('volMismatch({})'.format(options.defgrad))
table.head_write()
# --------------- figure out size and grid ---------------------------------------------------------
try:
locationCol = table.labels.index('1_%s'%options.coords) # columns containing location data
except ValueError:
try:
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data (legacy naming scheme)
except ValueError:
file['croak'].write('no coordinate data (1_%s/%s.x) found...\n'%(options.coords,options.coords))
continue
table.data_readArray()
coords = [{},{},{}]
while table.data_read(): # read next data line of ASCII table
for i in xrange(len(table.data)):
for j in xrange(3):
coords[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
grid = np.array([len(coords[0]),\
len(coords[1]),\
len(coords[2]),],'i') # grid is number of distinct coordinates found
coords[j][str(table.data[i,colCoord+j])] = True
grid = np.array(map(len,coords),'i')
size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \
np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\
max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\
max(map(float,coords[2].keys()))-min(map(float,coords[2].keys())),\
],'d') # size from bounding box, corrected for cell-centeredness
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 equal to smallest among other spacings
N = grid.prod()
# --------------- figure out columns to process ---------------------------------------------------
key = '1_%s'%options.defgrad
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
continue
else:
column = table.labels.index(key) # remember columns of requested data
# ------------------------------------------ process deformation gradient --------------------------
# ------------------------------------------ assemble header ---------------------------------------
if not options.noShape: table.labels_append(['shapeMismatch(%s)' %options.defgrad])
if not options.noVolume: table.labels_append(['volMismatch(%s)'%options.defgrad])
table.head_write()
# ------------------------------------------ read deformation gradient field -----------------------
table.data_rewind()
F = np.zeros(N*9,'d').reshape([3,3]+list(grid))
idx = 0
while table.data_read():
(x,y,z) = damask.util.gridLocation(idx,grid) # figure out (x,y,z) position from line count
idx += 1
F[0:3,0:3,x,y,z] = np.array(map(float,table.data[column:column+9]),'d').reshape(3,3)
Favg = damask.core.math.tensorAvg(F)
F = table.data[:,colF:colF+9].transpose().reshape([3,3]+list(options.dimension),order='F')
Favg = damask.core.math.tensorAvg(F)
centres = damask.core.mesh.deformedCoordsFFT(size,F,Favg,[1.0,1.0,1.0])
nodes = damask.core.mesh.nodesAroundCentres(size,Favg,centres)
if not options.noShape: shapeMismatch = damask.core.mesh.shapeMismatch( size,F,nodes,centres)
if not options.noVolume: volumeMismatch = damask.core.mesh.volumeMismatch(size,F,nodes)
# ------------------------------------------ process data ------------------------------------------
table.data_rewind()
idx = 0
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
(x,y,z) = damask.util.gridLocation(idx,grid) # figure out (x,y,z) position from line count
idx += 1
if not options.noShape: table.data_append( shapeMismatch[x,y,z])
if not options.noVolume: table.data_append(volumeMismatch[x,y,z])
outputAlive = table.data_write() # output processed line
stack = [table.data]
if options.shape: stack.append(damask.core.mesh.shapeMismatch( size,F,nodes,centres))
if options.volume: stack.append(damask.core.mesh.volumeMismatch(size,F,nodes))
# ------------------------------------------ output result ---------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output result -----------------------------------------
table.input_close() # close input ASCII table
table.output_close() # close output ASCII table
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
if len(stack) > 1: table.data = np.hstack(tuple(stack))
table.data_writeArray('%.12g')
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -12,18 +12,20 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
def curlFFT(geomdim,field):
grid = np.array(np.shape(field)[0:3])
wgt = 1.0/np.array(grid).prod()
N = grid.prod() # field size
n = np.array(np.shape(field)[3:]).prod() # data size
wgt = 1.0/N
if len(np.shape(field)) == 4:
if n == 3:
dataType = 'vector'
elif len(np.shape(field)) == 5:
elif n == 9:
dataType = 'tensor'
field_fourier=np.fft.fftpack.rfftn(field,axes=(0,1,2))
curl_fourier=np.zeros(field_fourier.shape,'c16')
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2))
curl_fourier = np.zeros(field_fourier.shape,'c16')
# differentiation in Fourier space
k_s=np.zeros([3],'i')
k_s = np.zeros([3],'i')
TWOPIIMG = (0.0+2.0j*math.pi)
for i in xrange(grid[0]):
k_s[0] = i
@ -34,7 +36,7 @@ def curlFFT(geomdim,field):
for k in xrange(grid[2]/2+1):
k_s[2] = k
if(k > grid[2]/2 ): k_s[2] = k_s[2] - grid[2]
xi=np.array([k_s[2]/geomdim[2]+0.0j,k_s[1]/geomdim[1]+0.j,k_s[0]/geomdim[0]+0.j],'c16')
xi = np.array([k_s[2]/geomdim[2]+0.0j,k_s[1]/geomdim[1]+0.j,k_s[0]/geomdim[0]+0.j],'c16')
if dataType == 'tensor':
for l in xrange(3):
curl_fourier[i,j,k,0,l] = ( field_fourier[i,j,k,l,2]*xi[1]\
@ -50,11 +52,8 @@ def curlFFT(geomdim,field):
+field_fourier[i,j,k,0]*xi[2]) *TWOPIIMG
curl_fourier[i,j,k,2] = ( field_fourier[i,j,k,1]*xi[0]\
-field_fourier[i,j,k,0]*xi[1]) *TWOPIIMG
curl=np.fft.fftpack.irfftn(curl_fourier,axes=(0,1,2))
if dataType == 'tensor':
return curl.reshape([grid.prod(),9])
if dataType == 'vector':
return curl.reshape([grid.prod(),3])
return np.fft.fftpack.irfftn(curl_fourier,axes=(0,1,2)).reshape([N,n])
# --------------------------------------------------------------------
@ -68,113 +67,108 @@ Deals with both vector- and tensor-valued fields.
""", version = scriptID)
parser.add_option('-c','--coordinates', dest='coords', metavar='string',
help='column heading for coordinates [%default]')
parser.add_option('-v','--vector', dest='vector', action='extend', metavar='<string LIST>',
help='heading of columns containing vector field values')
parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='<string LIST>',
help='heading of columns containing tensor field values')
parser.set_defaults(coords = 'ipinitialcoord')
parser.add_option('-c','--coordinates',
dest = 'coords',
type = 'string', metavar='string',
help = 'column heading for coordinates [%default]')
parser.add_option('-v','--vector',
dest = 'vector',
action = 'extend', metavar = '<string LIST>',
help = 'heading of columns containing vector field values')
parser.add_option('-t','--tensor',
dest = 'tensor',
action = 'extend', metavar = '<string LIST>',
help = 'heading of columns containing tensor field values')
parser.set_defaults(coords = 'ipinitialcoord',
)
(options,filenames) = parser.parse_args()
if options.vector == None and options.tensor == None:
parser.error('no data column specified...')
parser.error('no data column specified.')
datainfo = { # list of requested labels per datatype
'vector': {'shape':[3],
'len':3,
'label':[]},
'tensor': {'shape':[3,3],
'len':9,
'label':[]},
}
# --- loop over input files -------------------------------------------------------------------------
if options.vector != None: datainfo['vector']['label'] = options.vector
if options.tensor != None: datainfo['tensor']['label'] = options.tensor
if filenames == []: filenames = ['STDIN']
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
#--- loop over input files -------------------------------------------------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
# ------------------------------------------ read header ------------------------------------------
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.data_readArray()
table.head_read()
# --------------- figure out name of coordinate data (support for legacy .x notation) -------------
coordLabels=['%i_%s'%(i+1,options.coords) for i in xrange(3)] # store labels for column keys
if not set(coordLabels).issubset(table.labels):
directions = ['x','y','z']
coordLabels=['%s.%s'%(options.coords,directions[i]) for i in xrange(3)] # store labels for column keys
if not set(coordLabels).issubset(table.labels):
file['croak'].write('no coordinate data (1_%s) found...\n'%options.coords)
continue
coordColumns = [table.labels.index(label) for label in coordLabels]
# ------------------------------------------ sanity checks ----------------------------------------
# --------------- figure out active columns -------------------------------------------------------
active = defaultdict(list)
for datatype,info in datainfo.items():
for label in info['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
items = {
'tensor': {'dim': 9, 'shape': [3,3], 'labels':options.tensor, 'active':[], 'column': []},
'vector': {'dim': 3, 'shape': [3], 'labels':options.vector, 'active':[], 'column': []},
}
errors = []
remarks = []
column = {}
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
else: coordCol = table.label_index(options.coords)
for type, data in items.iteritems():
for what in data['labels']:
dim = table.label_dimension(what)
if dim != data['dim']: remarks.append('column {} is not a {}.'.format(what,type))
else:
active[datatype].append(label)
items[type]['active'].append(what)
items[type]['column'].append(table.label_index(what))
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
# --------------- assemble new header (metadata and columns containing curl) ----------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels:
table.labels_append(['%i_curlFFT(%s)'%(i+1,label) for i in xrange(datainfo[datatype]['len'])])# extend ASCII header with new labels
for type, data in items.iteritems():
for label in data['active']:
table.labels_append(['{}_curlFFT({})'.format(i+1,label) for i in xrange(data['dim'])]) # extend ASCII header with new labels
table.head_write()
# --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray()
coords = [{},{},{}]
for i in xrange(table.data.shape[0]):
for i in xrange(len(table.data)):
for j in xrange(3):
coords[j][str(table.data[i,coordColumns[j]])] = True
coords[j][str(table.data[i,coordCol+j])] = True
grid = np.array(map(len,coords),'i')
size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \
np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\
max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\
max(map(float,coords[2].keys()))-min(map(float,coords[2].keys())),\
],'d') # size from bounding box, corrected for cell-centeredness
for i, points in enumerate(grid):
if points == 1:
mask = np.ones(3,dtype=bool)
mask[i]=0
size[i] = min(size[mask]/grid[mask]) # third spacing equal to smaller of other spacing
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 equal to smallest among other spacings
# ------------------------------------------ process value field -----------------------------------
curl = defaultdict(dict)
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested curls
startColumn=table.labels.index('1_'+label)
curl[datatype][label] = curlFFT(size[::-1], # we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
table.data[:,startColumn:startColumn+datainfo[datatype]['len']].\
reshape([grid[2],grid[1],grid[0]]+datainfo[datatype]['shape']))
# ------------------------------------------ add data ------------------------------------------
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested curls
for c in xrange(curl[datatype][label][0,:].shape[0]): # append column by column
lastRow = table.data.shape[1]
table.data=np.insert(table.data,lastRow,curl[datatype][label][:,c],1)
stack = [table.data]
for type, data in items.iteritems():
for i,label in enumerate(data['active']):
stack.append(curlFFT(size[::-1], # we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
table.data[:,data['column'][i]:data['column'][i]+data['dim']].\
reshape([grid[2],grid[1],grid[0]]+data['shape'])))
# ------------------------------------------ output result -----------------------------------------
if len(stack) > 1: table.data = np.hstack(tuple(stack))
table.data_writeArray('%.12g')
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
# ------------------------------------------ output finalization -----------------------------------
table.close() # close input ASCII table (works for stdin)
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -16,16 +16,23 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options file[s]', description = """
Add deformed configuration of given initial coordinates.
Operates on periodic ordered three-dimensional data sets.
Operates on periodic three-dimensional x,y,z-ordered data sets.
""", version = scriptID)
parser.add_option('-c','--coordinates', dest='coords', metavar='string',
help='column label of coordinates [%default]')
parser.add_option('-f','--defgrad', dest='defgrad', metavar='string',
help='column label of deformation gradient [%default]')
parser.add_option('--scaling', dest='scaling', type='float', nargs=3, , metavar = ' '.join(['float']*3),
help='x/y/z scaling of displacment fluctuation')
parser.add_option('-c','--coordinates',
dest = 'coords',
type = 'string', metavar = 'string',
help = 'column label of coordinates [%default]')
parser.add_option('-f','--defgrad',
dest = 'defgrad',
type = 'string', metavar = 'string',
help = 'column label of deformation gradient [%default]')
parser.add_option('--scaling',
dest = 'scaling',
type = 'float', nargs = 3, metavar = ' '.join(['float']*3),
help = 'x/y/z scaling of displacement fluctuation')
parser.set_defaults(coords = 'ipinitialcoord',
defgrad = 'f',
scaling = [1.,1.,1.],
@ -34,89 +41,75 @@ parser.set_defaults(coords = 'ipinitialcoord',
(options,filenames) = parser.parse_args()
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],buffered=False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
# ------------------------------------------ read header ------------------------------------------
# --------------- figure out columns to process ---------------------------------------------------
table.head_read()
if table.label_dimension(options.coords) != 3:
file['croak'].write('no coordinate vector (1/2/3_%s) found...\n'%options.coords)
continue
if table.label_dimension(options.defgrad) != 9:
file['croak'].write('no deformation gradient tensor (1..9_%s) found...\n'%options.defgrad)
# ------------------------------------------ sanity checks ----------------------------------------
errors = []
remarks = []
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
else: colCoord = table.label_index(options.coords)
if table.label_dimension(options.defgrad) != 9: errors.append('deformation gradient {} is not a tensor.'.format(options.defgrad))
else: colF = table.label_index(options.defgrad)
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# --------------- figure out size and grid ---------------------------------------------------------
colCoords = table.label_index(options.coords) # starting column of location data
colDefGrad = table.label_index(options.defgrad) # remember columns of requested data
table.data_readArray()
coords = [{},{},{}]
while table.data_read(): # read next data line of ASCII table
for i in xrange(len(table.data)):
for j in xrange(3):
coords[j][str(table.data[colCoords+j])] = True # remember coordinate along x,y,z
grid = np.array([len(coords[0]),\
len(coords[1]),\
len(coords[2]),],'i') # grid is number of distinct coordinates found
coords[j][str(table.data[i,colCoord+j])] = True
grid = np.array(map(len,coords),'i')
size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \
np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\
max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\
max(map(float,coords[2].keys()))-min(map(float,coords[2].keys())),\
],'d') # size from bounding box, corrected for cell-centeredness
for i, points in enumerate(grid):
if points == 1:
options.packing[i] = 1
options.shift[i] = 0
mask = np.ones(3,dtype=bool)
mask[i]=0
size[i] = min(size[mask]/grid[mask]) # third spacing equal to smaller of other spacing
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 equal to smallest among other spacings
N = grid.prod()
# ------------------------------------------ assemble header ---------------------------------------
table.labels_append(['%s_%s%s'%(coord+1,options.defgrad,options.coords) for coord in xrange(3)]) # extend ASCII header with new labels
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append(['{}_{}.{}'%(coord+1,options.defgrad,options.coords) for coord in xrange(3)]) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ read deformation gradient field -----------------------
table.data_rewind()
F = np.array([0.0 for i in xrange(N*9)]).reshape([3,3]+list(grid))
idx = 0
while table.data_read():
(x,y,z) = damask.util.gridLocation(idx,grid) # figure out (x,y,z) position from line count
idx += 1
F[0:3,0:3,x,y,z] = np.array(map(float,table.data[colDefGrad:colDefGrad+9]),'d').reshape(3,3)
# ------------------------------------------ process deformation gradient --------------------------
# ------------------------------------------ calculate coordinates ---------------------------------
Favg = damask.core.math.tensorAvg(F)
centroids = damask.core.mesh.deformedCoordsFFT(size,F,Favg,options.scaling)
F = table.data[:,colF:colF+9].transpose().reshape([3,3]+list(options.dimension),order='F')
Favg = damask.core.math.tensorAvg(F)
centres = damask.core.mesh.deformedCoordsFFT(size,F,Favg,[1.0,1.0,1.0])
# ------------------------------------------ process data ------------------------------------------
table.data_rewind()
idx = 0
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
(x,y,z) = damask.util.gridLocation(idx,grid) # figure out (x,y,z) position from line count
idx += 1
table.data_append(list(centroids[:,x,y,z]))
outputAlive = table.data_write() # output processed line
stack = [table.data,centres]
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
table.close() # close tables
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
if len(stack) > 1: table.data = np.hstack(tuple(stack))
table.data_writeArray('%.12g')
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -26,67 +26,68 @@ Add column(s) containing determinant of requested tensor column(s).
""", version = scriptID)
parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='<string LIST>',
help='heading of columns containing tensor field values')
parser.add_option('-t','--tensor',
dest = 'tensor',
action = 'extend', metavar = '<string LIST>',
help = 'heading of columns containing tensor field values')
(options,filenames) = parser.parse_args()
if options.tensor == None:
parser.error('no data column specified...')
parser.error('no data column specified.')
datainfo = { # list of requested labels per datatype
'tensor': {'len':9,
'label':[]},
}
# --- loop over input files -------------------------------------------------------------------------
datainfo['tensor']['label'] += options.tensor
if filenames == []: filenames = ['STDIN']
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
#--- loop over input files -------------------------------------------------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
items = {
'tensor': {'dim': 9, 'shape': [3,3], 'labels':options.tensor, 'column': []},
}
errors = []
remarks = []
for type, data in items.iteritems():
for what in data['labels']:
dim = table.label_dimension(what)
if dim != data['dim']: remarks.append('column {} is not a {}...'.format(what,type))
else:
items[type]['column'].append(table.label_index(what))
table.labels_append('det({})'.format(what)) # extend ASCII header with new labels
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
# --------------- figure out columns to process ---------------------------------------------------
active = []
column = defaultdict(dict)
for label in datainfo['tensor']['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:
active.append(label)
column[label] = table.labels.index(key) # remember columns of requested data
# ------------------------------------------ assemble header ---------------------------------------
for label in active:
table.labels_append('det(%s)'%label) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for label in active:
table.data_append(determinant(map(float,table.data[column[label]:
column[label]+datainfo['tensor']['len']])))
for type, data in items.iteritems():
for column in data['column']:
table.data_append(determinant(map(float,table.data[column:
column+data['dim']])))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close input ASCII table (works for stdin)
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -11,11 +11,14 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
oneThird = 1.0/3.0
def deviator(m): # Carefull, do not change the value of m (its intent(inout)!)
def deviator(m,spherical = False): # Carefull, do not change the value of m (its intent(inout)!)
sph = oneThird*(m[0]+m[4]+m[8])
return [m[0] -sph, m[1], m[2],
dev = [
m[0]-sph, m[1], m[2],
m[3], m[4]-sph, m[5],
m[6], m[7], m[8]-sph]
m[6], m[7], m[8]-sph,
]
return dev,sph if spherical else dev
# --------------------------------------------------------------------
# MAIN
@ -26,72 +29,77 @@ Add column(s) containing deviator of requested tensor column(s).
""", version = scriptID)
parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='<string LIST>',
help='heading of columns containing tensor field values')
parser.add_option('-s','--spherical', dest='hydrostatic', action='store_true',
help='also add sperical part of tensor (hydrostatic component, pressure)')
parser.add_option('-t','--tensor',
dest = 'tensor',
action = 'extend', metavar='<string LIST>',
help = 'heading of columns containing tensor field values')
parser.add_option('-s','--spherical',
dest = 'spherical',
action = 'store_true',
help = 'report spherical part of tensor (hydrostatic component, pressure)')
(options,filenames) = parser.parse_args()
if options.tensor == None:
parser.error('no data column specified...')
datainfo = { # list of requested labels per datatype
'tensor': {'len':9,
'label':[]},
}
# --- loop over input files -------------------------------------------------------------------------
datainfo['tensor']['label'] += options.tensor
if filenames == []: filenames = ['STDIN']
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# ------------------------------------------ loop over input files ---------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
items = {
'tensor': {'dim': 9, 'shape': [3,3], 'labels':options.tensor, 'active':[], 'column': []},
}
errors = []
remarks = []
column = {}
for type, data in items.iteritems():
for what in data['labels']:
dim = table.label_dimension(what)
if dim != data['dim']: remarks.append('column {} is not a {}.'.format(what,type))
else:
items[type]['active'].append(what)
items[type]['column'].append(table.label_index(what))
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
active = []
column = defaultdict(dict)
for label in datainfo['tensor']['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:
active.append(label)
column[label] = table.labels.index(key) # remember columns of requested data
# ------------------------------------------ assemble header ---------------------------------------
for label in active:
table.labels_append(['%i_dev(%s)'%(i+1,label) for i in xrange(9)]) # extend ASCII header with new labels
if(options.hydrostatic): table.labels_append('sph(%s)'%label)
for type, data in items.iteritems():
for label in data['active']:
table.labels_append(['{}_dev({})'.format(i+1,label) for i in xrange(data['dim'])] + \
(['sph({})'.format(label)] if options.spherical else [])) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for label in active:
myTensor = map(float,table.data[column[label]:
column[label]+datainfo['tensor']['len']])
table.data_append(deviator(myTensor))
if(options.hydrostatic): table.data_append(oneThird*(myTensor[0]+myTensor[4]+myTensor[8]))
for type, data in items.iteritems():
for column in data['column']:
table.data_append(deviator(map(float,table.data[column:
column+data['dim']]),options.spherical))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close input ASCII table (works for stdin)
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -12,10 +12,12 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
def divFFT(geomdim,field):
grid = np.array(np.shape(field)[0:3])
wgt = 1.0/np.array(grid).prod()
N = grid.prod() # field size
n = np.array(np.shape(field)[3:]).prod() # data size
wgt = 1.0/N
field_fourier=np.fft.fftpack.rfftn(field,axes=(0,1,2))
div_fourier=np.zeros(field_fourier.shape[0:len(np.shape(field))-1],'c16') # size depents on wether tensor or vector
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2))
div_fourier = np.zeros(field_fourier.shape[0:len(np.shape(field))-1],'c16') # size depents on whether tensor or vector
# differentiation in Fourier space
k_s=np.zeros([3],'i')
@ -30,18 +32,13 @@ def divFFT(geomdim,field):
k_s[2] = k
if(k > grid[2]/2 ): k_s[2] = k_s[2] - grid[2]
xi=np.array([k_s[2]/geomdim[2]+0.0j,k_s[1]/geomdim[1]+0.j,k_s[0]/geomdim[0]+0.j],'c16')
if len(np.shape(field)) == 5: # tensor, 3x3 -> 3
if n == 9: # tensor, 3x3 -> 3
for l in xrange(3):
div_fourier[i,j,k,l] = sum(field_fourier[i,j,k,l,0:3]*xi) *TWOPIIMG
elif len(np.shape(field)) == 4: # vector, 3 -> 1
elif n == 3: # vector, 3 -> 1
div_fourier[i,j,k] = sum(field_fourier[i,j,k,0:3]*xi) *TWOPIIMG
div=np.fft.fftpack.irfftn(div_fourier,axes=(0,1,2))
if len(np.shape(field)) == 5: # tensor, 3x3 -> 3
return div.reshape([grid.prod(),3])
elif len(np.shape(field)) == 4: # vector, 3 -> 1
return div.reshape([grid.prod(),1])
return np.fft.fftpack.irfftn(div_fourier,axes=(0,1,2)).reshape([N,n/3])
# --------------------------------------------------------------------
@ -55,113 +52,109 @@ Deals with both vector- and tensor-valued fields.
""", version = scriptID)
parser.add_option('-c','--coordinates', dest='coords', metavar='string',
help='column heading for coordinates [%default]')
parser.add_option('-v','--vector', dest='vector', action='extend', metavar='<string LIST>',
help='heading of columns containing vector field values')
parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='<string LIST>',
help='heading of columns containing tensor field values')
parser.set_defaults(coords = 'ipinitialcoord')
parser.add_option('-c','--coordinates',
dest = 'coords',
type = 'string', metavar = 'string',
help = 'column heading for coordinates [%default]')
parser.add_option('-v','--vector',
dest = 'vector',
action = 'extend', metavar = '<string LIST>',
help = 'heading of columns containing vector field values')
parser.add_option('-t','--tensor',
dest = 'tensor',
action = 'extend', metavar = '<string LIST>',
help = 'heading of columns containing tensor field values')
parser.set_defaults(coords = 'ipinitialcoord',
)
(options,filenames) = parser.parse_args()
if options.vector == None and options.tensor == None:
parser.error('no data column specified...')
parser.error('no data column specified.')
datainfo = { # list of requested labels per datatype
'vector': {'shape':[3],
'len':3,
'label':[]},
'tensor': {'shape':[3,3],
'len':9,
'label':[]},
}
# --- loop over input files -------------------------------------------------------------------------
if options.vector != None: datainfo['vector']['label'] = options.vector
if options.tensor != None: datainfo['tensor']['label'] = options.tensor
if filenames == []: filenames = ['STDIN']
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
#--- loop over input files -------------------------------------------------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
# ------------------------------------------ read header ------------------------------------------
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.data_readArray()
table.head_read()
# --------------- figure out name of coordinate data (support for legacy .x notation) -------------
coordLabels=['%i_%s'%(i+1,options.coords) for i in xrange(3)] # store labels for column keys
if not set(coordLabels).issubset(table.labels):
directions = ['x','y','z']
coordLabels=['%s.%s'%(options.coords,directions[i]) for i in xrange(3)] # store labels for column keys
if not set(coordLabels).issubset(table.labels):
file['croak'].write('no coordinate data (1_%s) found...\n'%options.coords)
continue
coordColumns = [table.labels.index(label) for label in coordLabels]
# ------------------------------------------ sanity checks ----------------------------------------
# --------------- figure out active columns -------------------------------------------------------
active = defaultdict(list)
for datatype,info in datainfo.items():
for label in info['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
items = {
'tensor': {'dim': 9, 'shape': [3,3], 'labels':options.tensor, 'active':[], 'column': []},
'vector': {'dim': 3, 'shape': [3], 'labels':options.vector, 'active':[], 'column': []},
}
errors = []
remarks = []
column = {}
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
else: coordCol = table.label_index(options.coords)
for type, data in items.iteritems():
for what in data['labels']:
dim = table.label_dimension(what)
if dim != data['dim']: remarks.append('column {} is not a {}.'.format(what,type))
else:
active[datatype].append(label)
items[type]['active'].append(what)
items[type]['column'].append(table.label_index(what))
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
# --------------- assemble new header (metadata and columns containing curl) ----------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels:
table.labels_append(['divFFT(%s)'%(label) if datatype == 'vector' else
'%i_divFFT(%s)'%(i+1,label) for i in xrange(datainfo[datatype]['len']//3)])# extend ASCII header with new labels
for type, data in items.iteritems():
for label in data['active']:
table.labels_append(['divFFT({})'.format(label) if type == 'vector' else
'{}_divFFT({})'.format(i+1,label) for i in xrange(data['dim']//3)]) # extend ASCII header with new labels
table.head_write()
# --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray()
coords = [{},{},{}]
for i in xrange(table.data.shape[0]):
for i in xrange(len(table.data)):
for j in xrange(3):
coords[j][str(table.data[i,coordColumns[j]])] = True
coords[j][str(table.data[i,coordCol+j])] = True
grid = np.array(map(len,coords),'i')
size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \
np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\
max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\
max(map(float,coords[2].keys()))-min(map(float,coords[2].keys())),\
],'d') # size from bounding box, corrected for cell-centeredness
for i, points in enumerate(grid):
if points == 1:
mask = np.ones(3,dtype=bool)
mask[i]=0
size[i] = min(size[mask]/grid[mask]) # third spacing equal to smaller of other spacing
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 equal to smallest among other spacings
# ------------------------------------------ process value field -----------------------------------
div = defaultdict(dict)
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested curls
startColumn=table.labels.index('1_'+label)
div[datatype][label] = divFFT(size[::-1], # we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
table.data[:,startColumn:startColumn+datainfo[datatype]['len']].\
reshape([grid[2],grid[1],grid[0]]+datainfo[datatype]['shape']))
# ------------------------------------------ add data ------------------------------------------
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested curls
for c in xrange(div[datatype][label][0,:].shape[0]): # append column by column
lastRow = table.data.shape[1]
table.data=np.insert(table.data,lastRow,div[datatype][label][:,c],1)
stack = [table.data]
for type, data in items.iteritems():
for i,label in enumerate(data['active']):
stack.append(divFFT(size[::-1], # we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
table.data[:,data['column'][i]:data['column'][i]+data['dim']].\
reshape([grid[2],grid[1],grid[0]]+data['shape'])))
# ------------------------------------------ output result -----------------------------------------
if len(stack) > 1: table.data = np.hstack(tuple(stack))
table.data_writeArray('%.12g')
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
# ------------------------------------------ output finalization -----------------------------------
table.close() # close input ASCII table (works for stdin)
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -20,10 +20,10 @@ def E_hkl(stiffness,vec): # stiffness = (c11,c12,c44)
S44 = 1.0/stiffness[2]
invE = S11-(S11-S12-0.5*S44)* (1.0 - \
(v[0]**4+v[1]**4+v[2]**4) \
/#------------------------------------
np.inner(v,v)**2 \
)
(v[0]**4+v[1]**4+v[2]**4) \
/#------------------------------------
np.inner(v,v)**2 \
)
return 1.0/invE
@ -36,73 +36,62 @@ Add column(s) containing directional stiffness based on given cubic stiffness va
""", version = scriptID)
parser.add_option('-c','--stiffness', dest='vector', action='extend', metavar='<string LIST>',
help='heading of column containing C11 (followed by C12, C44) field values')
parser.add_option('-d','--direction','--hkl', dest='hkl', type='int', nargs=3, metavar='int int int',
help='direction of elastic modulus [%default]')
parser.set_defaults(hkl = (1,1,1))
parser.add_option('-c','--stiffness',
dest = 'stiffness',
action = 'extend', metavar = '<string LIST>',
help = 'heading of column containing C11 (followed by C12, C44) field values')
parser.add_option('-d','--direction','--hkl',
dest = 'hkl',
type = 'int', nargs = 3, metavar = 'int int int',
help = 'direction of elastic modulus [%default]')
parser.set_defaults(hkl = (1,1,1),
)
(options,filenames) = parser.parse_args()
if options.vector == None:
if options.stiffness == None:
parser.error('no data column specified...')
datainfo = { # list of requested labels per datatype
'vector': {'len':3,
'label':[]},
}
# --- loop over input files -------------------------------------------------------------------------
datainfo['vector']['label'] += options.vector
if filenames == []: filenames = ['STDIN']
# ------------------------------------------ setup file handles ------------------------------------
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
# ------------------------------------------ read header ------------------------------------------
# ------------------------------------------ loop over input files ---------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
table.head_read()
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
# ------------------------------------------ sanity checks ----------------------------------------
active = []
column = defaultdict(dict)
remarks = []
columns = []
for label in datainfo['vector']['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
for i,column in enumerate(table.label_index(options.stiffness)):
if column < 0: remarks.append('column {} not found.'.format(options.stiffness[i]))
else:
active.append(label)
column[label] = table.labels.index(key) # remember columns of requested data
columns.append(column)
table.labels_append(['E{}{}{}({})'.format(*options.hkl,options.stiffness[i])) # extend ASCII header with new labels
# ------------------------------------------ assemble header ---------------------------------------
for label in active:
table.labels_append('E%i%i%i(%s)'%(options.hkl[0],
options.hkl[1],
options.hkl[2],label)) # extend ASCII header with new labels
if remarks != []: table.croak(remarks)
# ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for label in active:
table.data_append(E_hkl(map(float,table.data[column[label]:\
column[label]+datainfo['vector']['len']]),options.hkl))
for column in columns:
table.data_append(E_hkl(map(float,table.data[column:column+3]),options.hkl))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -106,11 +106,11 @@ parser.set_defaults(scale = 1.0)
(options,filenames) = parser.parse_args()
if options.type == None:
parser.error('no feature type selected...')
parser.error('no feature type selected.')
if not set(options.type).issubset(set(list(itertools.chain(*map(lambda x: x['names'],features))))):
parser.error('type must be chosen from (%s)...'%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
parser.error('type must be chosen from (%s).'%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
if 'biplane' in options.type and 'boundary' in options.type:
parser.error("both aliases 'biplane' and 'boundary' are selected...")
