grad test done
This commit is contained in:
parent
8b4baecdee
commit
d4091a21a8
|
@ -0,0 +1,49 @@
|
|||
import pytest
|
||||
import numpy as np
|
||||
from damask import grid_filters
|
||||
|
||||
|
||||
class TestGridFilters:
|
||||
|
||||
grad_test_data = [(['np.sin(np.pi*2*nodes[...,0]/size[0])', '0.0', '0.0'],
|
||||
['np.cos(np.pi*2*nodes[...,0]/size[0])*np.pi*2/size[0]','0.0', '0.0',
|
||||
'0.0', '0.0', '0.0',
|
||||
'0.0', '0.0', '0.0']),
|
||||
(['0.0', 'np.cos(np.pi*2*nodes[...,1]/size[1])', '0.0' ],
|
||||
['0.0', '0.0', '0.0',
|
||||
'0.0', '-np.pi*2/size[1]*np.sin(np.pi*2*nodes[...,1]/size[1])', '