parser.error("only one from aliases 'biplane' and 'boundary' possible.")
feature_list = []
for i,feature in enumerate(features):
@ -120,55 +120,69 @@ for i,feature in enumerate(features):
feature_list.append(i) # remember valid features
break
files = []
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = ['STDIN']
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# ------------------------------------------ loop over input files ---------------------------------
for file in files:
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
# ------------------------------------------ read header ------------------------------------------
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.data_readArray()
table.head_read()
# --------------- figure out name of coordinate data (support for legacy .x notation) ------------
coordLabels=['%i_%s'%(i+1,options.coords) for i in xrange(3)] # store labels for column keys
if not set(coordLabels).issubset(table.labels):
directions = ['x','y','z']
coordLabels=['%s.%s'%(options.coords,directions[i]) for i in xrange(3)] # store labels for column keys
if not set(coordLabels).issubset(table.labels):
file['croak'].write('no coordinate data (1_%s) found...\n'%options.coords)
continue
coordColumns = [table.labels.index(label) for label in coordLabels]
# ------------------------------------------ sanity checks ----------------------------------------
# --------------- figure out active column --------------------------------------------------------
if options.id not in table.labels:
file['croak'].write('column %s not found...\n'%options.id)
errors = []
remarks = []
column = {}
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
else: coordCol = table.label_index(options.coords)
if table.label_dimension(options.id) != 1: errors.append('grain identifier {} not found.'.format(options.id))
else: idCol = table.label_index(options.id)
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for feature in feature_list:
table.labels_append('ED_%s(%s)'%(features[feature]['names'][0],options.id)) # extend ASCII header with new labels
table.labels_append('ED_{}({})'.format(features[feature]['names'][0],options.id)) # extend ASCII header with new labels
table.head_write()
# --------------- figure out grid -----------------------------------------------------------------
# --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray()
coords = [{},{},{}]
for i in xrange(len(table.data)):
for j in xrange(3):
coords[j][str(table.data[i,coordColumns[j]])] = True
coords[j][str(table.data[i,coordCol+j])] = True
grid = np.array(map(len,coords),'i')
size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \
np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\
max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\
max(map(float,coords[2].keys()))-min(map(float,coords[2].keys())),\
],'d') # size from bounding box, corrected for cell-centeredness
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 equal to smallest among other spacings
# ------------------------------------------ process value field -----------------------------------
unitlength = 0.0
for i,r in enumerate(grid):
if r > 1: unitlength = max(unitlength,(max(map(float,coords[i].keys()))-min(map(float,coords[i].keys())))/(r-1.0))
stack = [table.data]
neighborhood = neighborhoods[options.neighborhood]
convoluted = np.empty([len(neighborhood)]+list(grid+2),'i')
microstructure = periodic_3Dpad(np.array(table.data[:,table.labels.index(options.id)].reshape(grid),'i'))
microstructure = periodic_3Dpad(np.array(table.data[:,idCol].reshape(grid),'i'))
for i,p in enumerate(neighborhood):
stencil = np.zeros((3,3,3),'i')
@ -181,29 +195,28 @@ for file in files:
distance = np.ones((len(feature_list),grid[0],grid[1],grid[2]),'d')
convoluted = np.sort(convoluted,axis = 0)
uniques = np.where(convoluted[0,1:-1,1:-1,1:-1] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
uniques = np.where(convoluted[0,1:-1,1:-1,1:-1] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood
for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood
uniques += np.where(np.logical_and(
convoluted[i,1:-1,1:-1,1:-1] != convoluted[i-1,1:-1,1:-1,1:-1], # flip of ID difference detected?
convoluted[i,1:-1,1:-1,1:-1] != 0), # not myself?
1,0) # count flip
convoluted[i,1:-1,1:-1,1:-1] != convoluted[i-1,1:-1,1:-1,1:-1], # flip of ID difference detected?
convoluted[i,1:-1,1:-1,1:-1] != 0), # not myself?
1,0) # count flip
for i,feature_id in enumerate(feature_list):
distance[i,:,:,:] = np.where(uniques >= features[feature_id]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present
for i in xrange(len(feature_list)):
distance[i,:,:,:] = np.where(uniques >= features[feature_id]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
distance.shape = (len(feature_list),grid.prod())
# ------------------------------------------ add data ------------------------------------------
distance.shape = (len(feature_list),grid.prod())
for i in xrange(len(feature_list)):
lastRow = table.data.shape[1]
table.data=np.insert(table.data,lastRow,distance[i,:],1)
stack.append(distance[i,:])
# ------------------------------------------ output result -----------------------------------------
if len(stack) > 1: table.data = np.hstack(tuple(stack))
table.data_writeArray('%.12g')
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
# ------------------------------------------ output finalization -----------------------------------
table.close() # close input ASCII table (works for stdin)
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -10,25 +10,6 @@ from optparse import OptionParser, OptionGroup, Option, SUPPRESS_HELP
scriptID = string.replace('$Id: addGrainID.py 2549 2013-07-10 09:13:21Z MPIE\p.eisenlohr $','\n','\\n')
scriptName = os.path.splitext(scriptID.split()[1])[0]
#--------------------------------------------------------------------------------------------------
class extendedOption(Option):
#--------------------------------------------------------------------------------------------------
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
# taken from online tutorial http://docs.python.org/library/optparse.html
ACTIONS = Option.ACTIONS + ("extend",)
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
def take_action(self, action, dest, opt, value, values, parser):
if action == "extend":
lvalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue)
else:
Option.take_action(self, action, dest, opt, value, values, parser)
# -----------------------------
class backgroundMessage(threading.Thread):
# -----------------------------
@ -67,117 +48,121 @@ class backgroundMessage(threading.Thread):
self.print_message()
parser = OptionParser(option_class=extendedOption, usage='%prog options [file[s]]', description = """
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Add grain index based on similiarity of crystal lattice orientation.
""" + string.replace(scriptID,'\n','\\n')
)
parser.add_option('-r', '--radius', dest='radius', type='float',
parser.add_option('-r', '--radius',
dest = 'radius',
type = 'float', metavar = 'float',
help = 'search radius')
parser.add_option('-d', '--disorientation', dest='disorientation', type='float', metavar='ANGLE',
parser.add_option('-d', '--disorientation',
dest = 'disorientation',
type = 'float', metavar = 'float',
help = 'disorientation threshold per grain [%default] (degrees)')
parser.add_option('-s', '--symmetry', dest='symmetry', type='string',
parser.add_option('-s', '--symmetry',
dest = 'symmetry',
type = 'string', metavar = 'string',
help = 'crystal symmetry [%default]')
parser.add_option('-e', '--eulers', dest='eulers', type='string', metavar='LABEL',
parser.add_option('-e', '--eulers',
dest = 'eulers',
type = 'string', metavar = 'string',
help = 'Euler angles')
parser.add_option( '--degrees', dest='degrees', action='store_true',
parser.add_option( '--degrees',
dest = 'degrees',
action = 'store_true',
help = 'Euler angles are given in degrees [%default]')
parser.add_option('-m', '--matrix', dest='matrix', type='string', metavar='LABEL',
parser.add_option('-m', '--matrix',
dest = 'matrix',
type = 'string', metavar = 'string',
help = 'orientation matrix')
parser.add_option('-a', dest='a', type='string', metavar='LABEL',
parser.add_option('-a',
dest = 'a',
type = 'string', metavar = 'string',
help = 'crystal frame a vector')
parser.add_option('-b', dest='b', type='string', metavar='LABEL',
parser.add_option('-b',
dest = 'b',
type = 'string', metavar = 'string',
help = 'crystal frame b vector')
parser.add_option('-c', dest='c', type='string', metavar='LABEL',
parser.add_option('-c',
dest = 'c',
type = 'string', metavar = 'string',
help = 'crystal frame c vector')
parser.add_option('-q', '--quaternion', dest='quaternion', type='string', metavar='LABEL',
parser.add_option('-q', '--quaternion',
dest = 'quaternion',
type = 'string', metavar = 'string',
help = 'quaternion')
parser.add_option('-p', '--position', dest='position', type='string', metavar='LABEL',
parser.add_option('-p', '--position',
dest = 'coords',
type = 'string', metavar = 'string',
help = 'spatial position of voxel [%default]')
parser.set_defaults(symmetry = 'cubic')
parser.set_defaults(position = 'pos')
parser.set_defaults(degrees = False)
parser.set_defaults(symmetry = 'cubic',
coords = 'pos',
degrees = False,
)
(options, filenames) = parser.parse_args()
if options.radius == None:
parser.error('no radius specified.')
datainfo = { # list of requested labels per datatype
'tensor': {'len':9,
'label':[]},
'vector': {'len':3,
'label':[]},
'quaternion': {'len':4,
'label':[]},
}
input = [options.eulers != None,
options.a != None and \
options.b != None and \
options.c != None,
options.matrix != None,
options.quaternion != None,
]
if options.eulers != None: datainfo['vector']['label'] += [options.eulers]; input = 'eulers'
if options.a != None and \
options.b != None and \
options.c != None: datainfo['vector']['label'] += [options.a,options.b,options.c]; input = 'frame'
if options.matrix != None: datainfo['tensor']['label'] += [options.matrix]; input = 'matrix'
if options.quaternion != None: datainfo['quaternion']['label'] += [options.quaternion]; input = 'quaternion'
if np.sum(input) != 1: parser.error('needs exactly one input format.')
datainfo['vector']['label'] += [options.position]
(label,dim,inputtype) = [(options.eulers,3,'eulers'),
([options.a,options.b,options.c],[3,3,3],'frame'),
(options.matrix,9,'matrix'),
(options.quaternion,4,'quaternion'),
][np.where(input)[0][0]] # select input label that was requested
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
toRadians = np.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
cos_disorientation = np.cos(options.disorientation/2.0*toRadians)
# --- loop over input files -------------------------------------------------------------------------
# ------------------------------------------ setup file handles ---------------------------------------
if filenames == []: filenames = ['STDIN']
files = []
if filenames == []:
files.append({'name':'STDIN',
'input':sys.stdin,
'output':sys.stdout,
'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name,
'input':open(name),
'output':open(name+'_tmp','w'),
'croak':sys.stderr})
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
#--- loop over input files ------------------------------------------------------------------------
# ------------------------------------------ read header -------------------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
table.head_read()
table = damask.ASCIItable(file['input'],file['output'],buffered = False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
# ------------------------------------------ sanity checks -----------------------------------------
# --------------- figure out columns to process
errors = []
remarks = []
column = {}
missingColumns = False
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
if not np.all(table.label_dimension(label) == dim): errors.append('input {} has wrong dimension {}.'.format(label,dim))
else: column = table.label_index(label)
for datatype,info in datainfo.items():
for label in info['label']:
key = list(set([label, '1_'+label]) & set(table.labels)) # check for intersection with table labels
if key == []:
file['croak'].write('column %s not found...\n'%label)
missingColumns = True # break if label not found
else:
column[label] = table.labels.index(key[0]) # remember columns of requested data
if missingColumns:
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
table.labels_append('grainID_%g'%options.disorientation)
# ------------------------------------------ assemble header ---------------------------------------
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append('grainID_{}@{}'.format(','.join(labels),options.disorientation/toRadians)) # report orientation source and disorientation in degrees
table.head_write()
# ------------------------------------------ process data ---------------------------------------
# ------------------------------------------ build KD tree ---------------------------------------
# ------------------------------------------ process data ------------------------------------------
# ------------------------------------------ build KD tree -----------------------------------------
# --- start background messaging
@ -186,178 +171,129 @@ for file in files:
bg.set_message('reading positions...')
backup_readSize = table.__IO__['validReadSize'] # bad hack to circumvent overwriting by readArray...
backup_labels = table.labels # bad hack...
table.data_rewind()
table.data_readArray(range(column[options.position],
column[options.position]+datainfo['vector']['len'])) # read position vectors
# file['croak'].write('%i\n'%(len(table.data)))
table.data_readArray(options.coords) # read position vectors
grainID = -np.ones(len(table.data),dtype=int)
start = tick = time.clock()
bg.set_message('building KD tree...')
kdtree = spatial.KDTree(copy.deepcopy(table.data))
# neighborhood = kdtree.query_ball_tree(kdtree,options.radius)
# file['croak'].write('%.2f seconds\n'%(time.clock()-tick))
# file['croak'].write('%i points\n'%(len(neighborhood)))
# ------------------------------------------ assign grain IDs ---------------------------------------
orientations = [] # quaternions found for grain
memberCounts = [] # number of voxels in grain
table.data_rewind()
table.__IO__['validReadSize'] = backup_readSize # bad hack to circumvent overwriting by readArray...
table.labels = backup_labels # bad hack...
p = 0 # point counter
g = 0 # grain counter
matchedID = -1
lastDistance = np.dot(kdtree.data[-1]-kdtree.data[0],kdtree.data[-1]-kdtree.data[0]) # (arbitrarily) use diagonal of cloud
# ------------------------------------------ assign grain IDs --------------------------------------
tick = time.clock()
while table.data_read(): # read next data line of ASCII table
orientations = [] # quaternions found for grain
memberCounts = [] # number of voxels in grain
p = 0 # point counter
g = 0 # grain counter
matchedID = -1
lastDistance = np.dot(kdtree.data[-1]-kdtree.data[0],kdtree.data[-1]-kdtree.data[0]) # (arbitrarily) use diagonal of cloud
table.data_rewind()
while table.data_read(): # read next data line of ASCII table
if p > 0 and p % 1000 == 0:
time_delta = (time.clock()-tick) * (len(grainID) - p) / p
bg.set_message('(%02i:%02i:%02i) processing point %i of %i (grain count %i)...'%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),len(orientations)))
if input == 'eulers':
o = damask.Orientation(Eulers=toRadians*\
np.array(map(float,table.data[column[options.eulers]:\
column[options.eulers]+datainfo['vector']['len']])),
symmetry=options.symmetry).reduced()
elif input == 'matrix':
o = damask.Orientation(matrix=\
np.array([map(float,table.data[column[options.matrix]:\
column[options.matrix]+datainfo['tensor']['len']])]).reshape(np.sqrt(datainfo['tensor']['len']),
np.sqrt(datainfo['tensor']['len'])).transpose(),
symmetry=options.symmetry).reduced()
elif input == 'frame':
o = damask.Orientation(matrix=\
np.array([map(float,table.data[column[options.a]:\
column[options.a]+datainfo['vector']['len']] + \
table.data[column[options.b]:\
column[options.b]+datainfo['vector']['len']] + \
table.data[column[options.c]:\
column[options.c]+datainfo['vector']['len']]
)]).reshape(3,3),
symmetry=options.symmetry).reduced()
elif input == 'quaternion':
o = damask.Orientation(quaternion=\
np.array(map(float,table.data[column[options.quaternion]:\
column[options.quaternion]+datainfo['quaternion']['len']])),
symmetry=options.symmetry).reduced()
if inputtype == 'eulers':
o = damask.Orientation(Eulers = np.array(map(float,table.data[column:column+3]))*toRadians,
symmetry = options.symmetry).reduced()
elif inputtype == 'matrix':
o = damask.Orientation(matrix = np.array(map(float,table.data[column:column+9])).reshape(3,3).transpose(),
symmetry = options.symmetry).reduced()
elif inputtype == 'frame':
o = damask.Orientation(matrix = np.array(map(float,table.data[column[0]:column[0]+3] + \
table.data[column[1]:column[1]+3] + \
table.data[column[2]:column[2]+3])).reshape(3,3),
symmetry = options.symmetry).reduced()
elif inputtype == 'quaternion':
o = damask.Orientation(quaternion = np.array(map(float,table.data[column:column+4])),
symmetry = options.symmetry).reduced()
matched = False
# check against last matched needs to be really picky. best would be to exclude jumps across the poke (checking distance between last and me?)
# when walking through neighborhood first check whether grainID of that point has already been tested, if yes, skip!
if matchedID != -1: # has matched before?
if matchedID != -1: # has matched before?
matched = (o.quaternion.conjugated() * orientations[matchedID].quaternion).w > cos_disorientation
# if matchedID > 0: # has matched before?
# thisDistance = np.dot(kdtree.data[p]-kdtree.data[p-1],kdtree.data[p]-kdtree.data[p-1],)
# if thisDistance < 4.*lastDistance: # about as close as last point pair?
# disorientation = o.disorientation(orientations[matchedID-1]).quaternion.w # check whether former grainID matches now again
# matched = disorientation > cos_disorientation
# lastDistance = thisDistance
#
if not matched:
alreadyChecked = {}
bestDisorientation = damask.Orientation(quaternion=np.array([0,0,0,1]),symmetry = options.symmetry) # initialize to 180 deg rotation as worst case
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points
bestDisorientation = damask.Orientation(quaternion = np.array([0,0,0,1]),
symmetry = options.symmetry) # initialize to 180 deg rotation as worst case
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points
gID = grainID[i]
if gID != -1 and gID not in alreadyChecked: # an already indexed point belonging to a grain not yet tested?
alreadyChecked[gID] = True # remember not to check again
disorientation = o.disorientation(orientations[gID]) # compare against that grain's orientation
if gID != -1 and gID not in alreadyChecked: # an already indexed point belonging to a grain not yet tested?
alreadyChecked[gID] = True # remember not to check again
disorientation = o.disorientation(orientations[gID]) # compare against that grain's orientation
if disorientation.quaternion.w > cos_disorientation and \
disorientation.quaternion.w >= bestDisorientation.quaternion.w: # within disorientation threshold and better than current best?
disorientation.quaternion.w >= bestDisorientation.quaternion.w: # within disorientation threshold and better than current best?
matched = True
matchedID = gID # remember that grain
# file['croak'].write('%i %f '%(matchedID,disorientation.quaternion.w))
matchedID = gID # remember that grain
bestDisorientation = disorientation
if not matched: # no match -> new grain found
memberCounts += [1] # start new membership counter
orientations += [o] # initialize with current orientation
if not matched: # no match -> new grain found
memberCounts += [1] # start new membership counter
orientations += [o] # initialize with current orientation
matchedID = g
g += 1 # increment grain counter
# file['croak'].write('+')
g += 1 # increment grain counter
else: # did match existing grain
else: # did match existing grain
memberCounts[matchedID] += 1
# file['croak'].write('got back %s is close by %f to %s\n'%(np.degrees(bestQ.asEulers()),np.degrees(2*np.arccos(bestDisorientation.quaternion.w)),np.degrees(bestFormerQ.asEulers())))
# file['croak'].write('.%i %s'%(matchedID, orientations[matchedID-1].quaternion))
# M = (1. - 1./memberCounts[matchedID-1]) * bestFormerQ.asM() + 1./memberCounts[matchedID-1] * bestQ.asM() # 4x4 matrix holding weighted quaternion outer products per grain
# w,v = np.linalg.eigh(M)
# avgQ = damask.Orientation(quaternion=v[:,w.argmax()],symmetry=options.symmetry)
# file['croak'].write('new avg has misori of %f\n'%np.degrees(2*np.arccos(orientations[matchedID-1].disorientation(avgQ)[0].quaternion.w)))
# orientations[matchedID-1].quaternion = damask.Quaternion(v[:,w.argmax()])
# orientations[matchedID-1] = damask.Orientation(quaternion = bestDisorientation.quaternion**(1./memberCounts[matchedID-1]) \
# * orientations[matchedID-1].quaternion,
# symmetry = options.symmetry) # adjust average orientation taking newest member into account
# file['croak'].write(' stored --> %s\n'%(np.degrees(orientations[matchedID-1].quaternion.asEulers())))
# file['croak'].write('.')
grainID[p] = matchedID # remember grain index assigned to point
p += 1 # increment point
grainID[p] = matchedID # remember grain index assigned to point
p += 1 # increment point
bg.set_message('identifying similar orientations among %i grains...'%(len(orientations)))
bg.set_message('identifying similar orientations among {} grains...'.format(len(orientations)))
memberCounts = np.array(memberCounts)
similarOrientations = [[] for i in xrange(len(orientations))]
for i,orientation in enumerate(orientations): # compare each identified orientation...
for j in xrange(i+1,len(orientations)): # ...against all others that were defined afterwards
if orientation.disorientation(orientations[j]).quaternion.w > cos_disorientation: # similar orientations in both grainIDs?
similarOrientations[i].append(j) # remember in upper triangle...
similarOrientations[j].append(i) # ...and lower triangle of matrix
for i,orientation in enumerate(orientations): # compare each identified orientation...
for j in xrange(i+1,len(orientations)): # ...against all others that were defined afterwards
if orientation.disorientation(orientations[j]).quaternion.w > cos_disorientation: # similar orientations in both grainIDs?
similarOrientations[i].append(j) # remember in upper triangle...
similarOrientations[j].append(i) # ...and lower triangle of matrix
if similarOrientations[i] != []:
bg.set_message('grainID %i is as: %s'%(i,' '.join(map(lambda x:str(x),similarOrientations[i]))))
bg.set_message('grainID {} is as: {}'.format(i,' '.join(map(lambda x:str(x),similarOrientations[i]))))
stillShifting = True
while stillShifting:
stillShifting = False
tick = time.clock()
for p,gID in enumerate(grainID): # walk through all points
for p,gID in enumerate(grainID): # walk through all points
if p > 0 and p % 1000 == 0:
time_delta = (time.clock()-tick) * (len(grainID) - p) / p
bg.set_message('(%02i:%02i:%02i) shifting ID of point %i out of %i (grain count %i)...'%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),len(orientations)))
if similarOrientations[gID] != []: # orientation of my grainID is similar to someone else?
similarNeighbors = defaultdict(int) # dict holding frequency of neighboring grainIDs that share my orientation (freq info not used...)
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points
if grainID[i] in similarOrientations[gID]: # neighboring point shares my orientation?
similarNeighbors[grainID[i]] += 1 # remember its grainID
if similarNeighbors != {}: # found similar orientation(s) in neighborhood
candidates = np.array([gID]+similarNeighbors.keys()) # possible replacement grainIDs for me
grainID[p] = candidates[np.argsort(memberCounts[candidates])[-1]] # adopt ID that is most frequent in overall dataset
memberCounts[gID] -= 1 # my former ID loses one fellow
memberCounts[grainID[p]] += 1 # my new ID gains one fellow
bg.set_message('%i:%i --> %i'%(p,gID,grainID[p])) # report switch of grainID
if similarOrientations[gID] != []: # orientation of my grainID is similar to someone else?
similarNeighbors = defaultdict(int) # dict holding frequency of neighboring grainIDs that share my orientation (freq info not used...)
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points
if grainID[i] in similarOrientations[gID]: # neighboring point shares my orientation?
similarNeighbors[grainID[i]] += 1 # remember its grainID
if similarNeighbors != {}: # found similar orientation(s) in neighborhood
candidates = np.array([gID]+similarNeighbors.keys()) # possible replacement grainIDs for me
grainID[p] = candidates[np.argsort(memberCounts[candidates])[-1]] # adopt ID that is most frequent in overall dataset
memberCounts[gID] -= 1 # my former ID loses one fellow
memberCounts[grainID[p]] += 1 # my new ID gains one fellow
bg.set_message('{}:{} --> {}'.format(p,gID,grainID[p])) # report switch of grainID
stillShifting = True
table.data_rewind()
p = 0
while table.data_read(): # read next data line of ASCII table
table.data_append(1+grainID[p]) # add grain ID
table.data_write() # output processed line
while table.data_read(): # read next data line of ASCII table
table.data_append(1+grainID[p]) # add grain ID
table.data_write() # output processed line
p += 1
bg.set_message('done after %i seconds'%(time.clock()-start))
bg.set_message('done after {} seconds'.format(time.clock()-start))
# for i,o in enumerate(orientations): # croak about average grain orientations
# file['croak'].write('%i: %s\n'%(i,' '.join(map(str,o.quaternion.asEulers()))))
# ------------------------------------------ output finalization -----------------------------------
# ------------------------------------------ output result ---------------------------------------
table.output_flush() # just in case of buffered ASCII table
table.close() # close ASCII tables
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -18,28 +18,45 @@ Add RGB color value corresponding to TSL-OIM scheme for inverse pole figures.
""", version = scriptID)
parser.add_option('-p', '--pole', dest='pole', type='float', nargs=3, metavar='float float float',
parser.add_option('-p', '--pole',
dest = 'pole',
type = 'float', nargs = 3, metavar = 'float float float',
help = 'lab frame direction for inverse pole figure [%default]')
parser.add_option('-s', '--symmetry', dest='symmetry', type='choice',
choices=damask.Symmetry.lattices[1:], metavar='string',
help = 'crystal symmetry [cubic] {%s} '%(', '.join(damask.Symmetry.lattices[1:])))
parser.add_option('-e', '--eulers', dest='eulers', metavar='string',
parser.add_option('-s', '--symmetry',
dest = 'symmetry',
type = 'choice', choices = damask.Symmetry.lattices[1:], metavar='string',
help = 'crystal symmetry [%default] {{{}}} '.format(', '.join(damask.Symmetry.lattices[1:])))
parser.add_option('-e', '--eulers',
dest = 'eulers',
type = 'string', metavar = 'string',
help = 'Euler angles label')
parser.add_option('-d', '--degrees', dest='degrees', action='store_true',
parser.add_option('-d', '--degrees',
dest = 'degrees',
action = 'store_true',
help = 'Euler angles are given in degrees [%default]')
parser.add_option('-m', '--matrix', dest='matrix', metavar='string',
parser.add_option('-m', '--matrix',
dest = 'matrix',
type = 'string', metavar = 'string',
help = 'orientation matrix label')
parser.add_option('-a', dest='a', metavar='string',
parser.add_option('-a',
dest = 'a',
type = 'string', metavar = 'string',
help = 'crystal frame a vector label')
parser.add_option('-b', dest='b', metavar='string',
parser.add_option('-b',
dest = 'b',
type = 'string', metavar = 'string',
help = 'crystal frame b vector label')
parser.add_option('-c', dest='c', metavar='string',
parser.add_option('-c',
dest = 'c',
type = 'string', metavar = 'string',
help = 'crystal frame c vector label')
parser.add_option('-q', '--quaternion', dest='quaternion', metavar='string',
parser.add_option('-q', '--quaternion',
dest = 'quaternion',
type = 'string', metavar = 'string',
help = 'quaternion label')
parser.set_defaults(pole = (0.0,0.0,1.0),
symmetry = 'cubic',
symmetry = damask.Symmetry.lattices[-1],
degrees = False,
)
@ -53,75 +70,69 @@ input = [options.eulers != None,
options.quaternion != None,
]
if np.sum(input) != 1: parser.error('needs exactly one input format...')
if np.sum(input) != 1: parser.error('needs exactly one input format.')
(label,dim,inputtype) = [(options.eulers,3,'eulers'),
([options.a,options.b,options.c],[3,3,3],'frame'),
(options.matrix,9,'matrix'),
(options.quaternion,4,'quaternion'),
][np.where(input)[0][0]] # select input label that was requested
][np.where(input)[0][0]] # select input label that was requested
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
pole = np.array(options.pole)
pole /= np.linalg.norm(pole)
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
# --- loop over input files ------------------------------------------------------------------------
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],buffered=False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
if not np.all(table.label_dimension(label) == dim):
file['croak'].write('input %s has wrong dimension %i...\n'%(label,dim))
table.croak('input {} has wrong dimension {}.'.format(label,dim))
table.close(dismiss = True) # close ASCIItable and remove empty file
continue
column = table.label_index(label)
# ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append(['%i_IPF_%g%g%g_%s'%(i+1,options.pole[0],options.pole[1],options.pole[2],options.symmetry.lower()) for i in xrange(3)])
table.labels_append(['{}_IPF_{}{}{}_{sym}'.format(i+1,*options.pole,sym = options.symmetry.lower()) for i in xrange(3)])
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
if inputtype == 'eulers':
o = damask.Orientation(Eulers=toRadians*\
np.array(map(float,table.data[column:column+3])),
symmetry=options.symmetry).reduced()
o = damask.Orientation(Eulers = np.array(map(float,table.data[column:column+3]))*toRadians,
symmetry = options.symmetry).reduced()
elif inputtype == 'matrix':
o = damask.Orientation(matrix=\
np.array([map(float,table.data[column:column+9])]).reshape(3,3).transpose(),
symmetry=options.symmetry).reduced()
o = damask.Orientation(matrix = np.array(map(float,table.data[column:column+9])).reshape(3,3).transpose(),
symmetry = options.symmetry).reduced()
elif inputtype == 'frame':
o = damask.Orientation(matrix=\
np.array([map(float,table.data[column[0]:column[0]+3] + \
table.data[column[1]:column[1]+3] + \
table.data[column[2]:column[2]+3]
)]).reshape(3,3),
symmetry=options.symmetry).reduced()
o = damask.Orientation(matrix = np.array(map(float,table.data[column[0]:column[0]+3] + \
table.data[column[1]:column[1]+3] + \
table.data[column[2]:column[2]+3])).reshape(3,3),
symmetry = options.symmetry).reduced()
elif inputtype == 'quaternion':
o = damask.Orientation(quaternion=\
np.array(map(float,table.data[column:column+4])),
symmetry=options.symmetry).reduced()
o = damask.Orientation(quaternion = np.array(map(float,table.data[column:column+4])),
symmetry = options.symmetry).reduced()
table.data_append(o.IPFcolor(pole))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -17,102 +17,89 @@ Add data in column(s) of second ASCIItable selected from row that is given by th
""", version = scriptID)
parser.add_option('-a','--asciitable', dest='asciitable', metavar='string',
help='mapped ASCIItable')
parser.add_option('-c','--map', dest='map', metavar='string',
help='heading of column containing row mapping')
parser.add_option('-o','--offset', dest='offset', type='int', metavar='int',
help='offset between mapped column value and row [%default]')
parser.add_option('-v','--vector', dest='vector', action='extend', metavar='<string LIST>',
help='heading of columns containing vector field values')
parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='<string LIST>',
help='heading of columns containing tensor field values')
parser.add_option('-s','--special', dest='special', action='extend', metavar='<string LIST>',
help='heading of columns containing field values of special dimension')
parser.add_option('-d','--dimension', dest='N', type='int', metavar='int',
help='dimension of special field values [%default]')
parser.set_defaults(offset = 0)
parser.set_defaults(N = 1)
parser.add_option('-c','--map',
dest = 'map',
type = 'string', metavar = 'string',
help = 'heading of column containing row mapping')
parser.add_option('-o','--offset',
dest = 'offset',
type = 'int', metavar = 'int',
help = 'offset between mapping column value and actual row in mapped table [%default]')
parser.add_option('-l','--label',
dest = 'label',
action = 'extend', metavar = '<string LIST>',
help='heading of column(s) to be mapped')
parser.add_option('-a','--asciitable',
dest = 'asciitable',
type = 'string', metavar = 'string',
help = 'mapped ASCIItable')
parser.set_defaults(offset = 0,
)
(options,filenames) = parser.parse_args()
if (not None) in [options.vector,options.tensor,options.special]:
parser.error('no data column specified...')
if options.label == None:
parser.error('no data columns specified.')
if options.map == None:
parser.error('missing mapping column...')
parser.error('no mapping column given.')
datainfo = { # list of requested labels per datatype
'vector': {'len':3,
'label':[]},
'tensor': {'len':9,
'label':[]},
'special': {'len':options.N,
'label':[]},
}
# ------------------------------------------ process mapping ASCIItable ---------------------------
if options.vector != None: datainfo['vector']['label'] += options.vector
if options.tensor != None: datainfo['tensor']['label'] += options.tensor
if options.special != None: datainfo['special']['label'] += options.special
# ------------------------------------------ processing mapping ASCIItable -------------------------
if options.asciitable != None and os.path.isfile(options.asciitable):
mappedTable = damask.ASCIItable(open(options.asciitable),None,False)
mappedTable = damask.ASCIItable(name = options.asciitable,buffered = False, readonly = True)
mappedTable.head_read() # read ASCII header info of mapped table
missing_labels = mappedTable.data_readArray(options.label)
labels = []
for datatype,info in datainfo.items():
for label in info['label']:
keys = ['%i_'%(i+1)+label for i in xrange(info['len'])] if info['len'] > 1 else [label]
if set(keys).issubset(mappedTable.labels):
labels+=keys # extend labels
else:
sys.stderr.write('column %s not found...\n'%label)
break
mappedTable.data_readArray(labels)
mappedTable.input_close() # close mapped input ASCII table
if len(missing_labels) > 0:
mappedTable.croak('column{} {} not found...'.format('s' if len(missing_labels) > 1 else '',', '.join(missing_labels)))
else:
parser.error('missing mapped ASCIItable...')
parser.error('no mapped ASCIItable given.')
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
# --- loop over input files -------------------------------------------------------------------------
# ------------------------------------------ loop over input files ---------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
if filenames == []: filenames = ['STDIN']
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
if options.map not in table.labels:
file['croak'].write('column %s not found...\n'%options.map)
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
errors = []
mappedColumn = table.label_index(options.map)
if mappedColumn < 0: errors.append('mapping column {} not found.'.format(options.map))
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for label in mappedTable.labels:
table.labels_append(label)
table.labels_append(mappedTable.labels) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ process data ------------------------------------------
mappedColumn = table.labels.index(options.map)
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
table.data_append(mappedTable.data[int(table.data[mappedColumn])+options.offset-1]) # add all mapped data types
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new
mappedTable.close() # close mapped input ASCII table

View File

@ -29,76 +29,78 @@ Add vonMises equivalent values for symmetric part of requested strains and/or st
""", version = scriptID)
parser.add_option('-e','--strain', dest='strain', action='extend', metavar='<string LIST>',
help='heading(s) of columns containing strain tensors')
parser.add_option('-s','--stress', dest='stress', action='extend', metavar='<string LIST>',
help='heading(s) of columns containing stress tensors')
parser.add_option('-e','--strain',
dest = 'strain',
action = 'extend', metavar = '<string LIST>',
help = 'heading(s) of columns containing strain tensors')
parser.add_option('-s','--stress',
dest = 'stress',
action = 'extend', metavar = '<string LIST>',
help = 'heading(s) of columns containing stress tensors')
parser.set_defaults(strain = [],
stress = [],
)
(options,filenames) = parser.parse_args()
if (not None) in [options.strain,options.stress]:
if len(options.stress+options.strain) == 0:
parser.error('no data column specified...')
datainfo = { # list of requested labels per datatype
'strain': {'len':9,
'label':[]},
'stress': {'len':9,
'label':[]},
}
# --- loop over input files -------------------------------------------------------------------------
if options.strain != None: datainfo['strain']['label'] += options.strain
if options.stress != None: datainfo['stress']['label'] += options.stress
if filenames == []: filenames = ['STDIN']
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# ------------------------------------------ loop over input files ---------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
# ------------------------------------------ read header ------------------------------------------
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.head_read()
active = defaultdict(list)
column = defaultdict(dict)
# ------------------------------------------ sanity checks ----------------------------------------
for datatype,info in datainfo.items():
for label in info['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
items = {
'strain': {'dim': 9, 'shape': [3,3], 'labels':options.strain, 'active':[], 'column': []},
'stress': {'dim': 9, 'shape': [3,3], 'labels':options.stress, 'active':[], 'column': []},
}
errors = []
remarks = []
for type, data in items.iteritems():
for what in data['labels']:
dim = table.label_dimension(what)
if dim != data['dim']: remarks.append('column {} is not a {}...'.format(what,type))
else:
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
items[type]['active'].append(what)
items[type]['column'].append(table.label_index(what))
table.labels_append('Mises({})'.format(what)) # extend ASCII header with new labels
# ------------------------------------------ assemble header ---------------------------------------
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested determinants
table.labels_append('Mises(%s)'%label) # extend ASCII header with new labels
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested norms
table.data_append(Mises(datatype,
np.array(map(float,table.data[column[datatype][label]:
column[datatype][label]+datainfo[datatype]['len']]),'d').reshape(3,3)))
for type, data in items.iteritems():
for column in data['column']:
table.data_append(Mises(type,
np.array(table.data[column:column+data['dim']],'d').reshape(data['shape'])))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close input ASCII table (works for stdin)
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -10,14 +10,15 @@ scriptID = string.replace('$Id$','\n','\\n')
scriptName = os.path.splitext(scriptID.split()[1])[0]
# definition of element-wise p-norms for matrices
def normAbs(object): # p = 1
return sum(map(abs, object))
def normFrobenius(object): # p = 2
return math.sqrt(sum([x*x for x in object]))
def norm(which,object):
def normMax(object): # p = infinity
return max(map(abs, object))
if which == 'Abs': # p = 1
return sum(map(abs, object))
elif which == 'Frobenius': # p = 2
return math.sqrt(sum([x*x for x in object]))
elif which == 'Max': # p = inf
return max(map(abs, object))
# --------------------------------------------------------------------
# MAIN
@ -29,86 +30,73 @@ Add column(s) containing norm of requested column(s) being either vectors or ten
""", version = scriptID)
normChoices = ['abs','frobenius','max']
parser.add_option('-n','--norm', dest='norm', type='choice', choices=normChoices, metavar='string',
help='type of element-wise p-norm [frobenius] {%s}'%(','.join(map(str,normChoices))))
parser.add_option('-v','--vector', dest='vector', action='extend', metavar='<string LIST>',
help='heading of columns containing vector field values')
parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='<string LIST>',
help='heading of columns containing tensor field values')
parser.add_option('-s','--special', dest='special', action='extend', metavar='<string LIST>',
help='heading of columns containing field values of special dimension')
parser.add_option('-d','--dimension', dest='N', type='int', metavar='int',
help='dimension of special field values [%default]')
parser.set_defaults(norm = 'frobenius')
parser.set_defaults(N = 12)
parser.add_option('-n','--norm',
dest = 'norm',
type = 'choice', choices = normChoices, metavar='string',
help = 'type of element-wise p-norm [frobenius] {%s}'%(','.join(map(str,normChoices))))
parser.add_option('-l','--label',
dest = 'label',
action = 'extend', metavar = '<string LIST>',
help = 'heading of column(s) to calculate norm of')
parser.set_defaults(norm = 'frobenius',
)
(options,filenames) = parser.parse_args()
if (not None) in [options.vector,options.tensor,options.special]:
parser.error('no data column specified...')
if options.label == None:
parser.error('no data column specified.')
datainfo = { # list of requested labels per datatype
'vector': {'len':3,
'label':[]},
'tensor': {'len':9,
'label':[]},
'special': {'len':options.N,
'label':[]},
}
# --- loop over input files -------------------------------------------------------------------------
if options.vector != None: datainfo['vector']['label'] += options.vector
if options.tensor != None: datainfo['tensor']['label'] += options.tensor
if options.special != None: datainfo['special']['label'] += options.special
if filenames == []: filenames = ['STDIN']
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
#--- loop over input files -------------------------------------------------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
errors = []
remarks = []
columns = []
dims = []
for what in options.label:
dim = table.label_dimension(what)
if dim < 0: remarks.append('column {} not found...'.format(what))
else:
dims.append(dim)
columns.append(table.label_index(what))
table.labels_append('norm{}({})'.format(options.norm.capitalize(),what)) # extend ASCII header with new labels
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
active = defaultdict(list)
column = defaultdict(dict)
for datatype,info in datainfo.items():
for label in info['label']:
key = '1_'+label if info['len'] > 1 else label # columns of non-scalars need to start with '1_'
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
# ------------------------------------------ assemble header ---------------------------------------
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested determinants
table.labels_append('norm%s(%s)'%(options.norm.capitalize(),label)) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested norms
eval("table.data_append(norm%s(map(float,table.data[column[datatype][label]:"\
"column[datatype][label]+datainfo[datatype]['len']])))"%options.norm.capitalize())
for column,dim in zip(columns,dims):
table.data_append(norm(options.norm.capitalize(),
map(float,table.data[column:column+dim])))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close input ASCII table (works for stdin)
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -20,151 +20,141 @@ Orientation is given by quaternion, Euler angles, rotation matrix, or crystal fr
""", version = scriptID)
outputChoices = ['quaternion','eulers']
parser.add_option('-o', '--output', dest='output', action='extend', metavar='<string LIST>',
parser.add_option('-o', '--output',
dest = 'output',
action = 'extend', metavar = '<string LIST>',
help = 'output orientation formats {%s}'%(','.join(outputChoices)))
parser.add_option('-s', '--symmetry', dest='symmetry', type='choice',
choices=damask.Symmetry.lattices[1:], metavar='string',
help = 'crystal symmetry [cubic] {%s}'%(', '.join(damask.Symmetry.lattices[1:])))
parser.add_option('-r', '--rotation', dest='rotation', type='float', nargs=4, metavar='float float float float',
parser.add_option('-r', '--rotation',
dest='rotation',
type = 'float', nargs = 4, metavar = ' '.join(['float']*4),
help = 'angle and axis to (pre)rotate orientation')
parser.add_option('-e', '--eulers', dest='eulers', metavar='string',
parser.add_option('-s', '--symmetry',
dest = 'symmetry',
type = 'choice', choices = damask.Symmetry.lattices[1:], metavar='string',
help = 'crystal symmetry [%default] {{{}}} '.format(', '.join(damask.Symmetry.lattices[1:])))
parser.add_option('-e', '--eulers',
dest = 'eulers',
type = 'string', metavar = 'string',
help = 'Euler angles label')
parser.add_option('-d', '--degrees', dest='degrees', action='store_true',
parser.add_option('-d', '--degrees',
dest = 'degrees',
action = 'store_true',
help = 'Euler angles are given in degrees [%default]')
parser.add_option('-m', '--matrix', dest='matrix', metavar='string',
parser.add_option('-m', '--matrix',
dest = 'matrix',
type = 'string', metavar = 'string',
help = 'orientation matrix label')
parser.add_option('-a', dest='a', metavar='string',
parser.add_option('-a',
dest = 'a',
type = 'string', metavar = 'string',
help = 'crystal frame a vector label')
parser.add_option('-b', dest='b', metavar='string',
parser.add_option('-b',
dest = 'b',
type = 'string', metavar = 'string',
help = 'crystal frame b vector label')
parser.add_option('-c', dest='c', metavar='string',
parser.add_option('-c',
dest = 'c',
type = 'string', metavar = 'string',
help = 'crystal frame c vector label')
parser.add_option('-q', '--quaternion', dest='quaternion', metavar='string',
parser.add_option('-q', '--quaternion',
dest = 'quaternion',
type = 'string', metavar = 'string',
help = 'quaternion label')
parser.set_defaults(symmetry = 'cubic')
parser.set_defaults(rotation = (0.,1.,1.,1.)) # no rotation about 1,1,1
parser.set_defaults(degrees = False)
parser.set_defaults(output = [],
symmetry = damask.Symmetry.lattices[-1],
rotation = (0.,1.,1.,1.), # no rotation about 1,1,1
degrees = False,
)
(options, filenames) = parser.parse_args()
datainfo = { # list of requested labels per datatype
'tensor': {'len':9,
'label':[]},
'vector': {'len':3,
'label':[]},
'quaternion': {'len':4,
'label':[]},
}
if options.output == None or (not set(options.output).issubset(set(outputChoices))):
parser.error('output must be chosen from %s...'%(', '.join(outputChoices)))
input=[]
if options.eulers != None:
datainfo['vector']['label'] += [options.eulers]
input.append('eulers')
if options.a != None and \
options.b != None and \
options.c != None:
datainfo['vector']['label'] += [options.a,options.b,options.c]
input.append('frame')
if options.matrix != None:
datainfo['tensor']['label'] += [options.matrix]
input.append('matrix')
if options.quaternion != None:
datainfo['quaternion']['label'] += [options.quaternion]
input.append('quaternion')
if len(input) != 1: parser.error('needs exactly one input format...')
input = input[0]
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
options.output = map(lambda x: x.lower(), options.output)
if options.output == [] or (not set(options.output).issubset(set(outputChoices))):
parser.error('output must be chosen from {}.'.format(', '.join(outputChoices)))
r = damask.Quaternion().fromAngleAxis(toRadians*options.rotation[0],options.rotation[1:])
input = [options.eulers != None,
options.a != None and \
options.b != None and \
options.c != None,
options.matrix != None,
options.quaternion != None,
]
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if np.sum(input) != 1: parser.error('needs exactly one input format.')
(label,dim,inputtype) = [(options.eulers,3,'eulers'),
([options.a,options.b,options.c],[3,3,3],'frame'),
(options.matrix,9,'matrix'),
(options.quaternion,4,'quaternion'),
][np.where(input)[0][0]] # select input label that was requested
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
r = damask.Quaternion().fromAngleAxis(toRadians*options.rotation[0],options.rotation[1:]) # pre-rotation
# --- loop over input files ------------------------------------------------------------------------
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],buffered=False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
# ------------------------------------------ read header ------------------------------------------
column = {}
missingColumns = False
table.head_read()
for datatype,info in datainfo.items():
for label in info['label']:
key = '1_'+label if info['len'] > 1 else label # non-special labels have to start with '1_'
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
missingColumns = True # break if label not found
else:
column[label] = table.labels.index(key) # remember columns of requested data
# ------------------------------------------ sanity checks -----------------------------------------
if missingColumns:
errors = []
remarks = []
if not np.all(table.label_dimension(label) == dim): errors.append('input {} has wrong dimension {}.'.format(label,dim))
else: column = table.label_index(label)
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for output in options.output:
if output == 'quaternion':
table.labels_append(['%i_quaternion_%s'%(i+1,options.symmetry) for i in xrange(4)])
if output == 'eulers':
table.labels_append(['%i_eulers_%s'%(i+1,options.symmetry) for i in xrange(3)])
if output == 'quaternion': table.labels_append(['{}_quat({})'.format( i+1,options.symmetry) for i in xrange(4)])
if output == 'eulers': table.labels_append(['{}_eulers({})'.format(i+1,options.symmetry) for i in xrange(3)])
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
if input == 'eulers':
o = damask.Orientation(Eulers=toRadians*\
np.array(map(float,table.data[column[options.eulers]:\
column[options.eulers]+datainfo['vector']['len']])),
symmetry=options.symmetry).reduced()
elif input == 'matrix':
o = damask.Orientation(matrix=\
np.array([map(float,table.data[column[options.matrix]:\
column[options.matrix]+datainfo['tensor']['len']])]).reshape(3,3),
symmetry=options.symmetry).reduced()
elif input == 'frame':
o = damask.Orientation(matrix=\
np.array([map(float,table.data[column[options.a]:\
column[options.a]+datainfo['vector']['len']] + \
table.data[column[options.b]:\
column[options.b]+datainfo['vector']['len']] + \
table.data[column[options.c]:\
column[options.c]+datainfo['vector']['len']]
)]).reshape(3,3),
symmetry=options.symmetry).reduced()
elif input == 'quaternion':
o = damask.Orientation(quaternion=\
np.array(map(float,table.data[column[options.quaternion]:\
column[options.quaternion]+datainfo['quaternion']['len']])),
symmetry=options.symmetry).reduced()
if inputtype == 'eulers':
o = damask.Orientation(Eulers = np.array(map(float,table.data[column:column+3]))*toRadians,
symmetry = options.symmetry).reduced()
elif inputtype == 'matrix':
o = damask.Orientation(matrix = np.array(map(float,table.data[column:column+9])).reshape(3,3).transpose(),
symmetry = options.symmetry).reduced()
elif inputtype == 'frame':
o = damask.Orientation(matrix = np.array(map(float,table.data[column[0]:column[0]+3] + \
table.data[column[1]:column[1]+3] + \
table.data[column[2]:column[2]+3])).reshape(3,3),
symmetry = options.symmetry).reduced()
elif inputtype == 'quaternion':
o = damask.Orientation(quaternion = np.array(map(float,table.data[column:column+4])),
symmetry = options.symmetry).reduced()
o.quaternion = r*o.quaternion
for output in options.output:
if output == 'quaternion':
table.data_append(o.asQuaternion())
if output == 'eulers':
table.data_append(o.asEulers('Bunge'))
if output == 'quaternion': table.data_append(o.asQuaternion())
if output == 'eulers': table.data_append(o.asEulers('Bunge'))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -19,59 +19,67 @@ Add column(s) containing Second Piola--Kirchhoff stress based on given column(s)
""", version = scriptID)
parser.add_option('-f','--defgrad', dest='defgrad', metavar='string',
help='heading of columns containing deformation gradient [%default]')
parser.add_option('-p','--stress', dest='stress', metavar='string',
help='heading of columns containing first Piola--Kirchhoff stress [%default]')
parser.set_defaults(defgrad = 'f')
parser.set_defaults(stress = 'p')
parser.add_option('-f','--defgrad',
dest = 'defgrad',
type = 'string', metavar = 'string',
help = 'heading of columns containing deformation gradient [%default]')
parser.add_option('-p','--stress',
dest = 'stress',
type = 'string', metavar = 'string',
help = 'heading of columns containing first Piola--Kirchhoff stress [%default]')
parser.set_defaults(defgrad = 'f',
stress = 'p',
)
(options,filenames) = parser.parse_args()
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
# --- loop over input files -------------------------------------------------------------------------
# ------------------------------------------ loop over input files ---------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
if filenames == []: filenames = ['STDIN']
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# --------------- figure out columns to process ---------------------------------------------------
missingColumns = False
column={ 'defgrad': table.labels.index('1_'+options.defgrad),
'stress': table.labels.index('1_'+options.stress)}
for key in column:
if column[key]<1:
file['croak'].write('column %s not found...\n'%key)
missingColumns=True
if missingColumns: continue
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
errors = []
column = {}
for tensor in [options.defgrad,options.stress]:
dim = table.label_dimension(tensor)
if dim < 0: errors.append('column {} not found.'.format(tensor))
elif dim != 9: errors.append('column {} is not a tensor.'.format(tensor))
else:
column[tensor] = table.label_index(tensor)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append(['%i_S'%(i+1) for i in xrange(9)]) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
F = np.array(map(float,table.data[column['defgrad']:column['defgrad']+9]),'d').reshape(3,3)
P = np.array(map(float,table.data[column['stress'] :column['stress']+9]),'d').reshape(3,3)
F = np.array(map(float,table.data[column[options.defgrad]:column[options.defgrad]+9]),'d').reshape(3,3)
P = np.array(map(float,table.data[column[options.stress ]:column[options.stress ]+9]),'d').reshape(3,3)
table.data_append(list(np.dot(np.linalg.inv(F),P).reshape(9))) # [S] =[P].[F-1]
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close input ASCII table (works for stdin)
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -18,127 +18,116 @@ Add x,y coordinates of stereographic projection of given direction (pole) in cry
""", version = scriptID)
parser.add_option('-p', '--pole', dest='pole', type='float', nargs=3, metavar='float float float',
parser.add_option('-p', '--pole',
dest = 'pole',
type = 'float', nargs = 3, metavar = 'float float float',
help = 'crystal frame direction for pole figure [%default]')
parser.add_option('--polar', dest='polar', action='store_true',
parser.add_option('--polar',
dest = 'polar',
action = 'store_true',
help = 'output polar coordinates r,phi [%default]')
parser.add_option('-e', '--eulers', dest='eulers', metavar='string',
parser.add_option('-e', '--eulers',
dest = 'eulers',
type = 'string', metavar = 'string',
help = 'Euler angles label')
parser.add_option('-d', '--degrees', dest='degrees', action='store_true',
parser.add_option('-d', '--degrees',
dest = 'degrees',
action = 'store_true',
help = 'Euler angles are given in degrees [%default]')
parser.add_option('-m', '--matrix', dest='matrix', metavar='string',
parser.add_option('-m', '--matrix',
dest = 'matrix',
type = 'string', metavar = 'string',
help = 'orientation matrix label')
parser.add_option('-a', dest='a', metavar='string',
parser.add_option('-a',
dest = 'a',
type = 'string', metavar = 'string',
help = 'crystal frame a vector label')
parser.add_option('-b', dest='b', metavar='string',
parser.add_option('-b',
dest = 'b',
type = 'string', metavar = 'string',
help = 'crystal frame b vector label')
parser.add_option('-c', dest='c', metavar='string',
parser.add_option('-c',
dest = 'c',
type = 'string', metavar = 'string',
help = 'crystal frame c vector label')
parser.add_option('-q', '--quaternion', dest='quaternion', metavar='string',
parser.add_option('-q', '--quaternion',
dest = 'quaternion',
type = 'string', metavar = 'string',
help = 'quaternion label')
parser.set_defaults(pole = (1.0,0.0,0.0))
parser.set_defaults(degrees = False)
parser.set_defaults(polar = False)
parser.set_defaults(pole = (1.0,0.0,0.0),
degrees = False,
polar = False,
)
(options, filenames) = parser.parse_args()
datainfo = { # list of requested labels per datatype
'tensor': {'len':9,
'label':[]},
'vector': {'len':3,
'label':[]},
'quaternion': {'len':4,
'label':[]},
}
input = [options.eulers != None,
options.a != None and \
options.b != None and \
options.c != None,
options.matrix != None,
options.quaternion != None,
]
input = []
if options.eulers != None:
datainfo['vector']['label'] += [options.eulers]
input += ['eulers']
if options.a != None and \
options.b != None and \
options.c != None:
datainfo['vector']['label'] += [options.a,options.b,options.c]
input += ['frame']
if options.matrix != None:
datainfo['tensor']['label'] += [options.matrix]
input += ['matrix']
if options.quaternion != None:
datainfo['quaternion']['label'] += [options.quaternion]
input += ['quaternion']
if np.sum(input) != 1: parser.error('needs exactly one input format.')
if len(input) != 1: parser.error('needs exactly one input format...')
input = input[0]
toRadians = np.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
(label,dim,inputtype) = [(options.eulers,3,'eulers'),
([options.a,options.b,options.c],[3,3,3],'frame'),
(options.matrix,9,'matrix'),
(options.quaternion,4,'quaternion'),
][np.where(input)[0][0]] # select input label that was requested
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
pole = np.array(options.pole)
pole /= np.linalg.norm(pole)
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
# --- loop over input files ------------------------------------------------------------------------
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],buffered = False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
# ------------------------------------------ read header ------------------------------------------
column = {}
missingColumns = False
table.head_read()
for datatype,info in datainfo.items():
for label in info['label']:
key = list(set([label, '1_'+label]) & set(table.labels))
if key == []:
file['croak'].write('column %s not found...\n'%label)
missingColumns = True # break if label not found
else:
column[label] = table.labels.index(key[0]) # remember columns of requested data
# ------------------------------------------ sanity checks ----------------------------------------
if missingColumns:
errors = []
remarks = []
if not np.all(table.label_dimension(label) == dim): errors.append('input {} has wrong dimension {}.'.format(label,dim))
else: column = table.label_index(label)
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header ---------------------------------------
table.labels_append(['%i_pole_%g%g%g'%(i+1,options.pole[0],options.pole[1],options.pole[2]) for i in xrange(2)])
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append(['{}_pole_{}{}{}'.format(i+1,*options.pole) for i in xrange(2)])
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
if input == 'eulers':
o = damask.Orientation(Eulers=toRadians*\
np.array(map(float,table.data[column[options.eulers]:\
column[options.eulers]+datainfo['vector']['len']])),
)
elif input == 'matrix':
o = damask.Orientation(matrix=\
np.array([map(float,table.data[column[options.matrix]:\
column[options.matrix]+datainfo['tensor']['len']])]).reshape(np.sqrt(datainfo['tensor']['len']),
np.sqrt(datainfo['tensor']['len'])).transpose(),
)
elif input == 'frame':
o = damask.Orientation(matrix=\
np.array([map(float,table.data[column[options.a]:\
column[options.a]+datainfo['vector']['len']] + \
table.data[column[options.b]:\
column[options.b]+datainfo['vector']['len']] + \
table.data[column[options.c]:\
column[options.c]+datainfo['vector']['len']]
)]).reshape(3,3),
)
elif input == 'quaternion':
o = damask.Orientation(quaternion=\
np.array(map(float,table.data[column[options.quaternion]:\
column[options.quaternion]+datainfo['quaternion']['len']])),
)
if inputtype == 'eulers':
o = damask.Orientation(Eulers = np.array(map(float,table.data[column:column+3]))*toRadians)
elif inputtype == 'matrix':
o = damask.Orientation(matrix = np.array(map(float,table.data[column:column+9])).reshape(3,3).transpose())
elif inputtype == 'frame':
o = damask.Orientation(matrix = np.array(map(float,table.data[column[0]:column[0]+3] + \
table.data[column[1]:column[1]+3] + \
table.data[column[2]:column[2]+3])).reshape(3,3))
elif inputtype == 'quaternion':
o = damask.Orientation(quaternion = np.array(map(float,table.data[column:column+4])))
rotatedPole = o.quaternion*pole # rotate pole according to crystal orientation
(x,y) = rotatedPole[0:2]/(1.+abs(pole[2])) # stereographic projection
@ -147,10 +136,7 @@ for name in filenames:
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -19,67 +19,70 @@ Add column(s) containing eigenvalues and eigenvectors of requested tensor column
""", version = scriptID)
parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='<string LIST>',
help='heading of columns containing tensor field values')
parser.add_option('-t','--tensor',
dest = 'tensor',
action = 'extend', metavar = '<string LIST>',
help = 'heading of columns containing tensor field values')
(options,filenames) = parser.parse_args()
if options.tensor == None:
parser.error('no data column specified...')
parser.error('no data column specified.')
datainfo = { # list of requested labels per datatype
'tensor': {'len':9,
'label':[]},
}
# --- loop over input files -------------------------------------------------------------------------
datainfo['tensor']['label'] += options.tensor
if filenames == []: filenames = ['STDIN']
# ------------------------------------------ setup file handles ------------------------------------
files = []
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
#--- loop over input files -------------------------------------------------------------------------
for file in files:
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
items = {
'tensor': {'dim': 9, 'shape': [3,3], 'labels':options.tensor, 'column': []},
}
errors = []
remarks = []
for type, data in items.iteritems():
for what in data['labels']:
dim = table.label_dimension(what)
if dim != data['dim']: remarks.append('column {} is not a {}...'.format(what,type))
else:
items[type]['column'].append(table.label_index(what))
table.labels_append(['{}_eigval({})'.format(i+1,what) for i in xrange(3)]) # extend ASCII header with new labels
table.labels_append(['{}_eigvec({})'.format(i+1,what) for i in xrange(9)]) # extend ASCII header with new labels
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table = damask.ASCIItable(file['input'],file['output'],True) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
active = []
column = defaultdict(dict)
for label in datainfo['tensor']['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:
active.append(label)
column[label] = table.labels.index(key) # remember columns of requested data
# ------------------------------------------ assemble header ---------------------------------------
for label in active:
table.labels_append(['%i_eigval(%s)'%(i+1,label) for i in xrange(3)]) # extend ASCII header with new labels
table.labels_append(['%i_eigvec(%s)'%(i+1,label) for i in xrange(9)]) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for label in active: # loop over requested data
tensor = np.array(map(float,table.data[column[label]:column[label]+datainfo['tensor']['len']])).\
reshape((datainfo['tensor']['len']//3,3))
(u,v) = np.linalg.eig(tensor)
table.data_append(list(u))
table.data_append(list(v.transpose().reshape(datainfo['tensor']['len'])))
for type, data in items.iteritems():
for column in data['column']:
(u,v) = np.linalg.eig(np.array(map(float,table.data[column:column+data['dim']])).reshape(data['shape']))
table.data_append(list(u))
table.data_append(list(v.transpose().reshape(data['dim'])))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close input ASCII table (works for stdin)
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -11,12 +11,13 @@ scriptID = string.replace('$Id$','\n','\\n')
scriptName = os.path.splitext(scriptID.split()[1])[0]
def operator(stretch,strain,eigenvalues):
''' Albrecht Bertram: Elasticity and Plasticity of Large Deformations An Introduction (3rd Edition, 2012), p. 102 '''
return {
'V#ln': np.log(eigenvalues) ,
'U#ln': np.log(eigenvalues) ,
'V#Biot': ( np.ones(3,'d') - 1.0/eigenvalues ) ,
'U#Biot': ( eigenvalues - np.ones(3,'d') ) ,
'V#Green': ( np.ones(3,'d') - 1.0/eigenvalues*eigenvalues) *0.5,
'V#Green': ( np.ones(3,'d') - 1.0/eigenvalues/eigenvalues) *0.5,
'U#Green': ( eigenvalues*eigenvalues - np.ones(3,'d')) *0.5,
}[stretch+'#'+strain]
@ -30,29 +31,43 @@ Add column(s) containing given strains based on given stretches of requested def
""", version = scriptID)
parser.add_option('-u','--right', dest='right', action='store_true',
help='material strains based on right Cauchy--Green deformation, i.e., C and U')
parser.add_option('-v','--left', dest='left', action='store_true',
help='spatial strains based on left Cauchy--Green deformation, i.e., B and V')
parser.add_option('-0','--logarithmic', dest='logarithmic', action='store_true',
help='calculate logarithmic strain tensor')
parser.add_option('-1','--biot', dest='biot', action='store_true',
help='calculate biot strain tensor')
parser.add_option('-2','--green', dest='green', action='store_true',
help='calculate green strain tensor')
parser.add_option('-f','--defgrad', dest='defgrad', action='extend', metavar = '<string LIST>',
help='heading(s) of columns containing deformation tensor values [%default]')
parser.set_defaults(right = False)
parser.set_defaults(left = False)
parser.set_defaults(logarithmic = False)
parser.set_defaults(biot = False)
parser.set_defaults(green = False)
parser.set_defaults(defgrad = ['f'])
parser.add_option('-u','--right',
dest = 'right',
action = 'store_true',
help = 'material strains based on right Cauchy--Green deformation, i.e., C and U')
parser.add_option('-v','--left',
dest = 'left',
action = 'store_true',
help = 'spatial strains based on left Cauchy--Green deformation, i.e., B and V')
parser.add_option('-0','--logarithmic',
dest = 'logarithmic',
action = 'store_true',
help = 'calculate logarithmic strain tensor')
parser.add_option('-1','--biot',
dest = 'biot',
action = 'store_true',
help = 'calculate biot strain tensor')
parser.add_option('-2','--green',
dest = 'green',
action = 'store_true',
help = 'calculate green strain tensor')
parser.add_option('-f','--defgrad',
dest = 'defgrad',
action = 'extend',
metavar = '<string LIST>',
help = 'heading(s) of columns containing deformation tensor values [%default]')
parser.set_defaults(right = False,
left = False,
logarithmic = False,
biot = False,
green = False,
defgrad = ['f'],
)
(options,filenames) = parser.parse_args()
stretches = []
stretch = {}
strains = []
if options.right: stretches.append('U')
@ -61,81 +76,89 @@ if options.logarithmic: strains.append('ln')
if options.biot: strains.append('Biot')
if options.green: strains.append('Green')
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
if options.defgrad == None:
parser.error('no data column specified.')
# ------------------------------------------ loop over input files ---------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
# --- loop over input files -------------------------------------------------------------------------
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
if filenames == []: filenames = ['STDIN']
# --------------- figure out columns to process ---------------------------------------------------
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
errors = []
active = []
for i,length in enumerate(table.label_dimension(options.defgrad)):
if length == 9:
active.append(options.defgrad[i])
else:
errors.append('no deformation gradient tensor (1..9_%s) found...'%options.defgrad[i])
# ------------------------------------------ read header ------------------------------------------
if errors != []:
file['croak'].write('\n'.join(errors)+'\n')
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
items = {
'tensor': {'dim': 9, 'shape': [3,3], 'labels':options.defgrad, 'column': []},
}
errors = []
remarks = []
for type, data in items.iteritems():
for what in data['labels']:
dim = table.label_dimension(what)
if dim != data['dim']: remarks.append('column {} is not a {}...'.format(what,type))
else:
items[type]['column'].append(table.label_index(what))
for theStretch in stretches:
for theStrain in strains:
table.labels_append(['{}_{}({}){}'.format(i+1, # extend ASCII header with new labels
theStrain,
theStretch,
label if label != 'f' else '') for i in xrange(9)])
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header ---------------------------------------
# ------------------------------------------ assemble header --------------------------------------
for label in active:
for theStretch in stretches:
for theStrain in strains:
table.labels_append(['%i_%s(%s)%s'%(i+1,
theStrain,
theStretch,
label if label != 'f' else '') for i in xrange(9)]) # extend ASCII header with new labels
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.head_write()
# ------------------------------------------ process data ------------------------------------------
stretch = {}
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for column in table.label_index(active): # loop over all requested norms
F = np.array(map(float,table.data[column:column+9]),'d').reshape(3,3)
(U,S,Vh) = np.linalg.svd(F)
R = np.dot(U,Vh)
stretch['U'] = np.dot(np.linalg.inv(R),F)
stretch['V'] = np.dot(F,np.linalg.inv(R))
for column in items['tensor']['column']: # loop over all requested defgrads
F = np.array(map(float,table.data[column:column+items['tensor']['dim']]),'d').reshape(items['tensor']['shape'])
(U,S,Vh) = np.linalg.svd(F) # singular value decomposition
R = np.dot(U,Vh) # rotation of polar decomposition
stretch['U'] = np.dot(np.linalg.inv(R),F) # F = RU
stretch['V'] = np.dot(F,np.linalg.inv(R)) # F = VR
for theStretch in stretches:
for i in xrange(9):
if abs(stretch[theStretch][i%3,i//3]) < 1e-12: # kill nasty noisy data
stretch[theStretch][i%3,i//3] = 0.0
stretch[theStretch] = np.where(abs(stretch[theStretch]) < 1e-12, 0, stretch[theStretch])) # kill nasty noisy data
(D,V) = np.linalg.eig(stretch[theStretch]) # eigen decomposition (of symmetric matrix)
neg = np.where(D < 0.0) # find negative eigenvalues ...
D[neg] *= -1. # ... flip value ...
V[:,neg] *= -1. # ... and vector
for i,eigval in enumerate(D):
if eigval < 0.0: # flip negative eigenvalues
D[i] = -D[i]
V[:,i] = -V[:,i]
if np.dot(V[:,i],V[:,(i+1)%3]) != 0.0: # check each vector for orthogonality
V[:,(i+1)%3] = np.cross(V[:,(i+2)%3],V[:,i]) # correct next vector
V[:,(i+1)%3] /= np.sqrt(np.dot(V[:,(i+1)%3],V[:,(i+1)%3].conj())) # and renormalize (hyperphobic?)
if np.dot(V[:,i],V[:,(i+1)%3]) != 0.0: # check each vector for orthogonality
V[:,(i+1)%3] = np.cross(V[:,(i+2)%3],V[:,i]) # correct next vector
V[:,(i+1)%3] /= np.sqrt(np.dot(V[:,(i+1)%3],V[:,(i+1)%3].conj())) # and renormalize (hyperphobic?)
for theStrain in strains:
d = operator(theStretch,theStrain,D) # operate on eigenvalues of U or V
eps = (np.dot(V,np.dot(np.diag(d),V.T)).real).reshape(9) # build tensor back from eigenvalue/vector basis
table.data_append(list(eps))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
table.close() # close ASCII table
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -21,41 +21,39 @@ Examples:
For grain averaged values, replace all rows of particular 'texture' with a single row containing their average.
""", version = scriptID)
parser.add_option('-l','--label', dest='label', type="string", metavar='string',
help='column label for grouping rows')
parser.add_option('-l','--label',
dest = 'label',
type = 'string', metavar = 'string',
help = 'column label for grouping rows')
(options,filenames) = parser.parse_args()
if options.label == None:
parser.error('No sorting column specified.')
parser.error('no grouping column specified.')
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name,
outname = options.label+'_averaged_'+name,
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],buffered=False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
# ------------------------------------------ sanity checks ---------------------------------------
table.head_read()
if table.label_dimension(options.label) != 1:
file['croak'].write('column {0} is not of scalar dimension...\n'.format(options.label))
table.croak('column {} is not of scalar dimension.'.format(options.label))
table.close(dismiss = True) # close ASCIItable and remove empty file
continue
# ------------------------------------------ assemble info ---------------------------------------
# ------------------------------------------ assemble header -----------------------------
table.info_append(string.replace(scriptID,'\n','\\n') + \
'\t' + ' '.join(sys.argv[1:]))
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.head_write()
# ------------------------------------------ process data --------------------------------
@ -65,7 +63,7 @@ for name in filenames:
table.data = table.data[np.lexsort([table.data[:,table.label_index(options.label)]])]
values,index = np.unique(table.data[:,table.label_index(options.label)], return_index=True)
values,index = np.unique(table.data[:,table.label_index(options.label)], return_index = True)
index = np.append(index,rows)
avgTable = np.empty((len(values), cols))
@ -78,8 +76,4 @@ for name in filenames:
# ------------------------------------------ output result -------------------------------
table.data_writeArray()
table.output_flush() # just in case of buffered ASCII table
table.close() # close ASCII table
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',options.label+'_averaged_'+file['name']) # overwrite old one with tmp new
table.close() # close ASCII table

View File

@ -1,7 +1,7 @@
#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,re,sys,string,fnmatch,numpy as np
import os,re,sys,string,fnmatch,math,random,numpy as np
from optparse import OptionParser
import damask
@ -21,32 +21,39 @@ All rows where label 'foo' equals 'bar' -- " #foo# == \"bar\" "
""", version = scriptID)
parser.add_option('-w','--white', dest='whitelist', action='extend', metavar='<string LIST>',
help='white list of column labels (a,b,c,...)')
parser.add_option('-b','--black', dest='blacklist', action='extend', metavar='<string LIST>',
help='black list of column labels (a,b,c,...)')
parser.add_option('-c','--condition', dest='condition', metavar='string',
help='condition to filter rows')
parser.set_defaults(condition = '')
parser.add_option('-w','--white',
dest = 'whitelist',
action = 'extend', metavar = '<string LIST>',
help = 'whitelist of column labels (a,b,c,...)')
parser.add_option('-b','--black',
dest = 'blacklist',
action = 'extend', metavar='<string LIST>',
help = 'blacklist of column labels (a,b,c,...)')
parser.add_option('-c','--condition',
dest = 'condition', metavar='string',
help = 'condition to filter rows')
parser.set_defaults(condition = '',
)
(options,filenames) = parser.parse_args()
if filenames == []:
filenames = ['STDIN']
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = ['STDIN']
#--- loop over input files -------------------------------------------------------------------------
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
# ------------------------------------------ assemble info ---------------------------------------
table.head_read()
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) # read ASCII header info
# ------------------------------------------ process data ---------------------------------------
specials = { \
'_row_': 0,
@ -55,18 +62,21 @@ for name in filenames:
positions = []
for position,label in enumerate(table.labels):
if (options.whitelist == None or any([fnmatch.fnmatch(label,needle) for needle in options.whitelist])) \
and (options.blacklist == None or not any([fnmatch.fnmatch(label,needle) for needle in options.blacklist])): # a label to keep?
if (options.whitelist == None or any([ position in table.label_indexrange(needle) \
or fnmatch.fnmatch(label,needle) for needle in options.whitelist])) \
and (options.blacklist == None or not any([ position in table.label_indexrange(needle) \
or fnmatch.fnmatch(label,needle) for needle in options.blacklist])): # a label to keep?
labels.append(label) # remember name...
positions.append(position) # ...and position
if options.whitelist != None and options.blacklist == None: # check whether reordering is possible
if len(labels) > 0 and options.whitelist != None and options.blacklist == None: # check whether reordering is possible
position = np.zeros(len(labels))
for i,label in enumerate(labels): # check each selected label
match = [fnmatch.fnmatch(label,needle) for needle in options.whitelist] # which whitelist items do match it
match = [ positions[i] in table.label_indexrange(needle) \
or fnmatch.fnmatch(label,needle) for needle in options.whitelist] # which whitelist items do match it
position[i] = match.index(True) if np.sum(match) == 1 else -1 # unique match --> store which
sorted = np.argsort(position)
sorted = np.lexsort((labels,position))
order = range(len(labels)) if sorted[0] < 0 else sorted # skip reordering if non-unique, i.e. first sorted is "-1"
else:
order = range(len(labels)) # maintain original order of labels
@ -90,10 +100,13 @@ for name in filenames:
evaluator = "'" + condition + "'.format(" + ','.join(interpolator) + ")"
# ------------------------------------------ assemble header ---------------------------------------
table.labels = np.array(labels)[order] # update with new label set
table.labels_clear()
table.labels_append(np.array(labels)[order]) # update with new label set
table.head_write()
# ------------------------------------------ process data ------------------------------------------
# ------------------------------------------ process and output data ------------------------------------------
positions = np.array(positions)[order]
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
@ -102,10 +115,8 @@ for name in filenames:
table.data = [table.data[position] for position in positions] # retain filtered columns
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ finalize output -----------------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close input ASCII table (works for stdin)
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -19,36 +19,66 @@ Generate PNG image from data in given column (or 2D data of overall table).
""", version = scriptID)
parser.add_option('-l','--label', dest='label', type='string',
help='column containing data [all])')
parser.add_option('-r','--range', dest='range', type='float', nargs=2,
help='data range (min max) [auto]')
parser.add_option('--gap', '--transparent', dest='gap', type='float',
help='value to treat as transparent [%default]')
parser.add_option('-d','--dimension', dest='dimension', type='int', nargs=2,
help='data dimension (width height) [native]')
parser.add_option('--abs', dest='abs', action='store_true',
help='magnitude of values')
parser.add_option('--log', dest='log', action='store_true',
help='log10 of values')
parser.add_option('--fliplr', dest='flipLR', action='store_true',
help='flip around vertical axis')
parser.add_option('--flipud', dest='flipUD', action='store_true',
help='flip around horizontal axis')
parser.add_option('--color', dest='color', type='string',
help='color scheme')
parser.add_option('--invert', dest='invert', action='store_true',
help='invert color scheme')
parser.add_option('--crop', dest='crop', type='int', nargs=4, metavar='LEFT RIGHT TOP BOTTOM',
help='pixels cropped on left, right, top, bottom')
parser.add_option('--show', dest='show', action='store_true',
help='show resulting image')
parser.add_option('-N','--pixelsize', dest='pixelsize', type='int',
help='pixel per data point')
parser.add_option('-x','--pixelsizex', dest='pixelsizex', type='int',
help='pixel per data point along x')
parser.add_option('-y','--pixelsizey', dest='pixelsizey', type='int',
help='pixel per data point along y')
parser.add_option('-l','--label',
dest = 'label',
type = 'string', metavar = 'string',
help = 'column containing data [all]')
parser.add_option('-r','--range',
dest = 'range',
type = 'float', nargs = 2, metavar = 'float float',
help = 'data range (min max) [auto]')
parser.add_option('--gap', '--transparent',
dest = 'gap',
type = 'float', metavar = 'float',
help = 'value to treat as transparent [%default]')
parser.add_option('-d','--dimension',
dest = 'dimension',
type = 'int', nargs = 2, metavar = 'int int',
help = 'data dimension (width height) [native]')
parser.add_option('--color',
dest = 'color',
type = 'string', metavar = 'string',
help = 'color scheme [%default]')
parser.add_option('--invert',
dest = 'invert',
action = 'store_true',
help = 'invert color scheme')
parser.add_option('--abs',
dest = 'abs',
action = 'store_true',
help = 'magnitude of values')
parser.add_option('--log',
dest = 'log',
action = 'store_true',
help = 'log10 of values')
parser.add_option('--fliplr',
dest = 'flipLR',
action = 'store_true',
help = 'flip around vertical axis')
parser.add_option('--flipud',
dest = 'flipUD',
action = 'store_true',
help = 'flip around horizontal axis')
parser.add_option('--crop',
dest = 'crop',
type = 'int', nargs = 4, metavar = 'int int int int',
help = 'pixels cropped on left, right, top, bottom')
parser.add_option('-N','--pixelsize',
dest = 'pixelsize',
type = 'int', metavar = 'int',
help = 'pixel per data point')
parser.add_option('-x','--pixelsizex',
dest = 'pixelsizex',
type = 'int', metavar = 'int',
help = 'pixel per data point along x')
parser.add_option('-y','--pixelsizey',
dest = 'pixelsizey',
type = 'int', metavar = 'int',
help = 'pixel per data point along y')
parser.add_option('--show',
dest = 'show',
action = 'store_true',
help = 'show resulting image')
parser.set_defaults(label = None,
range = [0.0,0.0],
@ -73,38 +103,32 @@ if options.pixelsize > 1: (options.pixelsizex,options.pixelsizey) = [options.pix
# --- color palette ---------------------------------------------------------------------------------
theMap = damask.Colormap(predefined=options.color)
theMap = damask.Colormap(predefined = options.color)
if options.invert: theMap = theMap.invert()
theColors = np.uint8(np.array(theMap.export(format='list',steps=256))*255)
theColors = np.uint8(np.array(theMap.export(format = 'list',steps = 256))*255)
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name,
'input':open(name),
'output':open(os.path.splitext(name)[0]+\
('_%s'%(options.label) if options.label != None else '')+\
'.png','w'),
'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name,
outname = None,
buffered = False,
labeled = options.label != None,
readonly = True)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],
buffered = False, # make unbuffered ASCII_table
labels = options.label != None) # no labels when taking 2D dataset
table.head_read() # read ASCII header info
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ process data ------------------------------------------
missing_labels = table.data_readArray(options.label)
if len(missing_labels) > 0:
file['croak'].write('column %s not found...\n'%options.label)
table.croak('column {} not found.'.format(options.label))
table.close(dismiss = True) # close ASCIItable and remove empty file
continue
@ -115,11 +139,11 @@ for name in filenames:
if options.flipLR: table.data = np.fliplr(table.data)
if options.flipUD: table.data = np.flipud(table.data)
mask = np.where(table.data != options.gap,True,False) if options.gap != None else np.ones_like(table.data,dtype='bool')
mask = np.where(table.data != options.gap,True,False) if options.gap != None else np.ones_like(table.data,dtype = 'bool')
if np.all(np.array(options.range) == 0.0):
options.range = [table.data[mask].min(),
table.data[mask].max()]
file['croak'].write('data range: {0} {1}\n'.format(*options.range))
table.croak('data range: {0} {1}'.format(*options.range))
delta = max(options.range) - min(options.range)
avg = 0.5*(max(options.range) + min(options.range))
@ -139,9 +163,9 @@ for name in filenames:
repeat(options.pixelsizey,axis = 0)
(height,width) = table.data.shape
file['croak'].write('image dimension: {0} x {1}\n'.format(width,height))
table.croak('image dimension: {0} x {1}'.format(width,height))
im = Image.fromarray(np.dstack((theColors[np.array(255*table.data,dtype=np.uint8)],
im = Image.fromarray(np.dstack((theColors[np.array(255*table.data,dtype = np.uint8)],
255*mask.astype(np.uint8))), 'RGBA').\
crop(( options.crop[0],
options.crop[2],
@ -149,8 +173,12 @@ for name in filenames:
height-options.crop[3]))
# ------------------------------------------ output result -----------------------------------------
im.save(file['output'],format = "PNG")
if options.show: im.show()
table.input_close() # close input ASCII table
table.output_close() # close output
im.save(sys.stdout if name == 'STDIN' else
os.path.splitext(name)[0]+ \
('' if options.label == None else '_'+options.label)+ \
'.png',
format = "PNG")
table.close() # close ASCII table
if options.show: im.show()

View File

@ -19,38 +19,61 @@ Generate PNG image from scalar data on grid deformed by (periodic) deformation g
""", version = scriptID)
parser.add_option('-l','--label', dest='label', type='string', metavar='string',
help='column containing data)')
parser.add_option('-r','--range', dest='range', type='float', nargs=2, metavar='float float',
help='data range (min max) [auto]')
parser.add_option('--color', dest='color', type='string', metavar='string',
help='color scheme')
parser.add_option('--invert', dest='invert', action='store_true',
help='invert color scheme')
parser.add_option('--abs', dest='abs', action='store_true',
help='magnitude of values')
parser.add_option('--log', dest='log', action='store_true',
help='log10 of values')
parser.add_option('-d','--dimension', dest='dimension', type='int', nargs=3, metavar=' '.join(['int']*3),
help='data dimension (x/y/z)')
parser.add_option('-s','--size', dest='size', type='float', nargs=3, metavar=' '.join(['float']*3),
help='box size (x/y/z)')
parser.add_option('-f','--defgrad', dest='defgrad', metavar='string',
help='column label of deformation gradient [%default]')
parser.add_option('--scaling', dest='scaling', type='float', nargs=3, metavar = ' '.join(['float']*3),
help='x/y/z scaling of displacment fluctuation [%default]')
parser.add_option('-z','--layer', dest='z', type='int', metavar='int',
help='index of z plane to plot [%default]')
parser.add_option('--fliplr', dest='flipLR', action='store_true',
help='flip around vertical axis')
parser.add_option('--flipud', dest='flipUD', action='store_true',
help='flip around horizontal axis')
parser.add_option('--crop', dest='crop', type='int', nargs=4, metavar=' '.join(['int']*3),
help='pixels cropped on left, right, top, bottom')
parser.add_option('--show', dest='show', action='store_true',
help='show resulting image')
parser.add_option('-N','--pixelsize', dest='pixelsize', type='int', metavar='int',
help='pixels per cell edge')
parser.add_option('-l','--label',
dest = 'label',
type = 'string', metavar = 'string',
help = 'column containing data [all]')
parser.add_option('-r','--range',
dest = 'range',
type = 'float', nargs = 2, metavar = 'float float',
help = 'data range (min max) [auto]')
parser.add_option('--gap', '--transparent',
dest = 'gap',
type = 'float', metavar = 'float',
help = 'value to treat as transparent [%default]')
parser.add_option('-d','--dimension',
dest = 'dimension',
type = 'int', nargs = 3, metavar = ' '.join(['int']*3),
help = 'data dimension (x/y/z)')
parser.add_option('-s','--size',
dest = 'size',
type = 'float', nargs = 3, metavar = ' '.join(['float']*3),
help = 'box size (x/y/z)')
parser.add_option('-f','--defgrad',
dest = 'defgrad', metavar = 'string',
help = 'column label of deformation gradient [%default]')
parser.add_option('--scaling',
dest = 'scaling',
type = 'float', nargs = 3, metavar = ' '.join(['float']*3),
help = 'x/y/z scaling of displacement fluctuation [%default]')
parser.add_option('-z','--layer',
dest = 'z',
type = 'int', metavar = 'int',
help = 'index of z plane to plot [%default]')
parser.add_option('--color',
dest = 'color',
type = 'string', metavar = 'string',
help = 'color scheme')
parser.add_option('--invert',
dest = 'invert',
action = 'store_true',
help = 'invert color scheme')
parser.add_option('--abs',
dest = 'abs',
action = 'store_true',
help = 'magnitude of values')
parser.add_option('--log',
dest = 'log',
action = 'store_true',
help = 'log10 of values')
parser.add_option('-N','--pixelsize',
dest = 'pixelsize',
type = 'int', metavar = 'int',
help = 'pixels per cell edge')
parser.add_option('--show',
dest = 'show',
action = 'store_true',
help = 'show resulting image')
parser.set_defaults(label = None,
range = [0.0,0.0],
@ -61,11 +84,8 @@ parser.set_defaults(label = None,
log = False,
defgrad = 'f',
scaling = [1.,1.,1.],
flipLR = False,
flipUD = False,
color = "gray",
invert = False,
crop = [0,0,0,0],
pixelsize = 1,
show = False,
)
@ -86,35 +106,28 @@ theColors = np.uint8(np.array(theMap.export(format='list',steps=256))*255)
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name,
'input':open(name),
'output':open(os.path.splitext(name)[0]+ \
('' if options.label == None else '_'+options.label)+ \
'.png','w'),
'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name,
outname = None,
buffered = False,
labeled = options.label != None,
readonly = True)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],
buffered = False, # make unbuffered ASCII_table
labels = options.label != None) # no labels when taking 2D dataset
table.head_read() # read ASCII header info
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# --------------- figure out columns to process ---------------------------------------------------
errors = []
if table.label_dimension(options.label) != 1:
errors.append('no scalar data (%s) found...'%options.label)
errors.append('no scalar data ({}) found.'.format(options.label))
if table.label_dimension(options.defgrad) != 9:
errors.append('no deformation gradient tensor (1..9_%s) found...'%options.defgrad)
errors.append('no deformation gradient tensor (1..9_{}) found.'.format(options.defgrad))
if errors != []:
file['croak'].write('\n'.join(errors)+'\n')
@ -123,8 +136,8 @@ for name in filenames:
table.data_readArray([options.label,options.defgrad])
F = table.data[:,1:10].transpose().reshape([3,3]+list(options.dimension),order='F')
data = table.data[:,0 ].transpose().reshape( list(options.dimension),order='F')
F = table.data[:,1:10].transpose().reshape([3,3]+list(options.dimension),order='F')
if options.abs: data = np.abs(data)
if options.log: data = np.log10(data)
@ -165,24 +178,17 @@ for name in filenames:
nodes[0,x ,y+1,options.z],
nodes[1,x ,y+1,options.z],
],
fill = tuple(theColors[int(255*data[x,y,options.z])]),
fill = tuple(theColors[int(255*data[x,y,options.z])],
0 if data[x,y,options.z] == options.gap else 255),
outline = None)
# if options.flipLR: table.data = np.fliplr(table.data)
# if options.flipUD: table.data = np.flipud(table.data)
# (height,width,bands) = table.data.shape
# im = Image.fromarray(table.data.astype('uint8'), 'RGB').\
# crop(( options.crop[0],
# options.crop[2],
# width -options.crop[1],
# height-options.crop[3]))
# ------------------------------------------ output result -----------------------------------------
im.save(file['output'],format = "PNG")
if options.show: im.show()
im.save(sys.stdout if name == 'STDIN' else
os.path.splitext(name)[0]+ \
('' if options.label == None else '_'+options.label)+ \
'.png',
format = "PNG")
table.close() # close ASCII table file handles
table.close() # close ASCII table
if options.show: im.show()

View File

@ -19,24 +19,42 @@ Generate PNG image from data in given column vector containing RGB tuples.
""", version = scriptID)
parser.add_option('-l','--label', dest='label', type='string',
help='column containing RGB triplet')
parser.add_option('-d','--dimension', dest='dimension', type='int', nargs=2,
help='data dimension (width height)')
parser.add_option('--fliplr', dest='flipLR', action='store_true',
help='flip around vertical axis')
parser.add_option('--flipud', dest='flipUD', action='store_true',
help='flip around horizontal axis')
parser.add_option('--crop', dest='crop', type='int', nargs=4, metavar=' '.join(['int']*4),
help='pixels cropped on left, right, top, bottom')
parser.add_option('--show', dest='show', action='store_true',
help='show resulting image')
parser.add_option('-N','--pixelsize', dest='pixelsize', type='int',
help='pixels per data point')
parser.add_option('-x','--pixelsizex', dest='pixelsizex', type='int',
help='pixels per data point along x')
parser.add_option('-y','--pixelsizey', dest='pixelsizey', type='int',
help='pixels per data point along y')
parser.add_option('-l','--label',
dest = 'label',
type = 'string', metavar = 'string',
help = 'column containing RGB triplet')
parser.add_option('-d','--dimension',
dest = 'dimension',
type = 'int', nargs = 2, metavar = 'int int',
help = 'data dimension (width height)')
parser.add_option('--fliplr',
dest = 'flipLR',
action = 'store_true',
help = 'flip around vertical axis')
parser.add_option('--flipud',
dest = 'flipUD',
action = 'store_true',
help = 'flip around horizontal axis')
parser.add_option('--crop',
dest = 'crop',
type = 'int', nargs = 4, metavar = ' '.join(['int']*4),
help = 'pixels cropped on left, right, top, bottom')
parser.add_option('-N','--pixelsize',
dest = 'pixelsize',
type = 'int', metavar = 'int',
help = 'pixels per data point')
parser.add_option('-x','--pixelsizex',
dest = 'pixelsizex',
type = 'int', metavar = 'int',
help = 'pixels per data point along x')
parser.add_option('-y','--pixelsizey',
dest = 'pixelsizey',
type = 'int', metavar = 'int',
help = 'pixels per data point along y')
parser.add_option('--show',
dest = 'show',
action = 'store_true',
help = 'show resulting image')
parser.set_defaults(label = None,
dimension = [],
@ -55,27 +73,21 @@ if options.dimension == []: parser.error('dimension of data array missing')
if options.pixelsize > 1: (options.pixelsizex,options.pixelsizey) = [options.pixelsize]*2
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name,
'input':open(name),
'output':open(os.path.splitext(name)[0]+ \
('' if options.label == None else '_'+options.label)+ \
'.png','w'),
'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name,
outname = None,
buffered = False,
labeled = options.label != None,
readonly = True)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],
buffered = False, # make unbuffered ASCII_table
labels = True)
table.head_read() # read ASCII header info
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ process data ------------------------------------------
@ -83,13 +95,13 @@ for name in filenames:
missing_labels = table.data_readArray(options.label)
if len(missing_labels) > 0:
errors.append('column%s %s not found'%('s' if len(missing_labels) > 1 else '',
', '.join(missing_labels)))
errors.append('column{} {} not found'.format('s' if len(missing_labels) > 1 else '',
', '.join(missing_labels)))
if table.label_dimension(options.label) != 3:
errors.append('column %s has wrong dimension'%options.label)
errors.append('column {} has wrong dimension'.format(options.label))
if errors != []:
file['croak'].write('\n'.join(errors))
table.croak(errors)
table.close(dismiss = True) # close ASCII table file handles and delete output file
continue
@ -98,13 +110,13 @@ for name in filenames:
if options.flipLR: table.data = np.fliplr(table.data)
if options.flipUD: table.data = np.flipud(table.data)
table.data = table.data.\
repeat(options.pixelsizex,axis=1).\
table.data = table.data.repeat(options.pixelsizex,axis=1).\
repeat(options.pixelsizey,axis=0)
table.data *= 1. if np.any(table.data > 1.0) else 255.0 # ensure 8 bit data range
(height,width,bands) = table.data.shape
table.croak('image dimension: {0} x {1}'.format(width,height))
im = Image.fromarray(table.data.astype('uint8'), 'RGB').\
crop(( options.crop[0],
@ -114,7 +126,11 @@ for name in filenames:
# ------------------------------------------ output result -----------------------------------------
im.save(file['output'],format = "PNG")
if options.show: im.show()
im.save(sys.stdout if name == 'STDIN' else
os.path.splitext(name)[0]+ \
('' if options.label == None else '_'+options.label)+ \
'.png',
format = "PNG")
table.close() # close ASCII table file handles
table.close() # close ASCII table
if options.show: im.show()

View File

@ -18,64 +18,80 @@ Permute all values in given column(s).
""", version = scriptID)
parser.add_option('-l','--label', dest='label', action='extend', metavar='<string LIST>',
help='heading(s) of column to permute')
parser.add_option('-r', '--rnd', dest='randomSeed', type='int', metavar='int',
help='seed of random number generator [%default]')
parser.set_defaults(randomSeed = None)
parser.add_option('-l','--label',
dest = 'label',
action = 'extend', metavar = '<string LIST>',
help ='column(s) to permute')
parser.add_option('-r', '--rnd',
dest = 'randomSeed',
type = 'int', metavar = 'int',
help = 'seed of random number generator [%default]')
parser.set_defaults(label = [],
randomSeed = None,
)
(options,filenames) = parser.parse_args()
if options.label == None:
parser.error('no data column specified...')
if len(options.label) == 0:
parser.error('no labels specified.')
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = ['STDIN']
for name in filenames:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
randomSeed = int(os.urandom(4).encode('hex'), 16) if options.randomSeed == None else options.randomSeed # radom seed per file for second phase
np.random.seed(randomSeed)
table = damask.ASCIItable(file['input'],file['output'],buffered=False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.info_append('random seed %i'%randomSeed)
# ------------------------------------------ read header ------------------------------------------
# --------------- figure out columns to process ---------------------------------------------------
active = []
column = {}
table.head_read()
for label in options.label:
if label in table.labels:
active.append(label)
column[label] = table.labels.index(label) # remember columns of requested data
# ------------------------------------------ process labels ---------------------------------------
errors = []
remarks = []
columns = []
dims = []
indices = table.label_index (options.label)
dimensions = table.label_dimension(options.label)
for i,index in enumerate(indices):
if index == -1: remarks.append('label {} not present...'.format(options.label[i]))
else:
file['croak'].write('column %s not found...\n'%label)
columns.append(index)
dims.append(dimensions[i])
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header ---------------------------------------
randomSeed = int(os.urandom(4).encode('hex'), 16) if options.randomSeed == None else options.randomSeed # random seed per file
np.random.seed(randomSeed)
table.info_append([scriptID + '\t' + ' '.join(sys.argv[1:]),
'random seed {}'.format(randomSeed),
])
table.head_write()
# ------------------------------------------ process data ------------------------------------------
permutation = {}
table.data_readArray(active)
for i,label in enumerate(active):
unique = list(set(table.data[:,i]))
permutated = np.random.permutation(unique)
permutation[label] = dict(zip(unique,permutated))
table.data_rewind()
table.head_read() # read ASCII header info again to get the completed data
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for label in active: # loop over all requested stiffnesses
table.data[column[label]] = permutation[label][float(table.data[column[label]])] # apply permutation
outputAlive = table.data_write() # output processed line
table.data_readArray() # read all data at once
for col,dim in zip(columns,dims):
table.data[:,col:col+dim] = np.random.permutation(table.data[:,col:col+dim])
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
table.input_close() # close input ASCII table
table.output_close() # close output ASCII table
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.data_writeArray()
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -17,71 +17,72 @@ Rename scalar, vectorial, and/or tensorial data header labels.
""", version = scriptID)
parser.add_option('-l','--label', dest='label', action='extend', metavar='<string LIST>',
help='column(s) to rename')
parser.add_option('-s','--substitute', dest='substitute', action='extend', metavar='<string LIST>',
help='new column label')
parser.add_option('-l','--label',
dest = 'label',
action = 'extend', metavar='<string LIST>',
help = 'column(s) to rename')
parser.add_option('-s','--substitute',
dest = 'substitute',
action = 'extend', metavar='<string LIST>',
help = 'new column label(s)')
parser.set_defaults(label = [])
parser.set_defaults(substitute = [])
parser.set_defaults(label = [],
substitute = [],
)
(options,filenames) = parser.parse_args()
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# ------------------------------------------ read header ------------------------------------------
table = damask.ASCIItable(file['input'],file['output'],buffered=False) # make unbuffered ASCII_table
table.head_read()
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) # read ASCII header info
# ------------------------------------------ process labels ---------------------------------------
errors = []
errors = []
remarks = []
if options.label == []:
errors.append('no labels specified...')
if len(options.label) == 0:
errors.append('no labels specified.')
elif len(options.label) != len(options.substitute):
errors.append('mismatch between number of labels ({0}) and substitutes ({1})...'.format(len(options.label),
len(options.substitute)))
else: # tag individual candidates
errors.append('mismatch between number of labels ({}) and substitutes ({}).'.format(len(options.label),
len(options.substitute)))
else:
indices = table.label_index (options.label)
dimensions = table.label_dimension(options.label)
for i,index in enumerate(indices):
if index == -1:
errors.append('label %s not present...\n'%options.label[i])
if index == -1: remarks.append('label {} not present...'.format(options.label[i]))
else:
for j in xrange(dimensions[i]):
table.labels[index+j] = table.labels[index+j].replace(options.label[i],options.substitute[i])
if errors != []:
file['croak'].write('\n'.join(errors)+'\n')
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.head_write()
# ------------------------------------------ process data ---------------------------------------
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -19,64 +19,77 @@ Rotate vector and/or tensor column data by given angle around given axis.
""", version = scriptID)
parser.add_option('-v','--vector', dest = 'vector', action = 'extend', metavar = '<string LIST>',
help = 'column heading of vector to rotate')
parser.add_option('-t','--tensor', dest = 'tensor', action = 'extend', metavar = '<string LIST>',
help = 'column heading of tensor to rotate')
parser.add_option('-r', '--rotation',dest = 'rotation', type = 'float', nargs = 4, metavar = ' '.join(['float']*4),
parser.add_option('-v','--vector',
dest = 'vector',
action = 'extend', metavar = '<string LIST>',
help = 'column heading of vector(s) to rotate')
parser.add_option('-t','--tensor',
dest = 'tensor',
action = 'extend', metavar = '<string LIST>',
help = 'column heading of tensor(s) to rotate')
parser.add_option('-r', '--rotation',
dest = 'rotation',
type = 'float', nargs = 4, metavar = ' '.join(['float']*4),
help = 'angle and axis to rotate data [%default]')
parser.add_option('-d', '--degrees', dest = 'degrees', action = 'store_true',
parser.add_option('-d', '--degrees',
dest = 'degrees',
action = 'store_true',
help = 'angles are given in degrees [%default]')
parser.set_defaults(rotation = (0.,1.,1.,1.)) # no rotation about 1,1,1
parser.set_defaults(degrees = False)
parser.set_defaults(rotation = (0.,1.,1.,1.), # no rotation about 1,1,1
degrees = False,
)
(options,filenames) = parser.parse_args()
datainfo = { # list of requested labels per datatype
'vector': {'len':3,
'label':[]},
'tensor': {'len':9,
'label':[]},
}
if options.vector != None: datainfo['vector']['label'] += options.vector
if options.tensor != None: datainfo['tensor']['label'] += options.tensor
if options.vector == None and options.tensor == None:
parser.error('no data column specified.')
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
r = damask.Quaternion().fromAngleAxis(toRadians*options.rotation[0],options.rotation[1:])
R = r.asMatrix()
q = damask.Quaternion().fromAngleAxis(toRadians*options.rotation[0],options.rotation[1:])
R = q.asMatrix()
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],buffered=False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
# ------------------------------------------ read header ------------------------------------------
# --------------- figure out columns to process ---------------------------------------------------
active = defaultdict(list)
column = defaultdict(dict)
table.head_read()
for datatype,info in datainfo.items():
for label in info['label']:
key = '1_'+label
if key in table.labels:
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
# ------------------------------------------ sanity checks ----------------------------------------
items = {
'tensor': {'dim': 9, 'shape': [3,3], 'labels':options.tensor, 'active':[], 'column': []},
'vector': {'dim': 3, 'shape': [3], 'labels':options.vector, 'active':[], 'column': []},
}
errors = []
remarks = []
column = {}
for type, data in items.iteritems():
for what in data['labels']:
dim = table.label_dimension(what)
if dim != data['dim']: remarks.append('column {} is not a {}.'.format(what,type))
else:
file['croak'].write('column %s not found...\n'%label)
items[type]['active'].append(what)
items[type]['column'].append(table.label_index(what))
# ------------------------------------------ assemble header ---------------------------------------
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.head_write()
# ------------------------------------------ process data ------------------------------------------
@ -85,28 +98,21 @@ for name in filenames:
datatype = 'vector'
for label in active[datatype] if datatype in active else []: # loop over all requested labels
table.data[column[datatype][label]:column[datatype][label]+datainfo[datatype]['len']] = \
r * np.array(map(float,
table.data[column[datatype][label]:\
column[datatype][label]+datainfo[datatype]['len']]))
for column in items[datatype]['column']: # loop over all requested labels
table.data[column:column+items[datatype]['dim']] = \
r * np.array(map(float,table.data[column:column+items[datatype]['dim']]))
datatype = 'tensor'
for label in active[datatype] if datatype in active else []: # loop over all requested labels
A = np.array(map(float,table.data[column[datatype][label]:\
column[datatype][label]+datainfo[datatype]['len']])).\
reshape(np.sqrt(datainfo[datatype]['len']),
np.sqrt(datainfo[datatype]['len']))
table.data[column[datatype][label]:\
column[datatype][label]+datainfo[datatype]['len']] = \
np.dot(R,np.dot(A,R.transpose())).reshape(datainfo[datatype]['len'])
for column in items[datatype]['column']: # loop over all requested labels
table.data[column:column+items[datatype]['dim']] = \
np.dot(R,np.dot(np.array(map(float,table.data[column:column+items[datatype]['dim']])).\
reshape(items[datatype]['shape']),R.transpose()
).reshape(items[datatype]['dim'])
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush()
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -15,94 +15,75 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Uniformly scale values in scalar/special, vector, or tensor columns by given factor.
Uniformly scale column values by given factor.
""", version = scriptID)
parser.add_option('-s','--special', dest='special', action='extend', metavar='<string LIST>',
help='heading of columns containing field values of special dimension')
parser.add_option('-d','--dimension',dest='N', type='int', metavar='int',
help='dimension of special field values [%default]')
parser.add_option('-v','--vector', dest='vector', action='extend', metavar='<string LIST>',
help='column heading of vector to scale')
parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='<string LIST>',
help='column heading of tensor to scale')
parser.add_option('-f','--factor', dest='factor', action='extend', metavar='<float LIST>',
help='list of scalar/special, vector, and tensor scaling factors (in this order!)')
parser.add_option('-l','--label',
dest = 'label',
action = 'extend', metavar = '<string LIST>',
help ='column(s) to scale')
parser.add_option('-f','--factor',
dest = 'factor',
action = 'extend', metavar='<float LIST>',
help = 'factor(s) per column')
parser.set_defaults(special = [])
parser.set_defaults(vector = [])
parser.set_defaults(tensor = [])
parser.set_defaults(factor = [])
parser.set_defaults(N = 1)
parser.set_defaults(label = [],
)
(options,filenames) = parser.parse_args()
options.factor = np.array(options.factor,'d')
datainfo = { # list of requested labels per datatype
'special': {'len':options.N,
'label':[]},
'vector': {'len':3,
'label':[]},
'tensor': {'len':9,
'label':[]},
}
length = 0
if options.special != []: datainfo['special']['label'] += options.special; length += len(options.special)
if options.vector != []: datainfo['vector']['label'] += options.vector; length += len(options.vector)
if options.tensor != []: datainfo['tensor']['label'] += options.tensor; length += len(options.tensor)
if len(options.factor) != length:
parser.error('length of scaling vector does not match column count...')
if len(options.label) != len(options.factor):
parser.error('number of column labels and factors do not match.')
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],buffered=False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
# ------------------------------------------ read header ------------------------------------------
# --------------- figure out columns to process ---------------------------------------------------
active = defaultdict(list)
column = defaultdict(dict)
table.head_read()
for datatype,info in datainfo.items():
for label in info['label']:
key = '1_'+label if info['len'] > 1 else label
if key in table.labels:
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
else:
file['croak'].write('column %s not found...\n'%label)
errors = []
remarks = []
columns = []
dims = []
factors = []
for what,factor in zip(options.label,options.factor):
col = table.label_index(what)
if col < 0: remarks.append('column {} not found...'.format(what,type))
else:
columns.append(col)
factors.append(float(factor))
dims.append(table.label_dimension(what))
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
i = 0
for datatype,labels in sorted(active.items(),key=lambda x:datainfo[x[0]]['len']): # loop over special,vector,tensor
for label in labels: # loop over all requested labels
for j in xrange(datainfo[datatype]['len']): # loop over entity elements
table.data[column[datatype][label]+j] = float(table.data[column[datatype][label]+j]) * options.factor[i]
i += 1
for col,dim,factor in zip(columns,dims,factors): # loop over items
table.data[col:col+dim] = factor * np.array(table.data[col:col+dim],'d')
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -7,7 +7,7 @@ from collections import defaultdict
from optparse import OptionParser
import damask
scriptID = string.replace('$Id$','\n','\\n')
scriptID = '$Id$'
scriptName = os.path.splitext(scriptID.split()[1])[0]
# --------------------------------------------------------------------
@ -15,94 +15,75 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Shift values of scalar/special, vector, or tensor columns by given offset.
Uniformly shift column values by given offset.
""", version = scriptID)
parser.add_option('-s','--special', dest='special', action='extend', metavar='<string LIST>',
help='heading of columns containing field values of special dimension')
parser.add_option('-d','--dimension',dest='N', type='int', metavar='int',
help='dimension of special field values [%default]')
parser.add_option('-v','--vector', dest='vector', action='extend', metavar='<string LIST>',
help='column heading to shift by vector')
parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='<string LIST>',
help='column heading to shift by tensor')
parser.add_option('-o','--offset', dest='delta', action='extend', metavar='<float LIST>',
help='list of scalar/special, vector, and tensor shifts (in this order!)')
parser.add_option('-l','--label',
dest = 'label',
action = 'extend', metavar = '<string LIST>',
help ='column(s) to shift')
parser.add_option('-o','--offset',
dest = 'offset',
action = 'extend', metavar='<float LIST>',
help = 'offset(s) per column')
parser.set_defaults(special = [])
parser.set_defaults(vector = [])
parser.set_defaults(tensor = [])
parser.set_defaults(delta = [])
parser.set_defaults(N = 1)
parser.set_defaults(label = [],
)
(options,filenames) = parser.parse_args()
options.delta = np.array(options.delta,'d')
datainfo = { # list of requested labels per datatype
'special': {'len':options.N,
'label':[]},
'vector': {'len':3,
'label':[]},
'tensor': {'len':9,
'label':[]},
}
length = 0
if options.special != []: datainfo['special']['label'] += options.special; length += len(options.special)
if options.vector != []: datainfo['vector']['label'] += options.vector; length += len(options.vector)
if options.tensor != []: datainfo['tensor']['label'] += options.tensor; length += len(options.tensor)
if len(options.delta) != length:
parser.error('length of offset vector does not match column types...')
if len(options.label) != len(options.delta):
parser.error('number of column labels and offsets do not match.')
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],buffered=False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
# ------------------------------------------ read header ------------------------------------------
# --------------- figure out columns to process ---------------------------------------------------
active = defaultdict(list)
column = defaultdict(dict)
table.head_read()
for datatype,info in datainfo.items():
for label in info['label']:
key = '1_'+label if info['len'] > 1 else label # non-special labels have to start with '1_'
if key in table.labels:
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
else:
file['croak'].write('column %s not found...\n'%label)
errors = []
remarks = []
columns = []
dims = []
offsets = []
for what,factor in zip(options.label,options.offset):
col = table.label_index(what)
if col < 0: remarks.append('column {} not found...'.format(what,type))
else:
columns.append(col)
offsets.append(float(offset))
dims.append(table.label_dimension(what))
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
i = 0
for datatype,labels in sorted(active.items(),key=lambda x:datainfo[x[0]]['len']): # loop over scalar,vector,tensor
for label in labels: # loop over all requested labels
for j in xrange(datainfo[datatype]['len']): # loop over entity elements
table.data[column[datatype][label]+j] = float(table.data[column[datatype][label]+j]) + options.delta[i]
i += 1
for col,dim,factor in zip(columns,dims,factors): # loop over items
table.data[col:col+dim] = offset + np.array(table.data[col:col+dim],'d')
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ output finalization -----------------------------------
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close ASCII tables
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -18,43 +18,62 @@ Show components of given ASCIItable(s).
""", version = scriptID)
parser.add_option('-a','--head', dest='head', action='store_true',
help='output all heading (info + labels)')
parser.add_option('-i','--info', dest='info', action='store_true',
help='output info lines')
parser.add_option('-l','--labels', dest='labels', action='store_true',
help='output labels')
parser.add_option('-d','--data', dest='data', action='store_true',
help='output data')
parser.add_option('-c','--column', dest='col', action='store_true',
help='switch to label column format')
parser.add_option('--nolabels', dest='nolabels', action='store_true',
help='table has no labels')
parser.set_defaults(col = False)
parser.set_defaults(nolabels = False)
parser.add_option('-d','--data',
dest = 'data',
action = 'store_true',
help = 'output data')
parser.add_option('-a','--head',
dest = 'head',
action = 'store_true',
help = 'output all heading (info + labels)')
parser.add_option('-i','--info',
dest = 'info',
action = 'store_true',
help = 'output info lines')
parser.add_option('-l','--labels',
dest = 'labels',
action = 'store_true',
help = 'output labels')
parser.add_option('-c','--column',
dest = 'col',
action = 'store_true',
help = 'print labels as one column')
parser.add_option('--nolabels',
dest = 'labeled',
action = 'store_false',
help = 'table has no labels')
parser.add_option('-t','--table',
dest = 'table',
action = 'store_true',
help = 'output heading line for proper ASCIItable format')
parser.set_defaults(head = False,
info = False,
labels = False,
data = False,
col = False,
labeled = True,
table = False,
)
(options,filenames) = parser.parse_args()
# ------------------------------------------ setup file handles ---------------------------------------
# --- loop over input files -------------------------------------------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':sys.stdout, 'croak':sys.stderr})
if filenames == []: filenames = ['STDIN']
# ------------------------------------------ extract labels ---------------------------------------
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = None,
buffered = False, labeled = options.labeled, readonly = True)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
# ------------------------------------------ output head ---------------------------------------
table = damask.ASCIItable(file['input'],file['output'],buffered=False,labels=not options.nolabels)# make unbuffered ASCII_table
table.head_read() # read ASCII header info
if options.head or options.info: file['output'].write('\n'.join(table.info)+'\n')
if options.head or options.labels: file['output'].write({True:'\n',False:'\t'}[options.col].join(table.labels)+'\n')
table.head_read()
if not (options.head or options.info): table.info_clear()
if not (options.head or (options.labels and options.labeled)): table.labels_clear()
table.head_write(header = options.table)
# ------------------------------------------ output data ---------------------------------------
@ -62,7 +81,4 @@ for file in files:
while outputAlive and table.data_read(): # read next data line of ASCII table
outputAlive = table.data_write() # output line
outputAlive and table.output_flush()
if file['name'] != 'STDIN':
table.input_close()
table.close()

View File

@ -21,65 +21,61 @@ With coordinates in columns "x", "y", and "z"; sorting with x slowest and z fast
""", version = scriptID)
parser.add_option('-l','--label', dest='keys', action='extend', metavar='<string LIST>',
help='list of column labels (a,b,c,...)')
parser.add_option('-r','--reverse', dest='reverse', action='store_true',
help='reverse sorting')
parser.add_option('-l','--label',
dest = 'keys',
action = 'extend', metavar = '<string LIST>',
help = 'list of column labels (a,b,c,...)')
parser.add_option('-r','--reverse',
dest = 'reverse',
action = 'store_true',
help = 'sort in reverse')
parser.set_defaults(key = [])
parser.set_defaults(reverse = False)
parser.set_defaults(key = [],
reverse = False,
)
(options,filenames) = parser.parse_args()
if options.keys == None:
parser.error('No sorting column(s) specified.')
options.keys.reverse() # numpy sorts with most significant column as last
options.keys.reverse() # numpy sorts with most significant column as last
# ------------------------------------------ setup file handles ---------------------------------------
# --- loop over input files -------------------------------------------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
if filenames == []: filenames = ['STDIN']
# ------------------------------------------ loop over input files ---------------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(string.replace(scriptID,'\n','\\n') + \
'\t' + ' '.join(sys.argv[1:]))
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# ------------------------------------------ assemble header ---------------------------------------
table.head_read()
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.head_write()
# ------------------------------------------ process data ---------------------------------------
table.data_readArray()
cols = []
for column in table.label_index(options.keys):
cols += [table.data[:,column]]
cols = []
remarks = []
for i,column in enumerate(table.label_index(options.keys)):
if column < 0:
remarks.append("label {0} not present.".format(options.keys[i]))
else:
cols += [table.data[:,column]]
if remarks != []: table.croak(remarks)
ind = np.lexsort(cols)
if options.reverse:
ind = ind[::-1]
table.data = table.data[ind]
table.data_writeArray()
ind = np.lexsort(cols) if cols != [] else np.arange(table.data.shape[0])
if options.reverse: ind = ind[::-1]
# ------------------------------------------ output result ---------------------------------------
table.output_flush() # just in case of buffered ASCII table
table.data = table.data[ind]
table.data_writeArray()
table.close() # close ASCII table
table.input_close() # close input ASCII table
if file['name'] != 'STDIN':
table.output_close() # close output ASCII table
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -12,125 +12,80 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Changes the (three-dimensional) canvas of a spectral geometry description.
""", version = scriptID)
parser.add_option('-g', '--grid', dest='grid', nargs = 3, metavar=' '.join(['string']*3),
help='a,b,c grid of hexahedral box [unchanged]')
parser.add_option('-o', '--offset', dest='offset', type='int', nargs = 3, metavar=' '.join(['int']*3),
help='a,b,c offset from old to new origin of grid %default')
parser.add_option('-f', '--fill', dest='fill', type='int', metavar = 'int',
help='(background) canvas grain index. "0" selects maximum microstructure index + 1 [%default]')
parser.add_option('-g', '--grid',
dest = 'grid',
type = 'string', nargs = 3, metavar = ' '.join(['string']*3),
help = 'a,b,c grid of hexahedral box [unchanged]')
parser.add_option('-o', '--offset',
dest = 'offset',
type = 'int', nargs = 3, metavar = ' '.join(['int']*3),
help = 'a,b,c offset from old to new origin of grid %default')
parser.add_option('-f', '--fill',
dest = 'fill',
type = 'int', metavar = 'int',
help = '(background) canvas grain index. "0" selects maximum microstructure index + 1 [%default]')
parser.set_defaults(grid = ['0','0','0'])
parser.set_defaults(offset = (0,0,0))
parser.set_defaults(fill = 0)
parser.set_defaults(grid = ['0','0','0'],
offset = (0,0,0),
fill = 0,
)
(options, filenames) = parser.parse_args()
#--- setup file handles --------------------------------------------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN',
'input':sys.stdin,
'output':sys.stdout,
'croak':sys.stderr,
})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name,
'input':open(name),
'output':open(name+'_tmp','w'),
'croak':sys.stdout,
})
# --- loop over input files -------------------------------------------------------------------------
#--- loop over input files ------------------------------------------------------------------------
for file in files:
file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n')
if filenames == []: filenames = ['STDIN']
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False, labeled = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# --- interpret header ----------------------------------------------------------------------------
table = damask.ASCIItable(file['input'],file['output'],labels = False)
table.head_read()
info,extra_header = table.head_getGeom()
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# --- read data ------------------------------------------------------------------------------------
microstructure = table.microstructure_read(info['grid']).reshape(info['grid'],order='F') # read microstructure
# --- do work ------------------------------------------------------------------------------------
#--- interpret header ----------------------------------------------------------------------------
info = {
'grid': np.zeros(3,'i'),
'size': np.zeros(3,'d'),
'origin': np.zeros(3,'d'),
'homogenization': 0,
'microstructures': 0,
}
newInfo = {
'grid': np.zeros(3,'i'),
'origin': np.zeros(3,'d'),
'microstructures': 0,
}
extra_header = []
'grid': np.zeros(3,'i'),
'origin': np.zeros(3,'d'),
'microstructures': 0,
}
for header in table.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue # skip blank lines
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
else:
extra_header.append(header)
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'] + \
'microstructures: %i\n'%info['microstructures'])
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
continue
if np.any(info['size'] <= 0.0):
file['croak'].write('invalid size x y z.\n')
continue
#--- read data ------------------------------------------------------------------------------------
microstructure = np.zeros(info['grid'].prod(),'i') # initialize as flat array
i = 0
while table.data_read():
items = table.data
if len(items) > 2:
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
else: items = map(int,items)
else: items = map(int,items)
s = len(items)
microstructure[i:i+s] = items
i += s
#--- do work ------------------------------------------------------------------------------------
newInfo['grid'] = np.array([{True: int(o*float(n.translate(None,'xX'))),
False: int(n.translate(None,'xX'))}[n[-1].lower() == 'x'] for o,n in zip(info['grid'],options.grid)],'i')
newInfo['grid'] = np.where(newInfo['grid'] <= 0 , info['grid'],newInfo['grid'])
newInfo['grid'] = np.where(newInfo['grid'] <= 0, info['grid'],newInfo['grid'])
microstructure = microstructure.reshape(info['grid'],order='F')
microstructure_cropped = np.zeros(newInfo['grid'],'i')
microstructure_cropped.fill({True:options.fill,False:microstructure.max()+1}[options.fill>0])
microstructure_cropped.fill(options.fill if options.fill > 0 else microstructure.max()+1)
xindex = list(set(xrange(options.offset[0],options.offset[0]+newInfo['grid'][0])) & \
set(xrange(info['grid'][0])))
yindex = list(set(xrange(options.offset[1],options.offset[1]+newInfo['grid'][1])) & \
@ -151,44 +106,47 @@ for file in files:
newInfo['origin'] = info['origin']+info['size']/info['grid']*options.offset
newInfo['microstructures'] = microstructure_cropped.max()
#--- report ---------------------------------------------------------------------------------------
if (any(newInfo['grid'] != info['grid'])):
file['croak'].write('--> grid a b c: %s\n'%(' x '.join(map(str,newInfo['grid']))))
if (any(newInfo['size'] != info['size'])):
file['croak'].write('--> size x y z: %s\n'%(' x '.join(map(str,newInfo['size']))))
if (any(newInfo['origin'] != info['origin'])):
file['croak'].write('--> origin x y z: %s\n'%(' : '.join(map(str,newInfo['origin']))))
if (newInfo['microstructures'] != info['microstructures']):
file['croak'].write('--> microstructures: %i\n'%newInfo['microstructures'])
# --- report ---------------------------------------------------------------------------------------
if np.any(newInfo['grid'] < 1):
file['croak'].write('invalid new grid a b c.\n')
continue
if np.any(newInfo['size'] <= 0.0):
file['croak'].write('invalid new size x y z.\n')
remarks = []
errors = []
if (any(newInfo['grid'] != info['grid'])): remarks.append('--> grid a b c: %s'%(' x '.join(map(str,newInfo['grid']))))
if (any(newInfo['size'] != info['size'])): remarks.append('--> size x y z: %s'%(' x '.join(map(str,newInfo['size']))))
if (any(newInfo['origin'] != info['origin'])): remarks.append('--> origin x y z: %s'%(' : '.join(map(str,newInfo['origin']))))
if ( newInfo['microstructures'] != info['microstructures']): remarks.append('--> microstructures: %i'%newInfo['microstructures'])
if np.any(newInfo['grid'] < 1): errors.append('invalid new grid a b c.')
if np.any(newInfo['size'] <= 0.0): errors.append('invalid new size x y z.')
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
#--- write header ---------------------------------------------------------------------------------
table.labels_clear()
# --- write header ---------------------------------------------------------------------------------
table.info_clear()
table.info_append(extra_header+[
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta %i\tb %i\tc %i"%(newInfo['grid'][0],newInfo['grid'][1],newInfo['grid'][2],),
"size\tx %f\ty %f\tz %f"%(newInfo['size'][0],newInfo['size'][1],newInfo['size'][2],),
"origin\tx %f\ty %f\tz %f"%(newInfo['origin'][0],newInfo['origin'][1],newInfo['origin'][2],),
"homogenization\t%i"%info['homogenization'],
"microstructures\t%i"%(newInfo['microstructures']),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=newInfo['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=newInfo['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=newInfo['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=newInfo['microstructures']),
])
table.labels_clear()
table.head_write()
table.output_flush()
# --- write microstructure information ------------------------------------------------------------
formatwidth = int(math.floor(math.log10(microstructure_cropped.max())+1))
table.data = microstructure_cropped.reshape((newInfo['grid'][0],newInfo['grid'][1]*newInfo['grid'][2]),order='F').transpose()
table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
#--- output finalization --------------------------------------------------------------------------
if file['name'] != 'STDIN':
table.input_close()
table.output_close()
os.rename(file['name']+'_tmp',file['name'])
# --- output finalization --------------------------------------------------------------------------
table.close() # close ASCII table
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -12,82 +12,54 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
#--------------------------------------------------------------------------------------------------
# MAIN
#--------------------------------------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog [file[s]]', description = """
Produce VTK rectilinear mesh of structure data from geom description
""", version = scriptID)
parser.add_option('-n','--nodata', dest='data', action='store_false',
help='omit microstructure data, just generate mesh')
parser.add_option('-m','--nodata',
dest = 'data',
action = 'store_false',
help = 'generate mesh without microstructure index data')
parser.set_defaults(data = True)
parser.set_defaults(data = True,
)
(options, filenames) = parser.parse_args()
#--- setup file handles --------------------------------------------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr, })
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':sys.stdout, 'croak':sys.stdout, })
# --- loop over input files -------------------------------------------------------------------------
#--- loop over input files ------------------------------------------------------------------------
for file in files:
file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n')
if filenames == []: filenames = ['STDIN']
theTable = damask.ASCIItable(file['input'],file['output'],labels=False)
theTable.head_read()
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = None,
buffered = False, labeled = False, readonly = True)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
#--- interpret header ----------------------------------------------------------------------------
info = {
'grid': np.zeros(3,'i'),
'size': np.zeros(3,'d'),
'origin': np.zeros(3,'d'),
'homogenization': 0,
'microstructures': 0,
}
# --- interpret header ----------------------------------------------------------------------------
for header in theTable.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
table.head_read()
info,extra_header = table.head_getGeom()
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'] + \
'microstructures: %i\n'%info['microstructures'])
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
continue
if np.any(info['size'] <= 0.0):
file['croak'].write('invalid size x y z.\n')
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
file['croak'](errors)
table.close(dismiss = True)
continue
# --- generate VTK rectilinear grid --------------------------------------------------------------------------------
#--- generate grid --------------------------------------------------------------------------------
grid = vtk.vtkRectilinearGrid()
grid.SetDimensions([x+1 for x in info['grid']])
for i in xrange(3):
@ -102,43 +74,36 @@ for file in files:
#--- read microstructure information --------------------------------------------------------------
if options.data:
microstructure = table.microstructure_read(info['grid']) # read microstructure
structure = vtk.vtkIntArray()
structure.SetName('Microstructures')
while theTable.data_read():
items = theTable.data
if len(items) > 2:
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
else: items = map(int,items)
else: items = map(int,items)
for item in items:
structure.InsertNextValue(item)
for idx in microstructure:
structure.InsertNextValue(idx)
grid.GetCellData().AddArray(structure)
#--- write data -----------------------------------------------------------------------------------
if file['name'] == 'STDIN':
# --- write data -----------------------------------------------------------------------------------
if name == 'STDIN':
writer = vtk.vtkRectilinearGridWriter()
writer.WriteToOutputStringOn()
writer.SetFileTypeToASCII()
writer.SetHeader('# powered by '+scriptID)
if vtk.VTK_MAJOR_VERSION <= 5:
writer.SetInput(grid)
else:
writer.SetInputData(grid)
if vtk.VTK_MAJOR_VERSION <= 5: writer.SetInput(grid)
else: writer.SetInputData(grid)
writer.Write()
file['output'].write(writer.GetOutputString()[0:writer.GetOutputStringLength()])
sys.stdout.write(writer.GetOutputString()[0:writer.GetOutputStringLength()])
else:
(dir,file) = os.path.split(file['name'])
(dir,filename) = os.path.split(name)
writer = vtk.vtkXMLRectilinearGridWriter()
writer.SetDataModeToBinary()
writer.SetCompressorTypeToZLib()
writer.SetFileName(os.path.join(dir,'mesh_'+os.path.splitext(file)[0]
writer.SetFileName(os.path.join(dir,'mesh_'+os.path.splitext(filename)[0]
+'.'+writer.GetDefaultFileExtension()))
if vtk.VTK_MAJOR_VERSION <= 5:
writer.SetInput(grid)
else:
writer.SetInputData(grid)
if vtk.VTK_MAJOR_VERSION <= 5: writer.SetInput(grid)
else: writer.SetInputData(grid)
writer.Write()
table.close()

View File

@ -34,23 +34,11 @@ def periodic_3Dpad(array, rimdim=(1,1,1)):
#--------------------------------------------------------------------------------------------------
# MAIN
#--------------------------------------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
features = [
{'aliens': 1, 'names': ['boundary','biplane'],},
{'aliens': 2, 'names': ['tripleline',],},
{'aliens': 3, 'names': ['quadruplepoint',],}
{'aliens': 1, 'alias': ['boundary','biplane'],},
{'aliens': 2, 'alias': ['tripleline',],},
{'aliens': 3, 'alias': ['quadruplepoint',],}
]
neighborhoods = {
@ -101,118 +89,79 @@ boundaries, triple lines, and quadruple points.
""", version = scriptID)
parser.add_option('-t','--type', dest = 'type', action = 'extend', type = 'string', metavar = '<string LIST>',
help = 'feature type (%s) '%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
parser.add_option('-n','--neighborhood', dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string',
parser.add_option('-t','--type',
dest = 'type',
action = 'extend', metavar = '<string LIST>',
help = 'feature type (%s) '%(', '.join(map(lambda x:'|'.join(x['alias']),features))) )
parser.add_option('-n','--neighborhood',
dest = 'neighborhood',
choices = neighborhoods.keys(), metavar = 'string',
help = 'type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys())))
parser.add_option('-s', '--scale', dest = 'scale', type = 'float', metavar='float',
parser.add_option('-s', '--scale',
dest = 'scale',
type = 'float', metavar = 'float',
help = 'voxel size [%default]')
parser.set_defaults(type = [])
parser.set_defaults(neighborhood = 'neumann')
parser.set_defaults(scale = 1.0)
parser.set_defaults(type = [],
neighborhood = 'neumann',
scale = 1.0,
)
(options,filenames) = parser.parse_args()
if len(options.type) == 0: parser.error('please select a feature type')
if not set(options.type).issubset(set(list(itertools.chain(*map(lambda x: x['names'],features))))):
parser.error('type must be chosen from (%s)...'%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
if len(options.type) == 0 or \
not set(options.type).issubset(set(list(itertools.chain(*map(lambda x: x['alias'],features))))):
parser.error('sleect feature type from (%s).'%(', '.join(map(lambda x:'|'.join(x['alias']),features))) )
if 'biplane' in options.type and 'boundary' in options.type:
parser.error("please select only one alias for 'biplane' and 'boundary'")
parser.error("only one alias out 'biplane' and 'boundary' required")
feature_list = []
for i,feature in enumerate(features):
for name in feature['names']:
for name in feature['alias']:
for myType in options.type:
if name.startswith(myType):
feature_list.append(i) # remember valid features
feature_list.append(i) # remember selected features
break
#--- setup file handles ---------------------------------------------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN',
'input':sys.stdin,
'output':sys.stdout,
'croak':sys.stderr,
})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name,
'input':open(name),
'output':[open(features[feature]['names'][0]+'_'+name,'w') for feature in feature_list],
'croak':sys.stdout,
})
# --- loop over input files -------------------------------------------------------------------------
#--- loop over input files ------------------------------------------------------------------------
for file in files:
file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n')
if filenames == []: filenames = ['STDIN']
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = None,
buffered = False, labeled = False, readonly = True)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# --- interpret header ----------------------------------------------------------------------------
table = damask.ASCIItable(file['input'],file['output'][0],labels = False)
table.head_read()
info,extra_header = table.head_getGeom()
#--- interpret header ----------------------------------------------------------------------------
info = {
'grid': np.zeros(3,'i'),
'size': np.zeros(3,'d'),
'origin': np.zeros(3,'d'),
'homogenization': 0,
'microstructures': 0,
}
newInfo = {
'grid': np.zeros(3,'i'),
'origin': np.zeros(3,'d'),
'microstructures': 0,
}
extra_header = []
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
for header in table.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue # skip blank lines
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
else:
extra_header.append(header)
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'] + \
'microstructures: %i\n'%info['microstructures'])
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
continue
if np.any(info['size'] <= 0.0):
file['croak'].write('invalid size x y z.\n')
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
#--- read data ------------------------------------------------------------------------------------
microstructure = np.zeros(info['grid'].prod(),'i') # initialize as flat array
i = 0
# --- read data ------------------------------------------------------------------------------------
while table.data_read():
items = table.data
if len(items) > 2:
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
else: items = map(int,items)
else: items = map(int,items)
s = len(items)
microstructure[i:i+s] = items
i += s
microstructure = table.microstructure_read(info['grid']).reshape(info['grid'],order='F') # read microstructure
table.close()
neighborhood = neighborhoods[options.neighborhood]
convoluted = np.empty([len(neighborhood)]+list(info['grid']+2),'i')
structure = periodic_3Dpad(microstructure.reshape(info['grid'],order='F'))
structure = periodic_3Dpad(microstructure)
for i,p in enumerate(neighborhood):
stencil = np.zeros((3,3,3),'i')
@ -222,47 +171,56 @@ for file in files:
p[2]+1] = 1
convoluted[i,:,:,:] = ndimage.convolve(structure,stencil)
distance = np.ones((len(feature_list),info['grid'][0],info['grid'][1],info['grid'][2]),'d')
# distance = np.ones(info['grid'],'d')
convoluted = np.sort(convoluted,axis = 0)
uniques = np.where(convoluted[0,1:-1,1:-1,1:-1] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
uniques = np.where(convoluted[0,1:-1,1:-1,1:-1] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood
for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood
uniques += np.where(np.logical_and(
convoluted[i,1:-1,1:-1,1:-1] != convoluted[i-1,1:-1,1:-1,1:-1], # flip of ID difference detected?
convoluted[i,1:-1,1:-1,1:-1] != 0), # not myself?
1,0) # count flip
convoluted[i,1:-1,1:-1,1:-1] != convoluted[i-1,1:-1,1:-1,1:-1], # flip of ID difference detected?
convoluted[i,1:-1,1:-1,1:-1] != 0), # not myself?
1,0) # count flip
for i,feature_id in enumerate(feature_list):
distance[i,:,:,:] = np.where(uniques >= features[feature_id]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present
for feature in feature_list:
for i in xrange(len(feature_list)):
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
table = damask.ASCIItable(name = name, outname = features[feature]['alias'][0]+'_'+name,
buffered = False, labeled = False, writeonly = True)
for i,feature in enumerate(feature_list):
newInfo['microstructures'] = int(math.ceil(distance[i,:,:,:].max()))
distance = np.where(uniques >= features[feature]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present
distance = ndimage.morphology.distance_transform_edt(distance)*[options.scale]*3
# for i in xrange(len(feature_list)):
# distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
# for i,feature in enumerate(feature_list):
info['microstructures'] = int(math.ceil(distance.max()))
#--- write header ---------------------------------------------------------------------------------
table = damask.ASCIItable(file['input'],file['output'][i],labels = False)
table.labels_clear()
table.info_clear()
table.info_append(extra_header+[
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],),
"size\tx %f\ty %f\tz %f"%(info['size'][0],info['size'][1],info['size'][2],),
"origin\tx %f\ty %f\tz %f"%(info['origin'][0],info['origin'][1],info['origin'][2],),
"homogenization\t%i"%info['homogenization'],
"microstructures\t%i"%(newInfo['microstructures']),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=info['microstructures']),
])
table.labels_clear()
table.head_write()
table.output_flush()
# --- write microstructure information ------------------------------------------------------------
formatwidth = int(math.floor(math.log10(distance[i,:,:,:].max())+1))
table.data = distance[i,:,:,:].reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
formatwidth = int(math.floor(math.log10(distance.max())+1))
table.data = distance.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
file['output'][i].close()
#--- output finalization --------------------------------------------------------------------------
if file['name'] != 'STDIN':
table.input_close()
table.close()
### 'output':[open(features[feature]['names'][0]+'_'+name,'w') for feature in feature_list],

108
processing/pre/geom_fromImage.py Executable file
View File

@ -0,0 +1,108 @@
#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,sys,math,string
import numpy as np
from optparse import OptionParser
from PIL import Image,ImageOps
import damask
scriptID = string.replace('$Id$','\n','\\n')
scriptName = os.path.splitext(scriptID.split()[1])[0]
#--------------------------------------------------------------------------------------------------
# MAIN
#--------------------------------------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Generate geometry description from (multilayer) images.
Microstructure index is based on gray scale value (1..256).
""", version = scriptID)
parser.add_option('--homogenization',
dest = 'homogenization',
type = 'int', metavar = 'int',
help = 'homogenization index [%default]')
parser.set_defaults(homogenization = 1,
)
(options,filenames) = parser.parse_args()
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = ['STDIN']
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = os.path.splitext(name)[0] +'.geom',
buffered = False, labeled = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# --- read image ------------------------------------------------------------------------------------
img = Image.open(name).convert(mode = 'L') # open and convert to grayscale 8bit
slice = 0
while True:
try:
img.seek(slice) # advance to slice
layer = np.expand_dims(1+np.array(img,dtype='uint16'),axis = 0) # read image layer
microstructure = layer if slice == 0 else np.vstack((microstructure,layer)) # add to microstructure data
slice += 1 # advance to next slice
except EOFError:
break
# http://docs.scipy.org/doc/scipy/reference/ndimage.html
# http://scipy-lectures.github.io/advanced/image_processing/
info = {
'grid': np.array(microstructure.shape,'i')[::-1],
'size': np.array(microstructure.shape,'d')[::-1],
'origin': np.zeros(3,'d'),
'microstructures': len(np.unique(microstructure)),
'homogenization': options.homogenization,
}
# --- report ---------------------------------------------------------------------------------------
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
file['croak'](errors)
table.close(dismiss = True)
continue
# --- write header ---------------------------------------------------------------------------------
table.info_clear()
table.info_append([
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=info['microstructures']),
])
table.labels_clear()
table.head_write()
table.output_flush()
# --- write microstructure information ------------------------------------------------------------
formatwidth = int(math.floor(math.log10(microstructure.max())+1))
table.data = microstructure.reshape((info['grid'][1]*info['grid'][2],info['grid'][0]),order='C')
table.data_writeArray('%%%ii'%(formatwidth),delimiter = ' ')
# --- output finalization --------------------------------------------------------------------------
table.close() # close ASCII table

View File

@ -27,79 +27,115 @@ Generate a geometry file of a bicontinuous structure of given type.
""", version = scriptID)
parser.add_option('-t','--type', dest='type', choices=minimal_surfaces, metavar='string', \
help='type of minimal surface [primitive] {%s}' %(','.join(minimal_surfaces)))
parser.add_option('-f','--threshold', dest='threshold', type='float', metavar='float', \
help='threshold value defining minimal surface [%default]')
parser.add_option('-g', '--grid', dest='grid', type='int', nargs=3, metavar='int int int', \
help='a,b,c grid of hexahedral box [%default]')
parser.add_option('-s', '--size', dest='size', type='float', nargs=3, metavar='float float float', \
help='x,y,z size of hexahedral box [%default]')
parser.add_option('-p', '--periods', dest='periods', type='int', metavar= 'int', \
help='number of repetitions of unit cell [%default]')
parser.add_option('--homogenization', dest='homogenization', type='int', metavar= 'int', \
help='homogenization index to be used [%default]')
parser.add_option('--m', dest='microstructure', type='int', nargs = 2, metavar= 'int int', \
help='two microstructure indices to be used [%default]')
parser.add_option('-2', '--twodimensional', dest='twoD', action='store_true', \
help='output geom file with two-dimensional data arrangement [%default]')
parser.set_defaults(type = minimal_surfaces[0])
parser.set_defaults(threshold = 0.0)
parser.set_defaults(periods = 1)
parser.set_defaults(grid = (16,16,16))
parser.set_defaults(size = (1.0,1.0,1.0))
parser.set_defaults(homogenization = 1)
parser.set_defaults(microstructure = (1,2))
parser.set_defaults(twoD = False)
parser.add_option('-t','--type',
dest = 'type',
choices = minimal_surfaces, metavar = 'string',
help = 'type of minimal surface [primitive] {%s}' %(','.join(minimal_surfaces)))
parser.add_option('-f','--threshold',
dest = 'threshold',
type = 'float', metavar = 'float',
help = 'threshold value defining minimal surface [%default]')
parser.add_option('-g', '--grid',
dest = 'grid',
type = 'int', nargs = 3, metavar = 'int int int',
help = 'a,b,c grid of hexahedral box [%default]')
parser.add_option('-s', '--size',
dest = 'size',
type = 'float', nargs = 3, metavar = 'float float float',
help = 'x,y,z size of hexahedral box [%default]')
parser.add_option('-p', '--periods',
dest = 'periods',
type = 'int', metavar = 'int',
help = 'number of repetitions of unit cell [%default]')
parser.add_option('--homogenization',
dest = 'homogenization',
type = 'int', metavar = 'int',
help = 'homogenization index to be used [%default]')
parser.add_option('--m',
dest = 'microstructure',
type = 'int', nargs = 2, metavar = 'int int',
help = 'two microstructure indices to be used [%default]')
parser.add_option('-1', '--onedimensional',
dest = 'oneD',
action = 'store_true',
help = 'output geom file with two-dimensional data arrangement [%default]')
parser.set_defaults(type = minimal_surfaces[0],
threshold = 0.0,
periods = 1,
grid = (16,16,16),
size = (1.0,1.0,1.0),
homogenization = 1,
microstructure = (1,2),
oneD = False,
)
(options,filename) = parser.parse_args()
(options,filenames) = parser.parse_args()
# ------------------------------------------ setup file handle -------------------------------------
if filename == []:
file = {'output':sys.stdout, 'croak':sys.stderr}
else:
file = {'output':open(filename[0],'w'), 'croak':sys.stderr}
# --- loop over input files -------------------------------------------------------------------------
info = {
'grid': np.array(options.grid),
'size': np.array(options.size),
'origin': np.zeros(3,'d'),
'microstructures': max(options.microstructure),
'homogenization': options.homogenization
}
if filenames == []: filenames = ['STDIN']
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name,
buffered = False, labeled = False, writeonly = True)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# ------------------------------------------ make grid -------------------------------------
info = {
'grid': np.array(options.grid),
'size': np.array(options.size),
'origin': np.zeros(3,'d'),
'microstructures': max(options.microstructure),
'homogenization': options.homogenization
}
#--- report ---------------------------------------------------------------------------------------
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'] + \
'microstructures: %i\n\n'%info['microstructures'])
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
sys.exit()
if np.any(info['size'] <= 0.0):
file['croak'].write('invalid size x y z.\n')
sys.exit()
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
#--- write header ---------------------------------------------------------------------------------
header = [scriptID + ' ' + ' '.join(sys.argv[1:])+'\n']
header.append("grid\ta %i\tb %i\tc %i\n"%(info['grid'][0],info['grid'][1],info['grid'][2],))
header.append("size\tx %f\ty %f\tz %f\n"%(info['size'][0],info['size'][1],info['size'][2],))
header.append("origin\tx %f\ty %f\tz %f\n"%(info['origin'][0],info['origin'][1],info['origin'][2],))
header.append("microstructures\t%i\n"%info['microstructures'])
header.append("homogenization\t%i\n"%info['homogenization'])
file['output'].write('%i\theader\n'%(len(header))+''.join(header))
table.labels_clear()
table.info_clear()
table.info_append([
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=info['microstructures']),
])
table.head_write()
#--- write data -----------------------------------------------------------------------------------
for z in xrange(options.grid[2]):
Z = options.periods*2.0*math.pi*(z+0.5)/options.grid[2]
for y in xrange(options.grid[1]):
Y = options.periods*2.0*math.pi*(y+0.5)/options.grid[1]
for x in xrange(options.grid[0]):
X = options.periods*2.0*math.pi*(x+0.5)/options.grid[0]
file['output'].write(str(options.microstructure[0]) if options.threshold > surface[options.type](X,Y,Z)
else str(options.microstructure[1]))
file['output'].write(' ' if options.twoD else '\n')
file['output'].write('\n' if options.twoD else '')
X = options.periods*2.0*math.pi*(np.arange(options.grid[0])+0.5)/options.grid[0]
Y = options.periods*2.0*math.pi*(np.arange(options.grid[1])+0.5)/options.grid[1]
Z = options.periods*2.0*math.pi*(np.arange(options.grid[2])+0.5)/options.grid[2]
for z in xrange(options.grid[2]):
for y in xrange(options.grid[1]):
table.data_clear()
for x in xrange(options.grid[0]):
table.data_append(options.microstructure[options.threshold < surface[options.type](X[x],Y[y],Z[z])])
if options.oneD:
table.data_write()
table.data_clear()
table.data_write()
table.close()

View File

@ -32,36 +32,62 @@ Generate geometry description and material configuration from position, phase, a
""", version = scriptID)
parser.add_option('--coordinates', dest='coordinates', type='string', metavar='string',
help='coordinates label')
parser.add_option('--phase', dest='phase', type='string', metavar='string',
help='phase label')
parser.add_option('-t', '--tolerance', dest='tolerance', type='float', metavar='float',
parser.add_option('--coordinates',
dest = 'coordinates',
type = 'string', metavar = 'string',
help = 'coordinates label')
parser.add_option('--phase',
dest = 'phase',
type = 'string', metavar = 'string',
help = 'phase label')
parser.add_option('-t', '--tolerance',
dest = 'tolerance',
type = 'float', metavar = 'float',
help = 'angular tolerance for orientation squashing [%default]')
parser.add_option('-e', '--eulers', dest='eulers', metavar='string',
parser.add_option('-e', '--eulers',
dest = 'eulers',
type = 'string', metavar = 'string',
help = 'Euler angles label')
parser.add_option('-d', '--degrees', dest='degrees', action='store_true',
parser.add_option('-d', '--degrees',
dest = 'degrees',
action = 'store_true',
help = 'angles are given in degrees [%default]')
parser.add_option('-m', '--matrix', dest='matrix', metavar='string',
parser.add_option('-m', '--matrix',
dest = 'matrix',
type = 'string', metavar = 'string',
help = 'orientation matrix label')
parser.add_option('-a', dest='a', metavar='string',
parser.add_option('-a',
dest='a',
type = 'string', metavar = 'string',
help = 'crystal frame a vector label')
parser.add_option('-b', dest='b', metavar='string',
parser.add_option('-b',
dest='b',
type = 'string', metavar = 'string',
help = 'crystal frame b vector label')
parser.add_option('-c', dest='c', metavar='string',
parser.add_option('-c',
dest = 'c',
type = 'string', metavar='string',
help = 'crystal frame c vector label')
parser.add_option('-q', '--quaternion', dest='quaternion', metavar='string',
parser.add_option('-q', '--quaternion',
dest = 'quaternion',
type = 'string', metavar='string',
help = 'quaternion label')
parser.add_option( '--axes', dest='axes', nargs=3, metavar=' '.join(['string']*3),
parser.add_option('--axes',
dest = 'axes',
type = 'string', nargs = 3, metavar = ' '.join(['string']*3),
help = 'orientation coordinate frame in terms of position coordinate frame [same]')
parser.add_option('-s', '--symmetry', dest='symmetry', action='extend',
metavar='<string LIST>',
help = 'crystal symmetry [%s] {%s} '%(damask.Symmetry.lattices[-1],
', '.join(damask.Symmetry.lattices[1:])))
parser.add_option('--homogenization', dest='homogenization', type='int', metavar='int',
help='homogenization index to be used [%default]')
parser.add_option('--crystallite', dest='crystallite', type='int', metavar='int',
help='crystallite index to be used [%default]')
parser.add_option('-s', '--symmetry',
dest = 'symmetry',
action = 'extend', metavar = '<string LIST>',
help = 'crystal symmetry %default {{{}}} '.format(', '.join(damask.Symmetry.lattices[1:])))
parser.add_option('--homogenization',
dest = 'homogenization',
type = 'int', metavar = 'int',
help = 'homogenization index to be used [%default]')
parser.add_option('--crystallite',
dest = 'crystallite',
type = 'int', metavar = 'int',
help = 'crystallite index to be used [%default]')
parser.set_defaults(symmetry = [damask.Symmetry.lattices[-1]],
tolerance = 0.0,
@ -82,7 +108,7 @@ input = [options.eulers != None,
if np.sum(input) != 1: parser.error('needs exactly one orientation input format...')
if options.axes != None and not set(options.axes).issubset(set(['x','+x','-x','y','+y','-y','z','+z','-z'])):
parser.error('invalid axes %s %s %s'%tuple(options.axes))
parser.error('invalid axes {axes[0]} {axes[1]} {axes[2]}'.format(axes=options.axes))
(label,dim,inputtype) = [(options.eulers,3,'eulers'),
([options.a,options.b,options.c],[3,3,3],'frame'),
@ -90,36 +116,33 @@ if options.axes != None and not set(options.axes).issubset(set(['x','+x','-x','y
(options.quaternion,4,'quaternion'),
][np.where(input)[0][0]] # select input label that was requested
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
options.tolerance *= toRadians # angular tolerance in radians
options.tolerance *= toRadians # ensure angular tolerance in radians
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name,
'input':open(name),
'output':open(name + '_tmp','w'),
'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = os.path.splitext(name)[0] + '.geom',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# ------------------------------------------ read head ---------------------------------------
table = damask.ASCIItable(file['input'],file['output'],buffered=False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
# ------------------------------------------ sanity checks ---------------------------------------
errors = []
if table.label_dimension(options.coordinates) != 2:
errors.append('coordinates %s need to have two dimensions...'%options.coordinates)
errors.append('coordinates {} need to have two dimensions.'.format(options.coordinates))
if not np.all(table.label_dimension(label) == dim):
errors.append('orientation %s needs to have dimension %i...\n'%(label,dim))
errors.append('orientation {} needs to have dimension {}.'.format(label,dim))
if options.phase != None and table.label_dimension(options.phase) != 1:
errors.append('phase column %s is not scalar...'%options.phase)
errors.append('phase column {} is not scalar.'.format(options.phase))
if errors == []:
if errors == []: # so far no errors?
table.data_readArray([options.coordinates,label]+([] if options.phase == None else [options.phase]))
if options.phase == None:
@ -135,10 +158,10 @@ for name in filenames:
if nX*nY != len(table.data) \
or np.any(np.abs(np.log10((coordsX[1:]-coordsX[:-1])/dX)) > 0.01) \
or np.any(np.abs(np.log10((coordsY[1:]-coordsY[:-1])/dY)) > 0.01):
errors.append('data is not on square grid...')
errors.append('data is not on square grid.')
if errors != []:
file['croak'].write('\n'.join(errors)+'\n')
table.croak(errors)
table.close(dismiss = True)
continue
@ -149,7 +172,7 @@ for name in filenames:
index = np.lexsort((table.data[:,0],table.data[:,1])) # index of rank when sorting x fast, y slow
rank = np.argsort(index) # rank of index
KDTree = scipy.spatial.KDTree((table.data[:,:2]-np.array([coordsX[0],coordsY[0]])) \
/ np.array([dX,dY])) # build KDTree with dX = dY = 1
/ np.array([dX,dY])) # build KDTree with dX = dY = 1
microstructure = np.zeros(nX*nY,dtype='uint32') # initialize empty microstructure
symQuats = [] # empty list of sym equiv orientations
@ -158,8 +181,7 @@ for name in filenames:
myRank = 0 # rank of current grid point
for y in xrange(nY):
for x in xrange(nX):
if (myRank+1)%max(1,nX*nY/100) == 0:
file['croak'].write('.')
if (myRank+1)%(nX*nY/100.) < 1: table.croak('.',False)
myData = table.data[index[myRank]]
mySym = options.symmetry[min(int(myData[colPhase]),len(options.symmetry))-1] # select symmetry from option (take last specified option for all with higher index)
if inputtype == 'eulers':
@ -189,21 +211,22 @@ for name in filenames:
for n in neighbors: # check each neighbor
if myRank <= rank[n] or table.data[n,colPhase] != myData[colPhase]: continue # skip myself, anyone further ahead (cannot yet have a grain ID), and other phases
for q in symQuats[microstructure[rank[n]]-1]:
if abs((q*oInv).asAngleAxis()[0]) <= options.tolerance: # found existing orientation resembling me
if abs((q*oInv).asAngleAxis()[0]) <= options.tolerance: # found existing orientation resembling me
microstructure[myRank] = microstructure[rank[n]]
breaker = True; break
if breaker: break
if microstructure[myRank] == 0: # no other orientation resembled me
nGrains += 1
microstructure[myRank] = nGrains
nGrains += 1 # make new grain ...
microstructure[myRank] = nGrains # ... and assign to me
symQuats.append(o.equivalentQuaternions()) # store all symmetrically equivalent orientations for future comparison
phases.append(myData[colPhase]) # store phase info for future reporting
myRank += 1
file['croak'].write('\n')
#--- generate header ----------------------------------------------------------------------------
table.croak('')
# --- generate header ----------------------------------------------------------------------------
info = {
'grid': np.array([nX,nY,1]),
@ -218,13 +241,14 @@ for name in filenames:
'homogenization': options.homogenization,
}
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'] + \
'microstructures: %i\n'%info['microstructures'])
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
#--- write header ---------------------------------------------------------------------------------
# --- write header ---------------------------------------------------------------------------------
formatwidth = 1+int(math.log10(info['microstructures']))
@ -246,11 +270,11 @@ for name in filenames:
table.info_clear()
table.info_append([
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],),
"size\tx %f\ty %f\tz %f"%(info['size'][0],info['size'][1],info['size'][2],),
"origin\tx %f\ty %f\tz %f"%(info['origin'][0],info['origin'][1],info['origin'][2],),
"homogenization\t%i"%info['homogenization'],
"microstructures\t%i"%(info['microstructures']),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=info['microstructures']),
config_header,
])
table.head_write()
@ -263,6 +287,3 @@ for name in filenames:
#--- output finalization --------------------------------------------------------------------------
table.close()
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',
os.path.splitext(file['name'])[0] + '.geom')

View File

@ -3,6 +3,7 @@
import os,re,sys,math,string
import numpy as np
import multiprocessing
from optparse import OptionParser
import damask
@ -30,286 +31,323 @@ def meshgrid2(*arrs):
ans.insert(0,arr2)
return tuple(ans)
def laguerreTessellation(undeformed, coords, weights, grain):
def findClosestSeed(fargs):
point, seeds, weightssquared = fargs
tmp = np.repeat(point.reshape(3,1), len(seeds), axis=1).T
dist = np.sum((tmp - seeds)*(tmp - seeds),axis=1) - weightssquared
return np.argmin(dist) # seed point closest to point
weight = np.power(np.tile(weights, 27),2) # Laguerre weights (squared)
micro = np.zeros(undeformed.shape[0])
N = coords.shape[0] # Number of seeds points
periodic = np.array([
[ -1,-1,-1 ],
[ 0,-1,-1 ],
[ 1,-1,-1 ],
[ -1, 0,-1 ],
[ 0, 0,-1 ],
[ 1, 0,-1 ],
[ -1, 1,-1 ],
[ 0, 1,-1 ],
[ 1, 1,-1 ],
[ -1,-1, 0 ],
[ 0,-1, 0 ],
[ 1,-1, 0 ],
[ -1, 0, 0 ],
[ 0, 0, 0 ],
[ 1, 0, 0 ],
[ -1, 1, 0 ],
[ 0, 1, 0 ],
[ 1, 1, 0 ],
[ -1,-1, 1 ],
[ 0,-1, 1 ],
[ 1,-1, 1 ],
[ -1, 0, 1 ],
[ 0, 0, 1 ],
[ 1, 0, 1 ],
[ -1, 1, 1 ],
[ 0, 1, 1 ],
[ 1, 1, 1 ],
]).astype(float)
for i,vec in enumerate(periodic):
def laguerreTessellation(undeformed, coords, weights, grains, nonperiodic = False, cpus = 2):
copies = \
np.array([
[ 0, 0, 0 ],
]).astype(float) if nonperiodic else \
np.array([
[ -1,-1,-1 ],
[ 0,-1,-1 ],
[ 1,-1,-1 ],
[ -1, 0,-1 ],
[ 0, 0,-1 ],
[ 1, 0,-1 ],
[ -1, 1,-1 ],
[ 0, 1,-1 ],
[ 1, 1,-1 ],
[ -1,-1, 0 ],
[ 0,-1, 0 ],
[ 1,-1, 0 ],
[ -1, 0, 0 ],
[ 0, 0, 0 ],
[ 1, 0, 0 ],
[ -1, 1, 0 ],
[ 0, 1, 0 ],
[ 1, 1, 0 ],
[ -1,-1, 1 ],
[ 0,-1, 1 ],
[ 1,-1, 1 ],
[ -1, 0, 1 ],
[ 0, 0, 1 ],
[ 1, 0, 1 ],
[ -1, 1, 1 ],
[ 0, 1, 1 ],
[ 1, 1, 1 ],
]).astype(float)
squaredweights = np.power(np.tile(weights,len(copies)),2) # Laguerre weights (squared, size N*n)
# micro = np.zeros(undeformed.shape[0],'i')
N = coords.shape[0] # Number of seeds points
for i,vec in enumerate(copies): # periodic copies of seed points (size N*n)
seeds = np.append(seeds, coords+vec, axis=0) if i > 0 else coords+vec
for i,point in enumerate(undeformed):
arguments = [[arg] + [seeds,squaredweights] for arg in list(undeformed)]
tmp = np.repeat(point.reshape(3,1), N*27, axis=1).T
dist = np.sum((tmp - seeds)*(tmp - seeds),axis=1) - weight
micro[i] = grain[np.argmin(dist)%N]
# Initialize workers
pool = multiprocessing.Pool(processes = cpus)
return micro
# Evaluate function
result = pool.map_async(findClosestSeed, arguments)
# closestSeeds = np.array(pool.map_async(findClosestSeed, arguments),'i')
pool.close()
pool.join()
closestSeeds = np.array(result.get()).flatten()
print 'shape of result',closestSeeds.shape
return grains[closestSeeds%N]
# for i,point in enumerate(undeformed):
# tmp = np.repeat(point.reshape(3,1), N*len(copies), axis=1).T
# dist = np.sum((tmp - seeds)*(tmp - seeds),axis=1) - squaredweights
# micro[i] = grains[np.argmin(dist)%N]
#
# return micro
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Generate geometry description and material configuration by standard Voronoi tessellation of given seeds file.
""", version = scriptID)
parser.add_option('-g', '--grid', dest='grid', type='int', nargs = 3, metavar=' '.join(['int']*3),
help='a,b,c grid of hexahedral box [from seeds file]')
parser.add_option('-s', '--size', dest='size', type='float', nargs = 3, metavar=' '.join(['float']*3),
help='x,y,z size of hexahedral box [1.0 along largest grid point number]')
parser.add_option('-o', '--origin', dest='origin', type='float', nargs = 3, metavar=' '.join(['float']*3),
help='offset from old to new origin of grid')
parser.add_option('--homogenization', dest='homogenization', type='int', metavar = 'int',
help='homogenization index to be used [%default]')
parser.add_option('--phase', dest='phase', type='int', metavar = 'int',
help='phase index to be used [%default]')
parser.add_option('--crystallite', dest='crystallite', type='int', metavar = 'int',
help='crystallite index to be used [%default]')
parser.add_option('-c', '--configuration', dest='config', action='store_true',
help='output material configuration [%default]')
parser.add_option('-r', '--rnd', dest='randomSeed', type='int', metavar='int',
help='seed of random number generator for second phase distribution [%default]')
parser.add_option('--secondphase', type='float', dest='secondphase', metavar= 'float',
help='volume fraction of randomly distribute second phase [%default]')
parser.add_option('-l', '--laguerre', dest='laguerre', action='store_true',
help='use Laguerre (weighted Voronoi) tessellation [%default]')
parser.set_defaults(grid = (0,0,0),
size = (0.0,0.0,0.0),
origin = (0.0,0.0,0.0),
parser.add_option('-g', '--grid',
dest = 'grid',
type = 'int', nargs = 3, metavar = ' '.join(['int']*3),
help = 'a,b,c grid of hexahedral box [from seeds file]')
parser.add_option('-s', '--size',
dest = 'size',
type = 'float', nargs = 3, metavar=' '.join(['float']*3),
help = 'x,y,z size of hexahedral box [from seeds file or 1.0 along largest grid point number]')
parser.add_option('-o', '--origin',
dest = 'origin',
type = 'float', nargs = 3, metavar=' '.join(['float']*3),
help = 'offset from old to new origin of grid')
parser.add_option('-p', '--position',
dest = 'position',
type = 'string', metavar = 'string',
help = 'column label for seed positions [%default]')
parser.add_option('-w', '--weight',
dest = 'weight',
type = 'string', metavar = 'string',
help = 'column label for seed weights [%default]')
parser.add_option('-m', '--microstructure',
dest = 'microstructure',
type = 'string', metavar = 'string',
help = 'column label for seed microstructures [%default]')
parser.add_option('-e', '--eulers',
dest = 'eulers',
type = 'string', metavar = 'string',
help = 'column label for seed Euler angles [%default]')
parser.add_option('--axes',
dest = 'axes',
type = 'string', nargs = 3, metavar = ' '.join(['string']*3),
help = 'orientation coordinate frame in terms of position coordinate frame [same]')
parser.add_option('--homogenization',
dest = 'homogenization',
type = 'int', metavar = 'int',
help = 'homogenization index to be used [%default]')
parser.add_option('--crystallite',
dest = 'crystallite',
type = 'int', metavar = 'int',
help = 'crystallite index to be used [%default]')
parser.add_option('--phase',
dest = 'phase',
type = 'int', metavar = 'int',
help = 'phase index to be used [%default]')
parser.add_option('-r', '--rnd',
dest = 'randomSeed',
type = 'int', metavar='int',
help = 'seed of random number generator for second phase distribution [%default]')
parser.add_option('--secondphase',
dest = 'secondphase',
type = 'float', metavar= 'float',
help = 'volume fraction of randomly distribute second phase [%default]')
parser.add_option('-l', '--laguerre',
dest = 'laguerre',
action = 'store_true',
help = 'use Laguerre (weighted Voronoi) tessellation [%default]')
parser.add_option('--cpus',
dest = 'cpus',
type = 'int', metavar = 'int',
help = 'number of parallel processes to use for Laguerre tessellation [%default]')
parser.add_option('--nonperiodic',
dest = 'nonperiodic',
action = 'store_true',
help = 'use nonperiodic tessellation [%default]')
parser.set_defaults(grid = None,
size = None,
origin = None,
position = 'pos',
weight = 'weight',
microstructure = 'microstructure',
eulers = 'Euler',
homogenization = 1,
phase = 1,
crystallite = 1,
phase = 1,
secondphase = 0.0,
config = False,
laguerre = False,
randomSeed = None,
cpus = 2,
laguerre = False,
nonperiodic = False,
randomSeed = None,
)
(options,filenames) = parser.parse_args()
if options.secondphase > 1.0 or options.secondphase < 0.0:
parser.error('volume fraction of second phase (%f) out of bounds...'%options.secondphase)
parser.error('volume fraction of second phase ({}) out of bounds.'.format(options.secondphase))
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name,
outname = os.path.splitext(name)[0]+'.geom',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],buffered=False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
# --- read header ----------------------------------------------------------------------------
table.head_read()
info,extra_header = table.head_getGeom()
if options.grid != None: info['grid'] = options.grid
if options.size != None: info['size'] = options.size
if options.origin != None: info['origin'] = options.origin
# ------------------------------------------ sanity checks ---------------------------------------
remarks = []
errors = []
labels = []
if np.all(table.label_index(['1_coords','2_coords','3_coords']) != -1):
coords = ['1_coords','2_coords','3_coords']
elif np.all(table.label_index(['x','y','z']) != -1):
coords = ['x','y','z']
hasGrains = table.label_dimension(options.microstructure) == 1
hasEulers = table.label_dimension(options.eulers) == 3
hasWeights = table.label_dimension(options.weight) == 1
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0) \
and np.all(info['grid'] < 1): errors.append('invalid size x y z.')
else:
file['croak'].write('no coordinate data (1/2/3_coords | x/y/z) found ...')
for i in xrange(3):
if info['size'][i] <= 0.0: # any invalid size?
info['size'][i] = float(info['grid'][i])/max(info['grid']) # normalize to grid
remarks.append('rescaling size {} to {}...'.format({0:'x',1:'y',2:'z'}[i],info['size'][i]))
if table.label_dimension(options.position) != 3:
errors.append('position columns "{}" have dimension {}.'.format(options.position,
table.label_dimension(options.position)))
else:
labels += [options.position]
if not hasEulers: remarks.append('missing seed orientations...')
else: labels += [options.eulers]
if not hasGrains: remarks.append('missing seed microstructure indices...')
else: labels += [options.microstructure]
if options.laguerre and not hasWeights: remarks.append('missing seed weights...')
else: labels += [options.weight]
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss=True)
continue
labels += coords
hasEulers = np.all(table.label_index(['phi1','Phi','phi2']) != -1)
if hasEulers:
labels += ['phi1','Phi','phi2']
hasGrains = table.label_index('microstructure') != -1
if hasGrains:
labels += ['microstructure']
hasWeight = table.label_index('weight') != -1
if hasWeight:
labels += ['weight']
# ------------------------------------------ read seeds ---------------------------------------
table.data_readArray(labels)
coords = table.data[:,table.label_index(coords)]
eulers = table.data[:,table.label_index(['phi1','Phi','phi2'])] if hasEulers else np.zeros(3*len(coords))
grain = table.data[:,table.label_index('microstructure')] if hasGrains else 1+np.arange(len(coords))
weights = table.data[:,table.label_index('weight')] if hasWeight else np.zeros(len(coords))
grainIDs = np.unique(grain).astype('i')
coords = table.data[:,table.label_index(options.position):table.label_index(options.position)+3]
eulers = table.data[:,table.label_index(options.eulers ):table.label_index(options.eulers )+3] if hasEulers else np.zeros(3*len(coords))
grains = table.data[:,table.label_index(options.microstructure)].astype('i') if hasGrains else 1+np.arange(len(coords))
weights = table.data[:,table.label_index(options.weight)] if hasWeights else np.zeros(len(coords))
grainIDs = np.unique(grains).astype('i')
NgrainIDs = len(grainIDs)
# --- tessellate microstructure ------------------------------------------------------------
#--- interpret header ----------------------------------------------------------------------------
info = {
'grid': np.zeros(3,'i'),
'size': np.array(options.size),
'origin': np.zeros(3,'d'),
'microstructures': 0,
'homogenization': options.homogenization,
}
newInfo = {
'microstructures': 0,
}
extra_header = []
x = (np.arange(info['grid'][0])+0.5)*info['size'][0]/info['grid'][0]
y = (np.arange(info['grid'][1])+0.5)*info['size'][1]/info['grid'][1]
z = (np.arange(info['grid'][2])+0.5)*info['size'][2]/info['grid'][2]
for header in table.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
else:
extra_header.append(header)
table.croak('tessellating...')
if info['microstructures'] != len(grainIDs):
file['croak'].write('grain data not matching grain count (%i)...\n'%(len(grainIDs)))
info['microstructures'] = len(grainIDs)
if options.laguerre:
undeformed = np.vstack(np.meshgrid(x, y, z)).reshape(3,-1).T
indices = laguerreTessellation(undeformed, coords, weights, grains, options.nonperiodic, options.cpus)
else:
coords = (coords*info['size']).T
undeformed = np.vstack(map(np.ravel, meshgrid2(x, y, z)))
if 0 not in options.grid: # user-specified grid
info['grid'] = np.array(options.grid)
indices = damask.core.math.periodicNearestNeighbor(\
info['size'],\
np.eye(3),\
undeformed,coords)//3**3 + 1 # floor division to kill periodic images
indices = grains[indices-1]
for i in xrange(3):
if info['size'][i] <= 0.0: # any invalid size?
info['size'][i] = float(info['grid'][i])/max(info['grid'])
file['croak'].write('rescaling size %s...\n'%{0:'x',1:'y',2:'z'}[i])
# --- write header ---------------------------------------------------------------------------------
file['croak'].write('grains to map: %i\n'%info['microstructures'] + \
'grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'])
grainIDs = np.intersect1d(grainIDs,indices)
info['microstructures'] = len(grainIDs)
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
continue
if np.any(info['size'] <= 0.0):
file['croak'].write('invalid size x y z.\n')
continue
if info['microstructures'] == 0:
file['croak'].write('no grain info found.\n')
continue
if info['homogenization'] == 0: info['homogenization'] = options.homogenization
#--- prepare data ---------------------------------------------------------------------------------
eulers = eulers.T
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i%s'%(info['microstructures'],
(' out of %i'%NgrainIDs if NgrainIDs != info['microstructures'] else '')),
])
#--- switch according to task ---------------------------------------------------------------------
if options.config: # write config file
phase = np.empty(info['microstructures'],'i')
phase.fill(options.phase)
phase[0:int(float(info['microstructures'])*options.secondphase)] = options.phase+1
randomSeed = int(os.urandom(4).encode('hex'), 16) if options.randomSeed == None else options.randomSeed # radom seed per file for second phase
config_header = []
formatwidth = 1+int(math.log10(info['microstructures']))
phase = options.phase * np.ones(info['microstructures'],'i')
if int(options.secondphase*info['microstructures']) > 0:
phase[0:int(options.secondphase*info['microstructures'])] += 1
randomSeed = int(os.urandom(4).encode('hex'), 16) if options.randomSeed == None \
else options.randomSeed # random seed for second phase
np.random.seed(randomSeed)
np.random.shuffle(phase)
formatwidth = 1+int(math.log10(info['microstructures']))
file['output'].write('#' + scriptID + ' ' + ' '.join(sys.argv[1:])+'\n')
if options.secondphase > 0.0: file['output'].write('# random seed for second phase %i\n'%randomSeed)
file['output'].write('\n<microstructure>\n')
for i,ID in enumerate(grainIDs):
file['output'].write('\n[Grain%s]\n'%(str(ID).zfill(formatwidth)) + \
'crystallite %i\n'%options.crystallite + \
'(constituent)\tphase %i\ttexture %s\tfraction 1.0\n'%(phase[i],str(ID).rjust(formatwidth)))
config_header += ['# random seed (phase shuffling): {}'.format(randomSeed)]
file['output'].write('\n<texture>\n')
config_header += ['<microstructure>']
for i,ID in enumerate(grainIDs):
config_header += ['[Grain%s]'%(str(ID).zfill(formatwidth)),
'crystallite %i'%options.crystallite,
'(constituent)\tphase %i\ttexture %s\tfraction 1.0'%(phase[i],str(ID).rjust(formatwidth)),
]
if hasEulers:
config_header += ['<texture>']
for ID in grainIDs:
eulerID = np.nonzero(grain == ID)[0][0] # find first occurrence of this grain id
file['output'].write('\n[Grain%s]\n'%(str(ID).zfill(formatwidth)) + \
'(gauss)\tphi1 %g\tPhi %g\tphi2 %g\tscatter 0.0\tfraction 1.0\n'%(eulers[0,eulerID],
eulers[1,eulerID],
eulers[2,eulerID]))
eulerID = np.nonzero(grains == ID)[0][0] # find first occurrence of this grain id
config_header += ['[Grain%s]'%(str(ID).zfill(formatwidth)),
'axes\t%s %s %s'%tuple(options.axes) if options.axes != None else '',
'(gauss)\tphi1 %g\tPhi %g\tphi2 %g\tscatter 0.0\tfraction 1.0'%tuple(eulers[eulerID]),
]
else: # write geometry file
x = (np.arange(info['grid'][0])+0.5)*info['size'][0]/info['grid'][0]
y = (np.arange(info['grid'][1])+0.5)*info['size'][1]/info['grid'][1]
z = (np.arange(info['grid'][2])+0.5)*info['size'][2]/info['grid'][2]
if not options.laguerre:
coords = (coords*info['size']).T
undeformed = np.vstack(map(np.ravel, meshgrid2(x, y, z)))
file['croak'].write('tessellating...\n')
indices = damask.core.math.periodicNearestNeighbor(\
info['size'],\
np.eye(3),\
undeformed,coords)//3**3 + 1 # floor division to kill periodic images
indices = grain[indices-1]
else :
undeformed = np.vstack(np.meshgrid(x, y, z)).reshape(3,-1).T
indices = laguerreTessellation(undeformed, coords, weights, grain)
newInfo['microstructures'] = info['microstructures']
for i in grainIDs:
if i not in indices: newInfo['microstructures'] -= 1
file['croak'].write(('all' if newInfo['microstructures'] == info['microstructures'] else 'only') +
' %i'%newInfo['microstructures'] +
('' if newInfo['microstructures'] == info['microstructures'] else \
' out of %i'%info['microstructures']) +
' grains mapped.\n')
#--- write header ---------------------------------------------------------------------------------
table.labels_clear()
table.info_clear()
table.info_append(extra_header+[
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],),
"size\tx %f\ty %f\tz %f"%(info['size'][0],info['size'][1],info['size'][2],),
"origin\tx %f\ty %f\tz %f"%(info['origin'][0],info['origin'][1],info['origin'][2],),
"homogenization\t%i"%info['homogenization'],
"microstructures\t%i"%(newInfo['microstructures']),
])
table.head_write()
table.labels_clear()
table.info_clear()
table.info_append([
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=info['microstructures']),
config_header,
])
table.head_write()
# --- write microstructure information ------------------------------------------------------------
formatwidth = 1+int(math.log10(newInfo['microstructures']))
table.data = indices.reshape(info['grid'][1]*info['grid'][2],info['grid'][0])
table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
table.data = indices.reshape(info['grid'][1]*info['grid'][2],info['grid'][0])
table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
#--- output finalization --------------------------------------------------------------------------
table.close()
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',
os.path.splitext(file['name'])[0] +'%s'%('_material.config' if options.config else '.geom'))

View File

@ -12,18 +12,6 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
#--------------------------------------------------------------------------------------------------
# MAIN
#--------------------------------------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
compress geometry files with ranges "a to b" and/or multiples "n of x".
@ -32,84 +20,55 @@ compress geometry files with ranges "a to b" and/or multiples "n of x".
(options, filenames) = parser.parse_args()
# ------------------------------------------ setup file handles -----------------------------------
# --- loop over input files -------------------------------------------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN',
'input':sys.stdin,
'output':sys.stdout,
'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name,
'croak':sys.stdout})
if filenames == []: filenames = ['STDIN']
# ------------------------------------------ loop over input files --------------------------------
for file in files:
file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n')
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False, labeled = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
if file['name'] != 'STDIN':
file['input'] = open(file['name'])
file['output'] = open(file['name']+'_tmp','w')
# --- interpret header ----------------------------------------------------------------------------
table = damask.ASCIItable(file['input'],file['output'],labels = False,buffered = False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.head_read()
info,extra_header = table.head_getGeom()
#--- interpret header -----------------------------------------------------------------------------
info = {
'grid': np.zeros(3,'i'),
'size': np.zeros(3,'d'),
'origin': np.zeros(3,'d'),
'homogenization': 0,
'microstructures': 0,
}
extra_header = []
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
for header in table.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
else:
extra_header.append(header)
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'] + \
'microstructures: %i\n'%info['microstructures'])
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
continue
if np.any(info['size'] <= 0.0):
file['croak'].write('invalid size x y z.\n')
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
#--- write header ---------------------------------------------------------------------------------
# --- write header ---------------------------------------------------------------------------------
table.labels_clear()
table.info_clear()
table.info_append(extra_header+[
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],),
"size\tx %e\ty %e\tz %e"%(info['size'][0],info['size'][1],info['size'][2],),
"origin\tx %e\ty %e\tz %e"%(info['origin'][0],info['origin'][1],info['origin'][2],),
"homogenization\t%i"%info['homogenization'],
"microstructures\t%i"%(info['microstructures']),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=info['microstructures']),
])
table.head_write()
table.output_flush()
# --- write packed microstructure information -----------------------------------------------------
type = ''
former = -1
start = -1
former = start = -1
reps = 0
outputAlive = True
@ -134,11 +93,12 @@ for file in files:
elif type == '.':
table.data = [str(former)]
elif type == 'to':
table.data = ['%i to %i'%(former-reps+1,former)]
table.data = ['{0} to {1}'.format(former-reps+1,former)]
elif type == 'of':
table.data = ['%i of %i'%(reps,former)]
table.data = ['{0} of {1}'.format(reps,former)]
outputAlive = table.data_write(delimiter = ' ') # output processed line
type = '.'
start = current
reps = 1
@ -146,18 +106,14 @@ for file in files:
former = current
table.data = {
'.' : [str(former)],
'to': ['%i to %i'%(former-reps+1,former)],
'of': ['%i of %i'%(reps,former)],
}[type]
'.' : [str(former)],
'to': ['%i to %i'%(former-reps+1,former)],
'of': ['%i of %i'%(reps,former)],
}[type]
outputAlive = table.data_write(delimiter = ' ') # output processed line
# --- output finalization --------------------------------------------------------------------------
# ------------------------------------------ output result ---------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
#--- output finalization --------------------------------------------------------------------------
if file['name'] != 'STDIN':
table.input_close() # close input ASCII table
table.output_close() # close input ASCII table
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close ASCII table
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -12,18 +12,6 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
#--------------------------------------------------------------------------------------------------
# MAIN
#--------------------------------------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Scales a geometry description independently in x, y, and z direction in terms of grid and/or size.
@ -31,102 +19,67 @@ Either absolute values or relative factors (like "0.25x") can be used.
""", version = scriptID)
parser.add_option('-g', '--grid', dest='grid', nargs = 3, metavar = 'string string string', \
help='a,b,c grid of hexahedral box [unchanged]')
parser.add_option('-s', '--size', dest='size', nargs = 3, metavar = 'string string string', \
help='x,y,z size of hexahedral box [unchanged]')
parser.add_option('-r', '--renumber', dest='renumber', action='store_true', \
help='renumber microstructure indices from 1...N [%default]')
parser.add_option('-g', '--grid',
dest = 'grid',
type = 'string', nargs = 3, metavar = 'string string string',
help = 'a,b,c grid of hexahedral box [unchanged]')
parser.add_option('-s', '--size',
dest = 'size',
type = 'string', nargs = 3, metavar = 'string string string',
help = 'x,y,z size of hexahedral box [unchanged]')
parser.add_option('-r', '--renumber',
dest = 'renumber',
action = 'store_true',
help = 'renumber microstructure indices from 1..N [%default]')
parser.set_defaults(renumber = False)
parser.set_defaults(grid = ['0','0','0'])
parser.set_defaults(size = ['0.0','0.0','0.0'])
parser.set_defaults(renumber = False,
grid = ['0','0','0'],
size = ['0.0','0.0','0.0'],
)
(options, filenames) = parser.parse_args()
#--- setup file handles ---------------------------------------------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN',
'input':sys.stdin,
'output':sys.stdout,
'croak':sys.stderr,
})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name,
'input':open(name),
'output':open(name+'_tmp','w'),
'croak':sys.stdout,
})
# --- loop over input files -------------------------------------------------------------------------
#--- loop over input files ------------------------------------------------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
if filenames == []: filenames = ['STDIN']
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False, labeled = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# --- interpret header ----------------------------------------------------------------------------
table = damask.ASCIItable(file['input'],file['output'],labels=False)
table.head_read()
info,extra_header = table.head_getGeom()
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# --- read data ------------------------------------------------------------------------------------
microstructure = table.microstructure_read(info['grid']) # read microstructure
# --- do work ------------------------------------------------------------------------------------
#--- interpret header ----------------------------------------------------------------------------
info = {
'grid': np.zeros(3,'i'),
'size': np.zeros(3,'d'),
'origin': np.zeros(3,'d'),
'homogenization': 0,
'microstructures': 0,
}
newInfo = {
'grid': np.zeros(3,'i'),
'size': np.zeros(3,'d'),
'microstructures': 0,
}
extra_header = []
for header in table.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
else:
extra_header.append(header)
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'] + \
'microstructures: %i\n'%info['microstructures'])
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
continue
if np.any(info['size'] <= 0.0):
file['croak'].write('invalid size x y z.\n')
continue
#--- read data ------------------------------------------------------------------------------------
microstructure = np.zeros(info['grid'].prod(),'i')
i = 0
while table.data_read():
items = table.data
if len(items) > 2:
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
else: items = map(int,items)
else: items = map(int,items)
s = len(items)
microstructure[i:i+s] = items
i += s
#--- do work ------------------------------------------------------------------------------------
'grid': np.zeros(3,'i'),
'origin': np.zeros(3,'d'),
'microstructures': 0,
}
newInfo['grid'] = np.array([{True:round(o*float(n.translate(None,'xX'))), False: round(float(n.translate(None,'xX')))}[n[-1].lower() == 'x'] for o,n in zip(info['grid'],options.grid)],'i')
newInfo['size'] = np.array([{True: o*float(n.translate(None,'xX')) , False: float(n.translate(None,'xX')) }[n[-1].lower() == 'x'] for o,n in zip(info['size'],options.size)],'d')
@ -146,56 +99,60 @@ for file in files:
microstructure = np.repeat(
np.repeat(
np.repeat(microstructure,multiplicity[0], axis=0),
multiplicity[1], axis=1),
multiplicity[2], axis=2)
multiplicity[1], axis=1),
multiplicity[2], axis=2)
# --- renumber to sequence 1...Ngrains if requested ------------------------------------------------
# http://stackoverflow.com/questions/10741346/np-frequency-counts-for-unique-values-in-an-array
if options.renumber:
newID=0
newID = 0
for microstructureID,count in enumerate(np.bincount(microstructure.reshape(newInfo['grid'].prod()))):
if count != 0:
newID+=1
microstructure=np.where(microstructure==microstructureID,newID,microstructure).reshape(microstructure.shape)
newID += 1
microstructure = np.where(microstructure == microstructureID, newID,microstructure).reshape(microstructure.shape)
newInfo['microstructures'] = microstructure.max()
#--- report ---------------------------------------------------------------------------------------
if (any(newInfo['grid'] != info['grid'])):
file['croak'].write('--> grid a b c: %s\n'%(' x '.join(map(str,newInfo['grid']))))
if (any(newInfo['size'] != info['size'])):
file['croak'].write('--> size x y z: %s\n'%(' x '.join(map(str,newInfo['size']))))
if (newInfo['microstructures'] != info['microstructures']):
file['croak'].write('--> microstructures: %i\n'%newInfo['microstructures'])
# --- report ---------------------------------------------------------------------------------------
if np.any(newInfo['grid'] < 1):
file['croak'].write('invalid new grid a b c.\n')
continue
if np.any(newInfo['size'] <= 0.0):
file['croak'].write('invalid new size x y z.\n')
remarks = []
errors = []
if (any(newInfo['grid'] != info['grid'])): remarks.append('--> grid a b c: %s'%(' x '.join(map(str,newInfo['grid']))))
if (any(newInfo['size'] != info['size'])): remarks.append('--> size x y z: %s'%(' x '.join(map(str,newInfo['size']))))
if ( newInfo['microstructures'] != info['microstructures']): remarks.append('--> microstructures: %i'%newInfo['microstructures'])
if np.any(newInfo['grid'] < 1): errors.append('invalid new grid a b c.')
if np.any(newInfo['size'] <= 0.0): errors.append('invalid new size x y z.')
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
#--- write header ---------------------------------------------------------------------------------
table.labels_clear()
# --- write header ---------------------------------------------------------------------------------
table.info_clear()
table.info_append(extra_header+[
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta %i\tb %i\tc %i"%(newInfo['grid'][0],newInfo['grid'][1],newInfo['grid'][2],),
"size\tx %f\ty %f\tz %f"%(newInfo['size'][0],newInfo['size'][1],newInfo['size'][2],),
"origin\tx %f\ty %f\tz %f"%(info['origin'][0],info['origin'][1],info['origin'][2],),
"homogenization\t%i"%info['homogenization'],
"microstructures\t%i"%(newInfo['microstructures']),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=newInfo['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=newInfo['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=newInfo['microstructures']),
])
table.labels_clear()
table.head_write()
table.output_flush()
# --- write microstructure information ------------------------------------------------------------
formatwidth = int(math.floor(math.log10(microstructure.max())+1))
table.data = microstructure.reshape((newInfo['grid'][0],newInfo['grid'][1]*newInfo['grid'][2]),order='F').transpose()
table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
table.data_writeArray('%%%ii'%(formatwidth),delimiter = ' ')
#--- output finalization --------------------------------------------------------------------------
if file['name'] != 'STDIN':
table.input_close()
table.output_close()
os.rename(file['name']+'_tmp',file['name'])
# --- output finalization --------------------------------------------------------------------------
table.close() # close ASCII table
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -13,125 +13,78 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
#--------------------------------------------------------------------------------------------------
# MAIN
#--------------------------------------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog [geomfile[s]]', description = """
Produce ASCIItable of structure data from geom description
""", version = scriptID)
parser.add_option('-p','--position',
dest = 'position',
type = 'string', metavar = 'string',
help = 'column label for position [%default]')
parser.set_defaults(position = 'pos',
)
(options, filenames) = parser.parse_args()
#--- setup file handles --------------------------------------------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN',
'input':sys.stdin,
'output':sys.stdout,
'croak':sys.stderr,
})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name,
'croak':sys.stdout,
})
# --- loop over input files -------------------------------------------------------------------------
#--- loop over input files ------------------------------------------------------------------------
for file in files:
if file['name'] != 'STDIN':
file['input'] = open(file['name'])
file['output'] = open(os.path.splitext(file['name'])[0]+'.txt','w')
if filenames == []: filenames = ['STDIN']
file['croak'].write('\033[1m' + scriptName + '\033[0m' + (': '+file['name'] if file['name'] != 'STDIN' else '') + '\n')
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = os.path.splitext(name)[0]+'.txt',
buffered = False, labeled = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
theTable = damask.ASCIItable(file['input'],file['output'],labels = False)
theTable.head_read()
# --- interpret header ----------------------------------------------------------------------------
#--- interpret header ----------------------------------------------------------------------------
table.head_read()
info,extra_header = table.head_getGeom()
info = {
'grid': np.zeros(3,'i'),
'size': np.zeros(3,'d'),
'origin': np.zeros(3,'d'),
'homogenization': 0,
'microstructures': 0,
}
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
for header in theTable.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'] + \
'microstructures: %i\n'%info['microstructures'])
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
continue
if np.any(info['size'] <= 0.0):
file['croak'].write('invalid size x y z.\n')
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# --- read data ------------------------------------------------------------------------------------
microstructure = table.microstructure_read(info['grid']) # read microstructure
# ------------------------------------------ assemble header ---------------------------------------
theTable.labels_clear()
theTable.labels_append(['%i_pos'%(i+1) for i in range(3)]+['microstructure'])
theTable.head_write()
table.info_clear()
table.info_append(extra_header + [scriptID + '\t' + ' '.join(sys.argv[1:])])
table.labels_clear()
table.labels_append(['{dim}_{label}'.format(dim = 1+i,label = options.position) for i in range(3)]+['microstructure'])
table.head_write()
table.output_flush()
#--- generate grid --------------------------------------------------------------------------------
xx = np.arange(float(info['grid'][0]))/info['grid'][0]*info['size'][0]+info['origin'][0]
yy = np.arange(float(info['grid'][1]))/info['grid'][1]*info['size'][1]+info['origin'][1]
zz = np.arange(float(info['grid'][2]))/info['grid'][2]*info['size'][2]+info['origin'][2]
x = (0.5 + np.arange(info['grid'][0],dtype=float))/info['grid'][0]*info['size'][0]+info['origin'][0]
y = (0.5 + np.arange(info['grid'][1],dtype=float))/info['grid'][1]*info['size'][1]+info['origin'][1]
z = (0.5 + np.arange(info['grid'][2],dtype=float))/info['grid'][2]*info['size'][2]+info['origin'][2]
#--- read microstructure information --------------------------------------------------------------
xx = np.tile( x, info['grid'][1]* info['grid'][2])
yy = np.tile(np.repeat(y,info['grid'][0] ),info['grid'][2])
zz = np.repeat(z,info['grid'][0]*info['grid'][1])
i = 0
outputAlive = True
while outputAlive and theTable.data_read():
items = theTable.data
if len(items) > 2:
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
else: items = map(int,items)
else: items = map(int,items)
for item in items:
theTable.data = [xx[ i%info['grid'][0]],
yy[(i/info['grid'][0])%info['grid'][1]],
zz[ i/info['grid'][0]/info['grid'][1]],
item]
i += 1
outputAlive = theTable.data_write() # output processed line
if not outputAlive: break
table.data = np.squeeze(np.dstack((xx,yy,zz,microstructure)))
table.data_writeArray()
# ------------------------------------------ finalize output ---------------------------------------
theTable.output_flush() # just in case of buffered ASCII table
if file['name'] != 'STDIN':
file['input'].close() # close input ASCII table
file['output'].close() # close output ASCII table
table.close()

View File

@ -12,35 +12,29 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
#--------------------------------------------------------------------------------------------------
# MAIN
#--------------------------------------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
translate microstructure indices (shift or substitute) and/or geometry origin.
""", version=scriptID)
parser.add_option('-o', '--origin', dest='origin', type='float', nargs = 3,
help='offset from old to new origin of grid', metavar=' '.join(['float']*3))
parser.add_option('-m', '--microstructure', dest='microstructure', type='int',
help='offset from old to new microstructure indices', metavar='int')
parser.add_option('-s', '--substitute', action='extend', dest='substitute',
help='substitutions of microstructure indices from,to,from,to,...', metavar='<string LIST>')
parser.add_option('-o', '--origin',
dest = 'origin',
type = 'float', nargs = 3, metavar = ' '.join(['float']*3),
help = 'offset from old to new origin of grid')
parser.add_option('-m', '--microstructure',
dest = 'microstructure',
type = 'int', metavar = 'int',
help = 'offset from old to new microstructure indices')
parser.add_option('-s', '--substitute',
dest = 'substitute',
action = 'extend', metavar = '<string LIST>',
help = 'substitutions of microstructure indices from,to,from,to,...')
parser.set_defaults(origin = (0.0,0.0,0.0))
parser.set_defaults(microstructure = 0)
parser.set_defaults(substitute = [])
parser.set_defaults(twoD = False)
parser.set_defaults(origin = (0.0,0.0,0.0),
microstructure = 0,
substitute = [],
)
(options, filenames) = parser.parse_args()
@ -48,121 +42,84 @@ sub = {}
for i in xrange(len(options.substitute)/2): # split substitution list into "from" -> "to"
sub[int(options.substitute[i*2])] = int(options.substitute[i*2+1])
#--- setup file handles ---------------------------------------------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN',
'input':sys.stdin,
'output':sys.stdout,
'croak':sys.stderr,
})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name,
'input':open(name),
'output':open(name+'_tmp','w'),
'croak':sys.stdout,
})
# --- loop over input files -------------------------------------------------------------------------
#--- loop over input files ------------------------------------------------------------------------
for file in files:
file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n')
if filenames == []: filenames = ['STDIN']
theTable = damask.ASCIItable(file['input'],file['output'],labels=False)
theTable.head_read()
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False, labeled = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# --- interpret header ----------------------------------------------------------------------------
table.head_read()
info,extra_header = table.head_getGeom()
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# --- read data ------------------------------------------------------------------------------------
microstructure = table.microstructure_read(info['grid']) # read microstructure
# --- do work ------------------------------------------------------------------------------------
#--- interpret header ----------------------------------------------------------------------------
info = {
'grid': np.zeros(3,'i'),
'size': np.zeros(3,'d'),
'origin': np.zeros(3,'d'),
'homogenization': 0,
'microstructures': 0,
}
newInfo = {
'origin': np.zeros(3,'d'),
'microstructures': 0,
}
extra_header = []
'origin': np.zeros(3,'d'),
'microstructures': 0,
}
for header in theTable.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
else:
extra_header.append(header)
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'] + \
'microstructures: %i\n'%info['microstructures'])
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
continue
if np.any(info['size'] <= 0.0):
file['croak'].write('invalid size x y z.\n')
continue
#--- read data ------------------------------------------------------------------------------------
microstructure = np.zeros(info['grid'].prod(),'i')
i = 0
while theTable.data_read():
items = theTable.data
if len(items) > 2:
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
else: items = map(int,items)
else: items = map(int,items)
s = len(items)
microstructure[i:i+s] = items
i += s
#--- do work ------------------------------------------------------------------------------------
substituted = np.copy(microstructure)
for k, v in sub.iteritems(): substituted[microstructure==k] = v # substitute microstructure indices
for k, v in sub.iteritems(): substituted[microstructure==k] = v # substitute microstructure indices
substituted += options.microstructure # shift microstructure indices
substituted += options.microstructure # shift microstructure indices
newInfo['origin'] = info['origin'] + options.origin
newInfo['microstructures'] = substituted.max()
#--- report ---------------------------------------------------------------------------------------
if (any(newInfo['origin'] != info['origin'])):
file['croak'].write('--> origin x y z: %s\n'%(' : '.join(map(str,newInfo['origin']))))
if (newInfo['microstructures'] != info['microstructures']):
file['croak'].write('--> microstructures: %i\n'%newInfo['microstructures'])
# --- report ---------------------------------------------------------------------------------------
#--- write header ---------------------------------------------------------------------------------
theTable.labels_clear()
theTable.info_clear()
theTable.info_append(extra_header+[
remarks = []
if (any(newInfo['origin'] != info['origin'])): remarks.append('--> origin x y z: %s'%(' : '.join(map(str,newInfo['origin']))))
if ( newInfo['microstructures'] != info['microstructures']): remarks.append('--> microstructures: %i'%newInfo['microstructures'])
if remarks != []: file['croak'](remarks)
# --- write header ---------------------------------------------------------------------------------
table.labels_clear()
table.info_clear()
table.info_append(extra_header+[
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],),
"size\tx %f\ty %f\tz %f"%(info['size'][0],info['size'][1],info['size'][2],),
"origin\tx %f\ty %f\tz %f"%(newInfo['origin'][0],newInfo['origin'][1],newInfo['origin'][2],),
"homogenization\t%i"%info['homogenization'],
"microstructures\t%i"%(newInfo['microstructures']),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=newInfo['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=newInfo['microstructures']),
])
theTable.head_write()
theTable.output_flush()
table.head_write()
table.output_flush()
# --- write microstructure information ------------------------------------------------------------
formatwidth = int(math.floor(math.log10(substituted.max())+1))
theTable.data = substituted.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
theTable.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
#--- output finalization --------------------------------------------------------------------------
if file['name'] != 'STDIN':
theTable.input_close()
theTable.output_close()
os.rename(file['name']+'_tmp',file['name'])
formatwidth = int(math.floor(math.log10(microstructure.max())+1))
table.data = microstructure.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
table.data_writeArray('%%%ii'%(formatwidth),delimiter = ' ')
# --- output finalization --------------------------------------------------------------------------
table.close() # close ASCII table
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -12,122 +12,75 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
#--------------------------------------------------------------------------------------------------
# MAIN
#--------------------------------------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Unpack geometry files containing ranges "a to b" and/or "n of x" multiples (exclusively in one line).
""", version = scriptID)
parser.add_option('-1', '--onedimensional', dest='oneD', action='store_true', \
help='output geom file with one-dimensional data arrangement [%default]')
parser.add_option('-1', '--onedimensional',
dest = 'oneD',
action = 'store_true',
help = 'output geom file with one-dimensional data arrangement [%default]')
parser.set_defaults(oneD = False)
parser.set_defaults(oneD = False,
)
(options, filenames) = parser.parse_args()
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
# --- loop over input files -------------------------------------------------------------------------
# ------------------------------------------ loop over input files ---------------------------------
for file in files:
file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n')
if filenames == []: filenames = ['STDIN']
table = damask.ASCIItable(file['input'],file['output'],labels = False,buffered = False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False, labeled = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# --- interpret header ----------------------------------------------------------------------------
#--- interpret header ----------------------------------------------------------------------------
info = {
'grid': np.zeros(3,'i'),
'size': np.zeros(3,'d'),
'origin': np.zeros(3,'d'),
'homogenization': 0,
'microstructures': 0,
}
extra_header = []
table.head_read()
info,extra_header = table.head_getGeom()
for header in table.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
else:
extra_header.append(header)
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'] + \
'microstructures: %i\n'%info['microstructures'])
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
continue
if np.any(info['size'] <= 0.0):
file['croak'].write('invalid size x y z.\n')
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
#--- read data ------------------------------------------------------------------------------------
microstructure = np.zeros(info['grid'].prod(),'i')
i = 0
# --- write header ---------------------------------------------------------------------------------
while table.data_read(): # read next data line of ASCII table
items = table.data
if len(items) > 2:
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
else: items = map(int,items)
else: items = map(int,items)
s = len(items)
microstructure[i:i+s] = items
i += s
#--- write header ---------------------------------------------------------------------------------
table.labels_clear()
table.info_clear()
table.info_append(extra_header+[
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],),
"size\tx %e\ty %e\tz %e"%(info['size'][0],info['size'][1],info['size'][2],),
"origin\tx %e\ty %e\tz %e"%(info['origin'][0],info['origin'][1],info['origin'][2],),
"homogenization\t%i"%info['homogenization'],
"microstructures\t%i"%(info['microstructures']),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=info['microstructures']),
])
table.head_write()
table.output_flush()
# --- write microstructure information ------------------------------------------------------------
formatwidth = int(math.floor(math.log10(microstructure.max())+1))
if options.oneD:
table.data = microstructure
else:
table.data = microstructure.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
microstructure = table.microstructure_read(info['grid']) # read microstructure
formatwidth = int(math.floor(math.log10(microstructure.max())+1)) # efficient number printing format
if options.oneD: table.data = microstructure
else: table.data = microstructure.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
table.data_writeArray('%%%ii'%(formatwidth),delimiter = ' ')
#--- output finalization --------------------------------------------------------------------------
if file['name'] != 'STDIN':
table.input_close() # close input ASCII table
table.output_close() # close input ASCII table
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
table.close() # close ASCII table
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -13,18 +13,6 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
#--------------------------------------------------------------------------------------------------
# MAIN
#--------------------------------------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Offset microstructure index for points which see a microstructure different from themselves within a given (cubic) vicinity,
@ -32,131 +20,98 @@ i.e. within the region close to a grain/phase boundary.
""", version = scriptID)
parser.add_option('-v', '--vicinity', dest='vicinity', type='int', metavar='int', \
help='voxel distance checked for presence of other microstructure [%default]')
parser.add_option('-m', '--microstructureoffset', dest='offset', type='int', metavar='int', \
help='offset (positive or negative) for tagged microstructure. '+
'"0" selects maximum microstructure index [%default]')
parser.add_option('-v', '--vicinity',
dest = 'vicinity',
type = 'int', metavar = 'int',
help = 'voxel distance checked for presence of other microstructure [%default]')
parser.add_option('-m', '--microstructureoffset',
dest='offset',
type = 'int', metavar = 'int',
help = 'offset (positive or negative) for tagged microstructure indices. '+
'"0" selects maximum microstructure index [%default]')
parser.set_defaults(vicinity = 1)
parser.set_defaults(offset = 0)
parser.set_defaults(vicinity = 1,
offset = 0,
)
(options, filenames) = parser.parse_args()
#--- setup file handles --------------------------------------------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN',
'input':sys.stdin,
'output':sys.stdout,
'croak':sys.stderr,
})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name,
'input':open(name),
'output':open(name+'_tmp','w'),
'croak':sys.stdout,
})
# --- loop over input files -------------------------------------------------------------------------
#--- loop over input files ------------------------------------------------------------------------
for file in files:
file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n')
if filenames == []: filenames = ['STDIN']
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False, labeled = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# --- interpret header ----------------------------------------------------------------------------
table = damask.ASCIItable(file['input'],file['output'],labels=False)
table.head_read()
info,extra_header = table.head_getGeom()
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# --- read data ------------------------------------------------------------------------------------
microstructure = table.microstructure_read(info['grid']).reshape(info['grid'],order='F') # read microstructure
# --- do work ------------------------------------------------------------------------------------
#--- interpret header ----------------------------------------------------------------------------
info = {
'grid': np.zeros(3,'i'),
'size': np.zeros(3,'d'),
'origin': np.zeros(3,'d'),
'homogenization': 0,
'microstructures': 0,
}
newInfo = {
'microstructures': 0,
}
extra_header = []
'microstructures': 0,
}
for header in table.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
else:
extra_header.append(header)
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'] + \
'microstructures: %i\n'%info['microstructures'])
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
continue
if np.any(info['size'] <= 0.0):
file['croak'].write('invalid size x y z.\n')
continue
#--- read data ------------------------------------------------------------------------------------
microstructure = np.zeros(info['grid'].prod(),'i')
i = 0
table.data_rewind()
while table.data_read():
items = table.data
if len(items) > 2:
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
else: items = map(int,items)
else: items = map(int,items)
s = len(items)
microstructure[i:i+s] = items
i += s
#--- do work ------------------------------------------------------------------------------------
microstructure = microstructure.reshape(info['grid'],order='F')
if options.offset == 0:
options.offset = microstructure.max()
if options.offset == 0: options.offset = microstructure.max()
microstructure = np.where(ndimage.filters.maximum_filter(microstructure,size=1+2*options.vicinity,mode='wrap') ==
ndimage.filters.minimum_filter(microstructure,size=1+2*options.vicinity,mode='wrap'),
microstructure, microstructure + options.offset)
ndimage.filters.minimum_filter(microstructure,size=1+2*options.vicinity,mode='wrap'),
microstructure, microstructure + options.offset)
newInfo['microstructures'] = microstructure.max()
if (newInfo['microstructures'] != info['microstructures']):
file['croak'].write('--> microstructures: %i\n'%newInfo['microstructures'])
#--- write header ---------------------------------------------------------------------------------
# --- report ---------------------------------------------------------------------------------------
remarks = []
if ( newInfo['microstructures'] != info['microstructures']): remarks.append('--> microstructures: %i'%newInfo['microstructures'])
if remarks != []: file['croak'](remarks)
# --- write header ---------------------------------------------------------------------------------
table.labels_clear()
table.info_clear()
table.info_append(extra_header+[
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],),
"size\tx %f\ty %f\tz %f"%(info['size'][0],info['size'][1],info['size'][2],),
"origin\tx %f\ty %f\tz %f"%(info['origin'][0],info['origin'][1],info['origin'][2],),
"homogenization\t%i"%info['homogenization'],
"microstructures\t%i"%(newInfo['microstructures']),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=newInfo['microstructures']),
])
table.head_write()
table.output_flush()
# --- write microstructure information ------------------------------------------------------------
formatwidth = int(math.floor(math.log10(microstructure.max())+1))
table.data = microstructure.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
table.data_writeArray('%%%ii'%(formatwidth),delimiter = ' ')
#--- output finalization --------------------------------------------------------------------------
if file['name'] != 'STDIN':
table.input_close()
table.output_close()
os.rename(file['name']+'_tmp',file['name'])
# --- output finalization --------------------------------------------------------------------------
table.close() # close ASCII table
if name != 'STDIN': os.rename(name+'_tmp',name) # overwrite old one with tmp new

View File

@ -12,54 +12,46 @@ scriptName = scriptID.split()[1]
def integerFactorization(i):
j = int(math.floor(math.sqrt(float(i))))
while (j>1 and int(i)%j != 0):
while j>1 and int(i)%j != 0:
j -= 1
return j
def positiveRadians(angle):
angle = math.radians(float(angle))
while angle < 0.0:
angle += 2.0*math.pi
def TSLheader(sizeX,sizeY,step):
return angle
def getHeader(sizeX,sizeY,step):
return [ \
'# TEM_PIXperUM 1.000000', \
'# x-star 0.509548', \
'# y-star 0.795272', \
'# z-star 0.611799', \
'# WorkingDistance 18.000000', \
'#', \
'# Phase 1', \
'# MaterialName Al', \
'# Formula Fe', \
'# Info', \
'# Symmetry 43', \
'# LatticeConstants 2.870 2.870 2.870 90.000 90.000 90.000', \
'# NumberFamilies 4', \
'# hklFamilies 1 1 0 1 0.000000 1', \
'# hklFamilies 2 0 0 1 0.000000 1', \
'# hklFamilies 2 1 1 1 0.000000 1', \
'# hklFamilies 3 1 0 1 0.000000 1', \
'# Categories 0 0 0 0 0 ', \
'#', \
'# GRID: SquareGrid', \
'# XSTEP: ' + str(step), \
'# YSTEP: ' + str(step), \
'# NCOLS_ODD: ' + str(sizeX), \
'# NCOLS_EVEN: ' + str(sizeX), \
'# NROWS: ' + str(sizeY), \
'#', \
'# OPERATOR: ODFsammpling', \
'#', \
'# SAMPLEID: ', \
'#', \
'# SCANID: ', \
'#', \
return [
'# TEM_PIXperUM 1.000000',
'# x-star 0.509548',
'# y-star 0.795272',
'# z-star 0.611799',
'# WorkingDistance 18.000000',
'#',
'# Phase 1',
'# MaterialName Al',
'# Formula Fe',
'# Info',
'# Symmetry 43',
'# LatticeConstants 2.870 2.870 2.870 90.000 90.000 90.000',
'# NumberFamilies 4',
'# hklFamilies 1 1 0 1 0.000000 1',
'# hklFamilies 2 0 0 1 0.000000 1',
'# hklFamilies 2 1 1 1 0.000000 1',
'# hklFamilies 3 1 0 1 0.000000 1',
'# Categories 0 0 0 0 0 ',
'#',
'# GRID: SquareGrid',
'# XSTEP: ' + str(step),
'# YSTEP: ' + str(step),
'# NCOLS_ODD: ' + str(sizeX),
'# NCOLS_EVEN: ' + str(sizeX),
'# NROWS: ' + str(sizeY),
'#',
'# OPERATOR: ODFsammpling',
'#',
'# SAMPLEID: ',
'#',
'# SCANID: ',
'#',
]
def binAsBins(bin,intervals):
@ -91,8 +83,8 @@ def binAsEulers(bin,intervals,deltas,center):
def directInvRepetitions(probability,scale):
""" calculate number of samples drawn by direct inversion """
nDirectInv = 0
for bin in range(len(probability)): # loop over bins
nDirectInv += int(round(probability[bin]*scale)) # calc repetition
for bin in range(len(probability)): # loop over bins
nDirectInv += int(round(probability[bin]*scale)) # calc repetition
return nDirectInv
@ -103,11 +95,11 @@ def directInvRepetitions(probability,scale):
def directInversion (ODF,nSamples):
""" ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians) """
nOptSamples = max(ODF['nNonZero'],nSamples) # random subsampling if too little samples requested
nOptSamples = max(ODF['nNonZero'],nSamples) # random subsampling if too little samples requested
nInvSamples = 0
repetition = [None]*ODF['nBins']
probabilityScale = nOptSamples # guess
probabilityScale = nOptSamples # guess
scaleLower = 0.0
nInvSamplesLower = 0
@ -118,7 +110,7 @@ def directInversion (ODF,nSamples):
while (\
(scaleUpper-scaleLower > scaleUpper*1e-15 or nInvSamplesUpper < nOptSamples) and \
nInvSamplesUpper != nOptSamples \
): # closer match required?
): # closer match required?
if nInvSamplesUpper < nOptSamples:
scaleLower,scaleUpper = scaleUpper,scaleUpper+incFactor*(scaleUpper-scaleLower)/2.0
incFactor *= 2.0
@ -128,36 +120,37 @@ def directInversion (ODF,nSamples):
incFactor = 1.0
nInvSamplesUpper = directInvRepetitions(ODF['dV_V'],scaleUpper)
nIter += 1
file['croak'].write('%i:(%12.11f,%12.11f) %i <= %i <= %i\n'\
%(nIter,scaleLower,scaleUpper,nInvSamplesLower,nOptSamples,nInvSamplesUpper))
table.croak('%i:(%12.11f,%12.11f) %i <= %i <= %i'%(nIter,scaleLower,scaleUpper,
nInvSamplesLower,nOptSamples,nInvSamplesUpper))
nInvSamples = nInvSamplesUpper
scale = scaleUpper
file['croak'].write('created set of %i samples (%12.11f) with scaling %12.11f delivering %i\n'\
%(nInvSamples,float(nInvSamples)/nOptSamples-1.0,scale,nSamples))
repetition = [None]*ODF['nBins'] # preallocate and clear
table.croak('created set of %i samples (%12.11f) with scaling %12.11f delivering %i'%(nInvSamples,
float(nInvSamples)/nOptSamples-1.0,
scale,nSamples))
repetition = [None]*ODF['nBins'] # preallocate and clear
for bin in range(ODF['nBins']): # loop over bins
repetition[bin] = int(round(ODF['dV_V'][bin]*scale)) # calc repetition
for bin in range(ODF['nBins']): # loop over bins
repetition[bin] = int(round(ODF['dV_V'][bin]*scale)) # calc repetition
# build set
set = [None]*nInvSamples
i = 0
for bin in range(ODF['nBins']):
set[i:i+repetition[bin]] = [bin]*repetition[bin] # fill set with bin, i.e. orientation
i += repetition[bin] # advance set counter
set[i:i+repetition[bin]] = [bin]*repetition[bin] # fill set with bin, i.e. orientation
i += repetition[bin] # advance set counter
orientations = [None]*nSamples
reconstructedODF = [0.0]*ODF['nBins']
orientations = np.zeros((nSamples,3),'f')
reconstructedODF = np.zeros(ODF['nBins'],'f')
unitInc = 1.0/nSamples
for j in range(nSamples):
if (j == nInvSamples-1): ex = j
else: ex = int(round(random.uniform(j+0.5,nInvSamples-0.5)))
bin = set[ex]
bins = binAsBins(bin,ODF['interval'])
bins = binAsBins(bin,ODF['interval']) # PE: why are we doing this??
Eulers = binAsEulers(bin,ODF['interval'],ODF['delta'],ODF['center'])
orientations[j] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
orientations[j] = np.degrees(Eulers)
reconstructedODF[bin] += unitInc
set[ex] = set[j] # exchange orientations
set[ex] = set[j] # exchange orientations
return orientations, reconstructedODF
@ -169,8 +162,8 @@ def MonteCarloEulers (ODF,nSamples):
countMC = 0
maxdV_V = max(ODF['dV_V'])
orientations = [None]*nSamples
reconstructedODF = [0.0]*ODF['nBins']
orientations = np.zeros((nSamples,3),'f')
reconstructedODF = np.zeros(ODF['nBins'],'f')
unitInc = 1.0/nSamples
for j in range(nSamples):
@ -182,7 +175,7 @@ def MonteCarloEulers (ODF,nSamples):
Eulers = [limit*random.random() for limit in ODF['limit']]
bins = EulersAsBins(Eulers,ODF['interval'],ODF['delta'],ODF['center'])
bin = binsAsBin(bins,ODF['interval'])
orientations[j] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
orientations[j] = np.degrees(Eulers)
reconstructedODF[bin] += unitInc
return orientations, reconstructedODF, countMC
@ -193,8 +186,8 @@ def MonteCarloBins (ODF,nSamples):
countMC = 0
maxdV_V = max(ODF['dV_V'])
orientations = [None]*nSamples
reconstructedODF = [0.0]*ODF['nBins']
orientations = np.zeros((nSamples,3),'f')
reconstructedODF = np.zeros(ODF['nBins'],'f')
unitInc = 1.0/nSamples
for j in range(nSamples):
@ -205,7 +198,7 @@ def MonteCarloBins (ODF,nSamples):
MC = maxdV_V*random.random()
bin = int(ODF['nBins'] * random.random())
Eulers = binAsEulers(bin,ODF['interval'],ODF['delta'],ODF['center'])
orientations[j] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
orientations[j] = np.degrees(Eulers)
reconstructedODF[bin] += unitInc
return orientations, reconstructedODF
@ -214,8 +207,8 @@ def MonteCarloBins (ODF,nSamples):
def TothVanHoutteSTAT (ODF,nSamples):
""" ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians) """
orientations = [None]*nSamples
reconstructedODF = [0.0]*ODF['nBins']
orientations = np.zeros((nSamples,3),'f')
reconstructedODF = np.zeros(ODF['nBins'],'f')
unitInc = 1.0/nSamples
selectors = [random.random() for i in range(nSamples)]
@ -229,11 +222,12 @@ def TothVanHoutteSTAT (ODF,nSamples):
cumdV_V += ODF['dV_V'][bin]
while indexSelector < nSamples and selectors[indexSelector] < cumdV_V:
Eulers = binAsEulers(bin,ODF['interval'],ODF['delta'],ODF['center'])
orientations[countSamples] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
orientations[countSamples] = np.degrees(Eulers)
reconstructedODF[bin] += unitInc
countSamples += 1
indexSelector += 1
file['croak'].write('created set of %i when asked to deliver %i\n'%(countSamples,nSamples))
table.croak('created set of %i when asked to deliver %i'%(countSamples,nSamples))
return orientations, reconstructedODF
@ -242,73 +236,83 @@ def TothVanHoutteSTAT (ODF,nSamples):
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Transform linear binned data into Euler angles.
Transform linear binned ODF data into given number of orientations.
""", version = scriptID)
parser.add_option('-n', '--nsamples', dest='number', type='int', metavar = 'int',
help='number of orientations to be generated [%default]')
parser.add_option('-a','--algorithm', dest='algorithm', type='string', metavar = 'string',
help='sampling algorithm. IA: direct inversion, STAT: Van Houtte, MC: Monte Carlo. [%default].') #make choice
parser.add_option('-p','--phase', dest='phase', type='int', metavar = 'int',
help='phase index to be used [%default]')
parser.add_option('--crystallite', dest='crystallite', type='int', metavar = 'int',
help='crystallite index to be used [%default]')
parser.add_option('-r', '--rnd', dest='randomSeed', type='int', metavar='int', \
help='seed of random number generator [%default]')
parser.add_option('--ang', dest='ang', action='store_true',
help='write .ang file [%default]')
parser.set_defaults(randomSeed = None)
parser.set_defaults(number = 500)
parser.set_defaults(algorithm = 'IA')
parser.set_defaults(phase = 1)
parser.set_defaults(crystallite = 1)
parser.set_defaults(ang = True)
parser.add_option('-n', '--nsamples',
dest = 'number',
type = 'int', metavar = 'int',
help = 'number of orientations to be generated [%default]')
parser.add_option('-a','--algorithm',
dest = 'algorithm',
type = 'string', metavar = 'string',
help = 'sampling algorithm. IA: integral approximation, STAT: Van Houtte, MC: Monte Carlo. [%default].') #make choice
parser.add_option('-p','--phase',
dest = 'phase',
type = 'int', metavar = 'int',
help = 'phase index to be used [%default]')
parser.add_option('--crystallite',
dest = 'crystallite',
type = 'int', metavar = 'int',
help = 'crystallite index to be used [%default]')
parser.add_option('-r', '--rnd',
dest = 'randomSeed',
type = 'int', metavar = 'int', \
help = 'seed of random number generator [%default]')
parser.add_option('--ang',
dest = 'ang',
action = 'store_true',
help = 'write TSL/EDAX .ang file [%default]')
parser.set_defaults(randomSeed = None,
number = 500,
algorithm = 'IA',
phase = 1,
crystallite = 1,
ang = True,
)
(options,filenames) = parser.parse_args()
nSamples = options.number
methods = [options.algorithm]
#--- setup file handles ---------------------------------------------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN','input':sys.stdin,'output':sys.stdout,'outang':sys.stdout,'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name,'input':open(name),'output':open(name+'_tmp','w'),'outang':open(name+'_ang_tmp','w'),'croak':sys.stdout})
# --- loop over input files -------------------------------------------------------------------------
#--- loop over input files ------------------------------------------------------------------------
for file in files:
file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n')
if filenames == []: filenames = ['STDIN']
table = damask.ASCIItable(file['input'],file['output'],buffered = False)
table.head_read()
randomSeed = int(os.urandom(4).encode('hex'), 16) if options.randomSeed == None else options.randomSeed # radom seed per file for second phase
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = None,
buffered = False, readonly = True)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
randomSeed = int(os.urandom(4).encode('hex'), 16) if options.randomSeed == None else options.randomSeed # random seed per file for second phase
random.seed(randomSeed)
# --------------- figure out columns in table ----------- -----------------------------------------
column = {}
pos = 0
keys = ['phi1','Phi','phi2','intensity']
for key in keys:
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:
column[key] = pos
pos+=1
if pos != 4: continue
# ------------------------------------------ read header ---------------------------------------
table.head_read()
errors = []
labels = ['phi1','Phi','phi2','intensity']
for i,index in enumerate(table.label_index(labels)):
if index < 0: errors.append('label {} not present.'.format(labels[i])
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ read data ---------------------------------------
binnedODF = table.data_readArray(labels)
binnedODF = table.data_readArray(keys)
# --------------- figure out limits (left/right), delta, and interval -----------------------------
ODF = {}
limits = np.array([[np.min(table.data[:,column['phi1']]),\
np.min(table.data[:,column['Phi']]),\
np.min(table.data[:,column['phi2']])],\
[np.max(table.data[:,column['phi1']]),\
np.max(table.data[:,column['Phi']]),\
np.max(table.data[:,column['phi2']])]])
limits = np.array([np.min(table.data,axis=0),
np.max(table.data,axis=0)])
ODF['limit'] = np.radians(limits[1,:])
if all(limits[0,:]<1e-8): # vertex centered
@ -319,13 +323,13 @@ for file in files:
eulers = [{},{},{}]
for i in xrange(table.data.shape[0]):
for j in xrange(3):
eulers[j][str(table.data[i,column[keys[j]]])] = True # remember eulers along phi1, Phi, and phi2
eulers[j][str(table.data[i,j]])] = True # remember eulers along phi1, Phi, and phi2
ODF['interval'] = np.array([len(eulers[0]),len(eulers[1]),len(eulers[2]),],'i') # steps are number of distict values
ODF['nBins'] = ODF['interval'].prod()
ODF['delta'] = np.radians(np.array(limits[1,0:3]-limits[0,0:3])/(ODF['interval']-1))
if binnedODF[0] != ODF['nBins']:
file['croak'].write('expecting %i values but got %i'%(ODF['nBins'],len(linesBinnedODF)))
table.croak('expecting %i values but got %i'%(ODF['nBins'],len(linesBinnedODF)))
continue
# build binnedODF array
@ -335,19 +339,20 @@ for file in files:
dg = ODF['delta'][0]*2.0*math.sin(ODF['delta'][1]/2.0)*ODF['delta'][2]
for b in range(ODF['nBins']):
ODF['dV_V'][b] = \
max(0.0,table.data[b,column['intensity']]) * dg * \
math.sin(((b//ODF['interval'][2])%ODF['interval'][1]+ODF['center'])*ODF['delta'][1])
max(0.0,table.data[b,column['intensity']]) * dg * \
math.sin(((b//ODF['interval'][2])%ODF['interval'][1]+ODF['center'])*ODF['delta'][1])
if ODF['dV_V'][b] > 0.0:
sumdV_V += ODF['dV_V'][b]
ODF['nNonZero'] += 1
for b in range(ODF['nBins']): ODF['dV_V'][b] /= sumdV_V # normalize dV/V
for b in range(ODF['nBins']): ODF['dV_V'][b] /= sumdV_V # normalize dV/V
file['croak'].write('non-zero fraction: %12.11f (%i/%i)\n'\
%(float(ODF['nNonZero'])/ODF['nBins'],ODF['nNonZero'],ODF['nBins']))
file['croak'].write('Volume integral of ODF: %12.11f\n'%sumdV_V)
file['croak'].write('Reference Integral: %12.11f\n'\
%(ODF['limit'][0]*ODF['limit'][2]*(1-math.cos(ODF['limit'][1]))))
table.croak(['non-zero fraction: %12.11f (%i/%i)'%(float(ODF['nNonZero'])/ODF['nBins'],
ODF['nNonZero'],
ODF['nBins']),
'Volume integral of ODF: %12.11f\n'%sumdV_V,
'Reference Integral: %12.11f\n'%(ODF['limit'][0]*ODF['limit'][2]*(1-math.cos(ODF['limit'][1]))),
])
# call methods
Functions = {'IA': 'directInversion', 'STAT': 'TothVanHoutteSTAT', 'MC': 'MonteCarloBins'}
@ -372,66 +377,72 @@ for file in files:
indivSum['orig'] += ODF['dV_V'][bin]
indivSquaredSum['orig'] += ODF['dV_V'][bin]**2
file['croak'].write('sqrt(N*)RMSD of ODFs:\t %12.11f\n'% math.sqrt(nSamples*squaredDiff[method]))
file['croak'].write('RMSrD of ODFs:\t %12.11f\n'%math.sqrt(squaredRelDiff[method]))
file['croak'].write('rMSD of ODFs:\t %12.11f\n'%(squaredDiff[method]/indivSquaredSum['orig']))
file['croak'].write('nNonZero correlation slope:\t %12.11f\n'\
table.croak(['sqrt(N*)RMSD of ODFs:\t %12.11f'% math.sqrt(nSamples*squaredDiff[method]),
'RMSrD of ODFs:\t %12.11f'%math.sqrt(squaredRelDiff[method]),
'rMSD of ODFs:\t %12.11f'%(squaredDiff[method]/indivSquaredSum['orig']),
'nNonZero correlation slope:\t %12.11f'\
%((ODF['nNonZero']*mutualProd[method]-indivSum['orig']*indivSum[method])/\
(ODF['nNonZero']*indivSquaredSum['orig']-indivSum['orig']**2)))
file['croak'].write( 'nNonZero correlation confidence:\t %12.11f\n'\
(ODF['nNonZero']*indivSquaredSum['orig']-indivSum['orig']**2)),
'nNonZero correlation confidence:\t %12.11f'\
%((mutualProd[method]-indivSum['orig']*indivSum[method]/ODF['nNonZero'])/\
(ODF['nNonZero']*math.sqrt((indivSquaredSum['orig']/ODF['nNonZero']-(indivSum['orig']/ODF['nNonZero'])**2)*\
(indivSquaredSum[method]/ODF['nNonZero']-(indivSum[method]/ODF['nNonZero'])**2)))))
(ODF['nNonZero']*math.sqrt((indivSquaredSum['orig']/ODF['nNonZero']-(indivSum['orig']/ODF['nNonZero'])**2)*\
(indivSquaredSum[method]/ODF['nNonZero']-(indivSum[method]/ODF['nNonZero'])**2)))),
])
if method == 'IA' and nSamples < ODF['nNonZero']:
strOpt = '(%i)'%ODF['nNonZero']
formatwidth = 1
file['output'].write('#' + scriptID + ' ' + ' '.join(sys.argv[1:])+'\n')
file['output'].write('# random seed %i\n'%randomSeed)
file['output'].write('#-------------------#')
file['output'].write('\n<microstructure>\n')
file['output'].write('#-------------------#\n')
formatwidth = 1+int(math.log10(nSamples))
materialConfig = [
'#' + scriptID + ' ' + ' '.join(sys.argv[1:]),
'# random seed %i'%randomSeed
'#-------------------#',
'<microstructure>',
'#-------------------#',
]
for i,ID in enumerate(xrange(nSamples)):
file['output'].write('[Grain%s]\n'%(str(ID+1).zfill(formatwidth)) + \
'crystallite %i\n'%options.crystallite + \
'(constituent) phase %i texture %s fraction 1.0\n'%(options.phase,str(ID+1).rjust(formatwidth)))
materialConfig += ['[Grain%s]'%(str(ID+1).zfill(formatwidth)),
'crystallite %i'%options.crystallite,
'(constituent) phase %i texture %s fraction 1.0'%(options.phase,str(ID+1).rjust(formatwidth)),
]
materialConfig += [
'#-------------------#',
'<texture>',
'#-------------------#',
]
file['output'].write('\n#-------------------#')
file['output'].write('\n<texture>\n')
file['output'].write('#-------------------#\n')
for ID in xrange(nSamples):
eulers = re.split(r'[\t]', Orientations[ID].strip())
eulers = Orientations[ID]
materialConfig += ['[Grain%s]'%(str(ID+1).zfill(formatwidth)),
'(gauss) phi1 %10.5f Phi %10.5f phi2 %10.6f scatter 0.0 fraction 1.0'%(*eulers),
]
file['output'].write('[Grain%s]\n'%(str(ID+1).zfill(formatwidth)) + \
'(gauss) phi1 %10.5f Phi %10.5f phi2 %10.6f scatter 0.0 fraction 1.0\n'\
%(float(eulers[0]),float(eulers[1]),float(eulers[2])))
#--- output finalization --------------------------------------------------------------------------
if file['name'] != 'STDIN':
file['output'].close()
os.rename(file['name']+'_tmp',
os.path.splitext(file['name'])[0] +'_'+method+'_'+str(nSamples)+'%s'%('_material.config'))
with (open(os.path.splitext(name)[0]+'_'+method+'_'+str(nSamples)+'_material.config','w') as outfile:
outfile.write('\n'.join(materialConfig)+'\n')
# write ang file
if options.ang:
sizeY = integerFactorization(nSamples)
sizeX = nSamples / sizeY
print 'Writing .ang file: %i * %i = %i (== %i)'%(sizeX,sizeY,sizeX*sizeY,nSamples)
# write header
for line in getHeader(sizeX,sizeY,1.0):
file['outang'].write(line + '\n')
with open(os.path.splitext(name)[0]+'_'+method+'_'+str(nSamples)+'.ang','w') as outfile:
sizeY = integerFactorization(nSamples)
sizeX = nSamples / sizeY
table.croak('Writing .ang file: %i * %i = %i (== %i)'%(sizeX,sizeY,sizeX*sizeY,nSamples))
# write header
outfile.write('\n'.join(TSLheader(sizeX,sizeY,1.0))+'\n')
# write data
counter = 0
for eulers in Orientations:
outfile.write('%10.5f %10.5f %10.5f '%(*np.radians(eulers)) +
'%10.5f %10.5f '%(counter%sizeX,counter//sizeX) +
'100.0 1.0 0 1 1.0\n')
counter += 1
# write data
counter = 0
for line in Orientations:
eulers = re.split(r'[\t]', line.strip())
file['outang'].write(''.join(['%10.5f'%math.radians(float(angle)) for angle in eulers])+
''.join(['%10.5f'%coord for coord in [counter%sizeX,counter//sizeX]])+
' 100.0 1.0 0 1 1.0\n')
counter += 1
#--- output finalization --------------------------------------------------------------------------
if file['name'] != 'STDIN':
file['outang'].close()
os.rename(file['name']+'_ang_tmp',
os.path.splitext(file['name'])[0] +'_'+method+'_'+str(nSamples)+'%s'%('.ang'))
table.close()

View File

@ -12,136 +12,118 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
#--------------------------------------------------------------------------------------------------
# MAIN
#--------------------------------------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog [seedsfile[s]]', description = """
Produce VTK point mesh from seeds file
""", version = scriptID)
parser.add_option('-s', '--size', dest='size', type='float', nargs = 3, metavar='float float float',\
help='x,y,z size of hexahedral box [1.0 along largest grid point number]')
parser.add_option('-s', '--size',
dest = 'size',
type = 'float', nargs = 3, metavar = 'float float float',
help = 'x,y,z size of hexahedral box [1.0 along largest grid point number]')
parser.add_option('-p','--position',
dest = 'position',
type = 'string', metavar = 'string',
help = 'column label for coordinates [%default]')
parser.set_defaults(size = [0.0,0.0,0.0])
parser.set_defaults(size = [0.0,0.0,0.0],
position = 'pos',
)
(options, filenames) = parser.parse_args()
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = None,
buffered = False, readonly = True)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# --- interpret header ----------------------------------------------------------------------------
table = damask.ASCIItable(file['input'],file['output'],buffered = False)
table.head_read()
info,extra_header = table.head_getGeom()
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
if np.all(table.label_index(['1_coords','2_coords','3_coords']) != -1):
labels = ['1_coords','2_coords','3_coords']
elif np.all(table.label_index(['x','y','z']) != -1):
labels = ['x','y','z']
remarks = []
errors = []
if np.any(info['grid'] < 1): remarks.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0) \
and np.all(info['grid'] < 1): errors.append('invalid size x y z.')
else:
file['croak'].write('no coordinate data (1/2/3_coords | x/y/z) found ...')
for i in xrange(3):
if info['size'][i] <= 0.0: # any invalid size?
info['size'][i] = float(info['grid'][i])/max(info['grid']) # normalize to grid
remarks.append('rescaling size {} to {}...'.format({0:'x',1:'y',2:'z'}[i],info['size'][i]))
if table.label_dimension(options.position) != 3: errors.append('columns "{}" have dimension {}'.format(options.position,
table.label_dimension(options.position)))
if remarks != []: table.croak(remarks)
if errors != []:
table.croak(errors)
table.close(dismiss=True)
continue
labels = ['{dim}_{label}'.format(dim = 1+i,label = options.position) for i in xrange(3)]
hasGrains = table.label_index('microstructure') != -1
labels += ['microstructure'] if hasGrains else []
table.data_readArray(labels) # read ASCIItable columns
coords = table.data[:,:3] # assign coordinates
grain = table.data[:,3].astype('i') if hasGrains else 1+np.arange(len(coords),dtype='i') # assign grains
grainIDs = np.unique(grain).astype('i') # find all grainIDs present
# grainIDs = np.unique(grain).astype('i') # find all grainIDs present
#--- interpret header ----------------------------------------------------------------------------
info = {
'grid': np.zeros(3,'i'),
'size': np.array(options.size),
'origin': np.zeros(3,'d'),
'microstructures': 0,
}
# --- generate grid --------------------------------------------------------------------------------
for header in table.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
if info['microstructures'] != len(grainIDs):
file['croak'].write('grain data not matching grain count (%i)...\n'%(len(grainIDs)))
info['microstructures'] = len(grainIDs)
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
continue
for i in xrange(3):
if info['size'][i] <= 0.0: # any invalid size?
info['size'][i] = float(info['grid'][i])/max(info['grid'])
file['croak'].write('rescaling size %s...\n'%{0:'x',1:'y',2:'z'}[i])
#--- generate grid --------------------------------------------------------------------------------
grid = vtk.vtkUnstructuredGrid()
pts = vtk.vtkPoints()
#--- process microstructure information --------------------------------------------------------------
# --- process microstructure information --------------------------------------------------------------
IDs = vtk.vtkIntArray()
IDs.SetNumberOfComponents(1)
IDs.SetName("GrainID")
for i,item in enumerate(coords):
IDs.InsertNextValue(grain[i])
pid = pts.InsertNextPoint(item[0:3])
pointIds = vtk.vtkIdList()
pointIds.InsertId(0, pid)
grid.InsertNextCell(1, pointIds)
IDs.InsertNextValue(grain[i])
grid.SetPoints(pts)
grid.GetCellData().AddArray(IDs)
#--- write data -----------------------------------------------------------------------------------
if file['name'] == 'STDIN':
# --- write data -----------------------------------------------------------------------------------
if name == 'STDIN':
writer = vtk.vtkUnstructuredGridWriter()
writer.WriteToOutputStringOn()
writer.SetFileTypeToASCII()
writer.SetHeader('# powered by '+scriptID)
if vtk.VTK_MAJOR_VERSION <= 5:
writer.SetInput(grid)
else:
writer.SetInputData(grid)
if vtk.VTK_MAJOR_VERSION <= 5: writer.SetInput(grid)
else: writer.SetInputData(grid)
writer.Write()
sys.stdout.write(writer.GetOutputString()[0:writer.GetOutputStringLength()])
else:
table.close(dismiss=True)
(head,tail) = os.path.split(file['name'])
(dir,filename) = os.path.split(name)
writer = vtk.vtkXMLUnstructuredGridWriter()
writer.SetDataModeToBinary()
writer.SetCompressorTypeToZLib()
writer.SetFileName(os.path.join(head,'seeds_'+os.path.splitext(tail)[0]
+'.'+writer.GetDefaultFileExtension()))
if vtk.VTK_MAJOR_VERSION <= 5:
writer.SetInput(grid)
else:
writer.SetInputData(grid)
writer.SetFileName(os.path.join(dir,'seeds_'+os.path.splitext(filename)[0]
+'.'+writer.GetDefaultFileExtension()))
if vtk.VTK_MAJOR_VERSION <= 5: writer.SetInput(grid)
else: writer.SetInputData(grid)
writer.Write()
table.close()

View File

@ -12,155 +12,103 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
#--------------------------------------------------------------------------------------------------
# MAIN
#--------------------------------------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Create seed file taking microstructure indices from given geom file but excluding black-listed grains.
""", version = scriptID)
parser.add_option('-w','--white', dest='whitelist', action='extend', \
help='white list of grain IDs', metavar='<LIST>')
parser.add_option('-b','--black', dest='blacklist', action='extend', \
help='black list of grain IDs', metavar='<LIST>')
parser.add_option('-w','--white',
action = 'extend', metavar='<int LIST>',
dest = 'whitelist',
help = 'whitelist of grain IDs')
parser.add_option('-b','--black',
action = 'extend', metavar='<int LIST>',
dest = 'blacklist',
help = 'blacklist of grain IDs')
parser.add_option('-p','--position',
dest = 'position',
type = 'string', metavar = 'string',
help = 'column label for coordinates [%default]')
parser.set_defaults(whitelist = [])
parser.set_defaults(blacklist = [])
parser.set_defaults(whitelist = [],
blacklist = [],
position = 'pos',
)
(options,filenames) = parser.parse_args()
options.whitelist = map(int,options.whitelist)
options.blacklist = map(int,options.blacklist)
#--- setup file handles --------------------------------------------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN',
'input':sys.stdin,
'output':sys.stdout,
'croak':sys.stderr,
})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name,
'input':open(name),
'output':open(os.path.splitext(name)[0]+'.seeds','w'),
'croak':sys.stdout,
})
# --- loop over output files -------------------------------------------------------------------------
#--- loop over input files ------------------------------------------------------------------------
for file in files:
file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n')
if filenames == []: filenames = ['STDIN']
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = os.path.splitext(name)[0]+'.seeds',
buffered = False, labeled = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# --- interpret header ----------------------------------------------------------------------------
table = damask.ASCIItable(file['input'],file['output'],labels = False,buffered = False)
table.head_read()
info,extra_header = table.head_getGeom()
#--- interpret header ----------------------------------------------------------------------------
info = {
'grid': np.zeros(3,'i'),
'size': np.zeros(3,'d'),
'origin': np.zeros(3,'d'),
'homogenization': 0,
'microstructures': 0,
}
newInfo = {
'grid': np.zeros(3,'i'),
'origin': np.zeros(3,'d'),
'microstructures': 0,
}
extra_header = []
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
for header in table.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue # skip blank lines
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
else:
extra_header.append(header)
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'] + \
'microstructures: %i\n'%info['microstructures'])
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
if np.any(info['size'] <= 0.0):
file['croak'].write('invalid size x y z.\n')
continue
if 'origin' not in info:
info['origin'] = np.zeros(3)
#--- read data ------------------------------------------------------------------------------------
microstructure = np.zeros(info['grid'].prod(),'i') # initialize as flat array
i = 0
while table.data_read():
items = table.data
if len(items) > 2:
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
else: items = map(int,items)
else: items = map(int,items)
# --- read data ------------------------------------------------------------------------------------
s = len(items)
microstructure[i:i+s] = items
i += s
microstructure = table.microstructure_read(info['grid']) # read (linear) microstructure
# --- generate grid --------------------------------------------------------------------------------
x = (0.5 + np.arange(info['grid'][0],dtype=float))/info['grid'][0]*info['size'][0]+info['origin'][0]
y = (0.5 + np.arange(info['grid'][1],dtype=float))/info['grid'][1]*info['size'][1]+info['origin'][1]
z = (0.5 + np.arange(info['grid'][2],dtype=float))/info['grid'][2]*info['size'][2]+info['origin'][2]
xx = np.tile( x, info['grid'][1]* info['grid'][2])
yy = np.tile(np.repeat(y,info['grid'][0] ),info['grid'][2])
zz = np.repeat(z,info['grid'][0]*info['grid'][1])
mask = np.logical_and(np.in1d(microstructure,options.whitelist,invert=False) if options.whitelist != [] else np.full_like(microstructure,True,dtype=bool),
np.in1d(microstructure,options.blacklist,invert=True ) if options.blacklist != [] else np.full_like(microstructure,True,dtype=bool))
# ------------------------------------------ assemble header ---------------------------------------
table.info = [
scriptID,
"grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],),
"size\tx %i\ty %i\tz %i"%(info['size'][0],info['size'][1],info['size'][2],),
"origin\tx %i\ty %i\tz %i"%(info['origin'][0],info['origin'][1],info['origin'][2],),
]
table.info_clear()
table.info_append(extra_header+[
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=newInfo['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=newInfo['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=newInfo['microstructures']),
])
table.labels_clear()
table.labels_append(['1_coords','2_coords','3_coords','microstructure']) # implicitly switching label processing/writing on
table.labels_append(['{dim}_{label}'.format(dim = 1+i,label = options.position) for i in range(3)]+['microstructure'])
table.head_write()
table.output_flush()
#--- filtering of grain voxels ------------------------------------------------------------------------------------
table.data_clear()
i = 0
outputDead = False
coord = np.zeros(3,'d')
for coord[2] in xrange(info['grid'][2]):
for coord[1] in xrange(info['grid'][1]):
for coord[0] in xrange(info['grid'][0]):
if (options.whitelist == [] and options.blacklist == []) or \
(options.whitelist != [] and microstructure[i] in options.whitelist) or \
(options.blacklist != [] and microstructure[i] not in options.blacklist):
table.data = list((coord+0.5)/info['grid'])+[microstructure[i]]
outputDead = not table.data_write()
i += 1
if outputDead: break
if outputDead: break
if outputDead: break
# --- write seeds information ------------------------------------------------------------
# ------------------------------------------ output result ---------------------------------------
table.data = np.squeeze(np.dstack((xx,yy,zz,microstructure)))[mask]
table.data_writeArray()
outputDead or table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ finalize output ---------------------------------------
table.input_close() # close input ASCII table
if file['name'] != 'STDIN':
table.output_close() # close output ASCII table
table.close()

View File

@ -11,18 +11,6 @@ scriptName = scriptID.split()[1]
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Create seeds file by poking at 45 degree through given geom file.
@ -30,105 +18,85 @@ Mimics APS Beamline 34-ID-E DAXM poking.
""", version = scriptID)
parser.add_option('-N', '--points', dest='N', type='int', metavar='int', \
help='number of poking locations [%default]')
parser.add_option('-z', '--planes', dest='z', type='float', nargs = 2, metavar='float float', \
help='top and bottom z plane')
parser.add_option('-x', action='store_true', dest='x', \
help='poke 45 deg along x')
parser.add_option('-y', action='store_true', dest='y', \
help='poke 45 deg along y')
parser.add_option('-N', '--points',
dest = 'N',
type = 'int', metavar = 'int',
help = 'number of poking locations [%default]')
parser.add_option('-z', '--planes',
dest = 'z',
type = 'float', nargs = 2, metavar='float float',
help = 'top and bottom z plane')
parser.add_option('-x',
action = 'store_true',
dest = 'x',
help = 'poke 45 deg along x')
parser.add_option('-y',
action = 'store_true',
dest = 'y',
help = 'poke 45 deg along y')
parser.add_option('-p','--position',
dest = 'position',
type = 'string', metavar = 'string',
help = 'column label for coordinates [%default]')
parser.set_defaults(x = False)
parser.set_defaults(y = False)
parser.set_defaults(N = 16)
parser.set_defaults(x = False,
y = False,
N = 16,
position = 'pos',
)
(options,filenames) = parser.parse_args()
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
# --- loop over output files -------------------------------------------------------------------------
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = name+'_tmp',
buffered = False, labeled = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
theTable = damask.ASCIItable(file['input'],file['output'],labels = False)
theTable.head_read()
# --- interpret header ----------------------------------------------------------------------------
table.head_read()
info,extra_header = table.head_getGeom()
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# --- read data ------------------------------------------------------------------------------------
microstructure = table.microstructure_read(info['grid']).reshape(info['grid'],order='F') # read microstructure
# --- do work ------------------------------------------------------------------------------------
#--- interpret header ----------------------------------------------------------------------------
info = {
'grid': np.zeros(3,'i'),
'size': np.zeros(3,'d'),
'origin': np.zeros(3,'d'),
'homogenization': 0,
'microstructures': 0,
}
newInfo = {
'microstructures': 0,
}
extra_header = []
for header in theTable.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
info[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
info[headitems[0]] = mappings[headitems[0]](headitems[1])
else:
extra_header.append(header)
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
'homogenization: %i\n'%info['homogenization'] + \
'microstructures: %i\n'%info['microstructures'])
if np.any(info['grid'] < 1):
file['croak'].write('invalid grid a b c.\n')
continue
if np.any(info['size'] <= 0.0):
file['croak'].write('invalid size x y z.\n')
continue
#--- read data ------------------------------------------------------------------------------------
microstructure = np.zeros(info['grid'].prod(),'i')
i = 0
while theTable.data_read():
items = theTable.data
if len(items) > 2:
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
else: items = map(int,items)
else: items = map(int,items)
s = len(items)
microstructure[i:i+s] = items
i += s
#--- do work ------------------------------------------------------------------------------------
'microstructures': 0,
}
Nx = int(options.N/math.sqrt(options.N*info['size'][1]/info['size'][0]))
Ny = int(options.N/math.sqrt(options.N*info['size'][0]/info['size'][1]))
Nz = int((max(options.z)-min(options.z))/info['size'][2]*info['grid'][2])
file['croak'].write('poking %i x %i x %i...\n'%(Nx,Ny,Nz))
microstructure = microstructure.reshape(info['grid'],order='F')
table.croak('poking {0} x {1} x {2}...'.format(Nx,Ny,Nz))
seeds = np.zeros((Nx*Ny*Nz,4),'d')
grid = np.zeros(3,'i')
offset = min(options.z)/info['size'][2]*info['grid'][2] # offset due to lower z-plane
offset = min(options.z)/info['size'][2]*info['grid'][2] # offset due to lower z-plane
n = 0
for i in xrange(Nx):
grid[0] = round((i+0.5)*info['grid'][0]/Nx-0.5)
@ -138,41 +106,43 @@ for name in filenames:
grid[2] = offset + k
grid %= info['grid']
coordinates = (0.5+grid)*info['size']/info['grid']
seeds[n,0:3] = coordinates/info['size'] # normalize coordinates to box
seeds[n,0:3] = coordinates/info['size'] # normalize coordinates to box
seeds[n, 3] = microstructure[grid[0],grid[1],grid[2]]
# file['croak'].write('%s\t%i\n'%(str(seeds[n,:3]),seeds[n,3]))
if options.x: grid[0] += 1
if options.y: grid[1] += 1
n += 1
# file['croak'].write('\n')
newInfo['microstructures'] = len(np.unique(seeds[:,3]))
#--- report ---------------------------------------------------------------------------------------
if (newInfo['microstructures'] != info['microstructures']):
file['croak'].write('--> microstructures: %i\n'%newInfo['microstructures'])
# --- report ---------------------------------------------------------------------------------------
#--- write header ---------------------------------------------------------------------------------
theTable.labels_clear()
theTable.labels_append(['x','y','z','microstructure'])
theTable.info_clear()
theTable.info_append(extra_header+[
scriptID,
"grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],),
"size\tx %f\ty %f\tz %f"%(info['size'][0],info['size'][1],info['size'][2],),
"origin\tx %f\ty %f\tz %f"%(info['origin'][0],info['origin'][1],info['origin'][2],),
"homogenization\t%i"%info['homogenization'],
"microstructures\t%i"%(newInfo['microstructures']),
remarks = []
if ( newInfo['microstructures'] != info['microstructures']): remarks.append('--> microstructures: %i'%newInfo['microstructures'])
if remarks != []: table.croak(remarks)
# ------------------------------------------ assemble header ---------------------------------------
table.info_clear()
table.info_append(extra_header+[
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=newInfo['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=newInfo['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=newInfo['microstructures']),
])
table.labels_clear()
table.labels_append(['{dim}_{label}'.format(dim = 1+i,label = options.position) for i in range(3)]+['microstructure'])
table.head_write()
table.output_flush()
# --- write seeds information ------------------------------------------------------------
theTable.head_write()
theTable.output_flush()
theTable.data = seeds
theTable.data_writeArray('%g')
theTable.output_flush()
theTable.data_writeArray()
# --- output finalization --------------------------------------------------------------------------
#--- output finalization --------------------------------------------------------------------------
if file['name'] != 'STDIN':
theTable.close()
os.rename(file['name']+'_tmp',os.path.splitext(file['name'])[0] + '_poked_%ix%ix%i.seeds'%(Nx,Ny,Nz))
table.close() # close ASCII table
if name != 'STDIN':
os.rename(name+'_tmp',os.path.splitext(name])[0] + '_poked_%ix%ix%i.seeds'%(Nx,Ny,Nz))

View File

@ -11,6 +11,21 @@ from scipy import spatial
scriptID = string.replace('$Id$','\n','\\n')
scriptName = os.path.splitext(scriptID.split()[1])[0]
# ------------------------------------------ aux functions ---------------------------------
def kdtree_search(cloud, queryPoints):
'''
find distances to nearest neighbor among cloud (N,d) for each of the queryPoints (n,d)
'''
n = queryPoints.shape[0]
distances = np.zeros(n,dtype=float)
tree = spatial.cKDTree(cloud)
for i in xrange(n):
distances[i], index = tree.query(queryPoints[i])
return distances
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
@ -21,144 +36,172 @@ Reports positions with random crystal orientations in seeds file format to STDOU
""", version = scriptID)
parser.add_option('-N', dest='N', type='int', metavar='int', \
help='number of seed points to distribute [%default]')
parser.add_option('-g','--grid', dest='grid', type='int', nargs=3, metavar='int int int', \
parser.add_option('-N', dest='N',
type = 'int', metavar = 'int',
help = 'number of seed points to distribute [%default]')
parser.add_option('-g','--grid',
dest = 'grid',
type = 'int', nargs = 3, metavar = 'int int int',
help='min a,b,c grid of hexahedral box %default')
parser.add_option('-r', '--rnd', dest='randomSeed', type='int', metavar='int', \
help='seed of random number generator [%default]')
parser.add_option('-w', '--weights', dest='weights', action='store_true',
help = 'assign random weigts (Gaussian Distribution) to seed points for laguerre tessellation [%default]')
parser.add_option('-m', '--microstructure', dest='microstructure', type='int',
help='first microstructure index [%default]', metavar='int')
parser.add_option('-s','--selective', dest='selective', action='store_true',
help = 'selective picking of seed points from random seed points [%default]')
parser.add_option('-m', '--microstructure',
dest = 'microstructure',
type = 'int', metavar='int',
help = 'first microstructure index [%default]')
parser.add_option('-r', '--rnd',
dest = 'randomSeed', type = 'int', metavar = 'int',
help = 'seed of random number generator [%default]')
group = OptionGroup(parser, "Laguerre Tessellation Options",
"Parameters determining shape of weight distribution of seed points "
"Parameters determining shape of weight distribution of seed points"
)
group.add_option('--mean', dest='mean', type='float', metavar='float', \
help='mean of Gaussian Distribution for weights [%default]')
group.add_option('--sigma', dest='sigma', type='float', metavar='float', \
help='standard deviation of Gaussian Distribution for weights [%default]')
group.add_option('-w', '--weights',
action = 'store_true',
dest = 'weights',
help = 'assign random weigts (normal distribution) to seed points for Laguerre tessellation [%default]')
group.add_option('--mean',
dest = 'mean',
type = 'float', metavar = 'float',
help = 'mean of normal distribution for weights [%default]')
group.add_option('--sigma',
dest = 'sigma',
type = 'float', metavar = 'float',
help='standard deviation of normal distribution for weights [%default]')
parser.add_option_group(group)
group = OptionGroup(parser, "Selective Seeding Options",
"More uniform distribution of seed points using Mitchell\'s Best Candidate Algorithm"
)
group.add_option('--distance', dest='bestDistance', type='float', metavar='float', \
help='minimum distance to the next neighbor [%default]')
group.add_option('--numCandidates', dest='numCandidates', type='int', metavar='int', \
help='maximum number of point to consider for initial random points generation [%default]')
group.add_option('-s','--selective',
action = 'store_true',
dest = 'selective',
help = 'selective picking of seed points from random seed points [%default]')
group.add_option('--distance',
dest = 'distance',
type = 'float', metavar = 'float',
help = 'minimum distance to the next neighbor [%default]')
group.add_option('--numCandidates',
dest = 'numCandidates',
type = 'int', metavar = 'int',
help = 'size of point group to select best distance from [%default]')
parser.add_option_group(group)
parser.set_defaults(randomSeed = None)
parser.set_defaults(grid = (16,16,16))
parser.set_defaults(N = 20)
parser.set_defaults(weights=False)
parser.set_defaults(mean = 0.0)
parser.set_defaults(sigma = 1.0)
parser.set_defaults(microstructure = 1)
parser.set_defaults(selective = False)
parser.set_defaults(bestDistance = 0.2)
parser.set_defaults(numCandidates = 10)
parser.set_defaults(randomSeed = None,
grid = (16,16,16),
N = 20,
weights = False,
mean = 0.0,
sigma = 1.0,
microstructure = 1,
selective = False,
distance = 0.2,
numCandidates = 10,
)
(options,filenames) = parser.parse_args()
(options,filename) = parser.parse_args()
options.grid = np.array(options.grid)
labels = "1_coords\t2_coords\t3_coords\tphi1\tPhi\tphi2\tmicrostructure"
# ------------------------------------------ Functions Definitions ---------------------------------
def kdtree_search(xyz, point) :
dist, index = spatial.cKDTree(xyz).query(np.array(point))
return dist
def generatePoint() :
return np.array([random.uniform(0,float(options.grid[0])/float(max(options.grid))), \
random.uniform(0,float(options.grid[1])/float(max(options.grid))), \
random.uniform(0,float(options.grid[2])/float(max(options.grid)))])
# ------------------------------------------ setup file handle -------------------------------------
if filename == []:
file = {'output':sys.stdout, 'croak':sys.stderr}
else:
file = {'output':open(filename[0],'w'), 'croak':sys.stderr}
gridSize = options.grid.prod()
if gridSize == 0:
file['croak'].write('zero grid dimension for %s.\n'%(', '.join([['a','b','c'][x] for x in np.where(options.grid == 0)[0]])))
sys.exit()
if options.N > gridSize:
file['croak'].write('accommodating only %i seeds on grid.\n'%gridSize)
options.N = gridSize
randomSeed = int(os.urandom(4).encode('hex'), 16) if options.randomSeed == None else options.randomSeed
np.random.seed(randomSeed) # init random generators
random.seed(randomSeed)
grainEuler = np.random.rand(3,options.N) # create random Euler triplets
grainEuler[0,:] *= 360.0 # phi_1 is uniformly distributed
grainEuler[1,:] = np.arccos(2*grainEuler[1,:]-1)*180.0/math.pi # cos(Phi) is uniformly distributed
grainEuler[2,:] *= 360.0 # phi_2 is uniformly distributed
if options.randomSeed == None: options.randomSeed = int(os.urandom(4).encode('hex'), 16)
np.random.seed(options.randomSeed) # init random generators
random.seed(options.randomSeed)
microstructure=np.arange(options.microstructure,options.microstructure+options.N).reshape(1,options.N)
if options.selective == False :
seedpoints = -np.ones(options.N,dtype='int') # init grid positions of seed points
# --- loop over output files -------------------------------------------------------------------------
if filenames == []: filenames = ['STDIN']
for name in filenames:
table = damask.ASCIItable(name = name, outname = None,
buffered = False, writeonly = True)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# --- sanity checks -------------------------------------------------------------------------
errors = []
if gridSize == 0: errors.append('zero grid dimension for %s.'%(', '.join([['a','b','c'][x] for x in np.where(options.grid == 0)[0]])))
if options.N > gridSize/10.: errors.append('seed count exceeds 0.1 of grid points.')
if options.selective and 4./3.*math.pi*(options.distance/2.)**3*options.N > 0.5:
errors.append('maximum recommended seed point count for given distance is {}.'.format(int(3./8./math.pi/(options.distance/2.)**3)))
if errors != []:
table.croak(errors)
sys.exit()
# --- do work ------------------------------------------------------------------------------------
grainEuler = np.random.rand(3,options.N) # create random Euler triplets
grainEuler[0,:] *= 360.0 # phi_1 is uniformly distributed
grainEuler[1,:] = np.degrees(np.arccos(2*grainEuler[1,:]-1)) # cos(Phi) is uniformly distributed
grainEuler[2,:] *= 360.0 # phi_2 is uniformly distributed
if not options.selective:
seeds = np.zeros((3,options.N),dtype=float) # seed positions array
gridpoints = random.sample(range(gridSize),options.N) # create random permutation of all grid positions and choose first N
seeds[0,:] = (np.mod(gridpoints ,options.grid[0])\
+np.random.random()) /options.grid[0]
seeds[1,:] = (np.mod(gridpoints// options.grid[0] ,options.grid[1])\
+np.random.random()) /options.grid[1]
seeds[2,:] = (np.mod(gridpoints//(options.grid[1]*options.grid[0]),options.grid[2])\
+np.random.random()) /options.grid[2]
if options.N * 1024 < gridSize: # heuristic limit for random search
i = 0
while i < options.N: # until all (unique) points determined
p = np.random.randint(gridSize) # pick a location
if p not in seedpoints: # not yet taken?
seedpoints[i] = p # take it
i += 1 # advance stepper
else:
seedpoints = np.array(random.sample(range(gridSize),options.N)) # create random permutation of all grid positions and choose first N
seeds = np.zeros((3,options.N),float) # init seed positions
seeds[0,:] = (np.mod(seedpoints ,options.grid[0])\
+np.random.random())/options.grid[0]
seeds[1,:] = (np.mod(seedpoints// options.grid[0] ,options.grid[1])\
+np.random.random())/options.grid[1]
seeds[2,:] = (np.mod(seedpoints//(options.grid[1]*options.grid[0]),options.grid[2])\
+np.random.random())/options.grid[2]
table = np.transpose(np.concatenate((seeds,grainEuler,microstructure),axis = 0))
else :
samples = generatePoint().reshape(1,3)
seeds = np.zeros((options.N,3),dtype=float) # seed positions array
seeds[0] = np.random.random(3)*options.grid/max(options.grid)
i = 1 # start out with one given point
if i%(options.N/100.) < 1: table.croak('.',False)
while samples.shape[0] < options.N :
bestDistance = options.bestDistance
for i in xrange(options.numCandidates) :
c = generatePoint()
d = kdtree_search(samples, c)
if (d > bestDistance) :
bestDistance = d
bestCandidate = c
if kdtree_search(samples,bestCandidate) != 0.0 :
samples = np.append(samples,bestCandidate.reshape(1,3),axis=0)
else :
continue
table = np.transpose(np.concatenate((samples.T,grainEuler,microstructure),axis = 0))
while i < options.N:
candidates = np.random.random(options.numCandidates*3).reshape(options.numCandidates,3)
distances = kdtree_search(seeds[:i],candidates)
best = distances.argmax()
if distances[best] > options.distance: # require minimum separation
seeds[i] = candidates[best] # take candidate with maximum separation to existing point cloud
i += 1
if i%(options.N/100.) < 1: table.croak('.',False)
if options.weights :
weight = np.random.normal(loc=options.mean, scale=options.sigma, size=options.N)
table = np.append(table, weight.reshape(options.N,1), axis=1)
labels += "\tweight"
table.croak('')
seeds = np.transpose(seeds) # prepare shape for stacking
# -------------------------------------- Write Data --------------------------------------------------
if options.weights:
seeds = np.transpose(np.vstack((seeds,
grainEuler,
np.arange(options.microstructure,
options.microstructure + options.N),
np.random.normal(loc=options.mean, scale=options.sigma, size=options.N),
)))
else:
seeds = np.transpose(np.vstack((seeds,
grainEuler,
np.arange(options.microstructure,
options.microstructure + options.N),
)))
header = ["5\theader",
scriptID + " " + " ".join(sys.argv[1:]),
"grid\ta {}\tb {}\tc {}".format(options.grid[0],options.grid[1],options.grid[2]),
"microstructures\t{}".format(options.N),
"randomSeed\t{}".format(randomSeed),
"%s"%labels,
]
# ------------------------------------------ assemble header ---------------------------------------
for line in header:
file['output'].write(line+"\n")
np.savetxt(file['output'], table, fmt='%10.6f', delimiter='\t')
table.info_clear()
table.info_append([
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=options.grid),
"microstructures\t{}".format(options.N),
"randomSeed\t{}".format(options.randomSeed),
])
table.labels_clear()
table.labels_append( ['{dim}_{label}'.format(dim = 1+i,label = 'pos') for i in xrange(3)] +
['{dim}_{label}'.format(dim = 1+i,label = 'Euler') for i in xrange(3)] +
['microstructure'] +
(['weight'] if options.weights else []))
table.head_write()
table.output_flush()
# --- write seeds information ------------------------------------------------------------
table.data = seeds
table.data_writeArray()
# --- output finalization --------------------------------------------------------------------------
table.close() # close ASCII table

View File

@ -13,18 +13,6 @@ scriptName = os.path.splitext(scriptID.split()[1])[0]
#--------------------------------------------------------------------------------------------------
# MAIN
#--------------------------------------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Create seed file by taking microstructure indices from given ASCIItable column.
@ -36,16 +24,27 @@ Examples:
""", version = scriptID)
parser.add_option('-p', '--positions', dest = 'pos', metavar = 'string',
help = 'coordinate label')
parser.add_option('--boundingbox', dest = 'box', type = 'float', nargs = 6, metavar = ' '.join(['float']*6),
help = 'min (x,y,z) and max (x,y,z) coordinates of bounding box [auto]')
parser.add_option('-i', '--index', dest = 'index', type = 'string', metavar = 'string',
help = 'microstructure index label')
parser.add_option('-w','--white', dest = 'whitelist', action = 'extend',
help = 'white list of microstructure indices', metavar = '<LIST>')
parser.add_option('-b','--black', dest = 'blacklist', action = 'extend',
help = 'black list of microstructure indices', metavar = '<LIST>')
parser.add_option('-p', '--positions',
dest = 'pos',
type = 'string', metavar = 'string',
help = 'coordinate label [%default]')
parser.add_option('--boundingbox',
dest = 'box',
type = 'float', nargs = 6, metavar = ' '.join(['float']*6),
help = 'min (x,y,z) and max (x,y,z) coordinates of bounding box [tight]')
parser.add_option('-i', '--index',
dest = 'index',
type = 'string', metavar = 'string',
help = 'microstructure index label [%default]')
parser.add_option('-w','--white',
dest = 'whitelist',
action = 'extend', metavar = '<int LIST>',
help = 'whitelist of microstructure indices')
parser.add_option('-b','--black',
dest = 'blacklist',
action = 'extend', metavar = '<int LIST>',
help = 'blacklist of microstructure indices')
parser.set_defaults(pos = 'pos',
index ='microstructure',
)
@ -57,58 +56,51 @@ if options.blacklist != None: options.blacklist = map(int,options.blacklist)
# --- loop over input files -------------------------------------------------------------------------
if filenames == []:
filenames = ['STDIN']
if filenames == []: filenames = ['STDIN']
for name in filenames:
if name == 'STDIN':
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
else:
if not os.path.exists(name): continue
file = {'name':name,
'input':open(name),
'output':open(os.path.splitext(name)[0]+ \
('' if options.label == None else '_'+options.label)+ \
'.png','w'),
'croak':sys.stderr}
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = os.path.splitext(name)[0]+'.seeds',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
table = damask.ASCIItable(file['input'],file['output'],
buffered = False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
# ------------------------------------------ process data ------------------------------------------
# ------------------------------------------ sanity checks ---------------------------------------
missing_labels = table.data_readArray([options.pos,options.index])
errors = []
missing_labels = table.data_readArray(options.pos,options.label)
if len(missing_labels) > 0:
errors.append('column%s %s not found'%('s' if len(missing_labels) > 1 else '',
errors.append('column{} {} not found'.format('s' if len(missing_labels) > 1 else '',
', '.join(missing_labels)))
for label, dim in {options.pos: 3,
options.label: 1}.iteritems():
options.index: 1}.iteritems():
if table.label_dimension(label) != dim:
errors.append('column %s has wrong dimension'%label)
errors.append('column {} has wrong dimension'.format(label))
if errors != []:
file['croak'].write('\n'.join(errors))
table.croak(errors)
table.close(dismiss = True) # close ASCII table file handles and delete output file
continue
#--- finding bounding box ------------------------------------------------------------------------------------
# ------------------------------------------ process data ------------------------------------------
# --- finding bounding box -------------------------------------------------------------------------
boundingBox = np.array((np.amin(table.data[:,0:3],axis = 0),np.amax(table.data[:,0:3],axis = 0)))
if options.box:
boundingBox[0,:] = np.minimum(options.box[0:3],boundingBox[0,:])
boundingBox[1,:] = np.maximum(options.box[3:6],boundingBox[1,:])
#--- rescaling coordinates ------------------------------------------------------------------------------------
# --- rescaling coordinates ------------------------------------------------------------------------
table.data[:,0:3] -= boundingBox[0,:]
table.data[:,0:3] /= boundingBox[1,:]-boundingBox[0,:]
#--- filtering of grain voxels ------------------------------------------------------------------------------------
# --- filtering of grain voxels --------------------------------------------------------------------
mask = np.logical_and(\
np.ones_like(table.data[:,3],bool) \
if options.whitelist == None \
@ -129,10 +121,8 @@ for name in filenames:
map(str,boundingBox[1,:]-boundingBox[0,:])))))),
]
table.labels_clear()
table.labels_append(['1_coords','2_coords','3_coords','microstructure']) # implicitly switching label processing/writing on
table.labels_append(['1_pos','2_pos','3_pos','microstructure']) # implicitly switching label processing/writing on
table.head_write()
table.data_writeArray()
table.output_flush()
table.close() # close ASCII tables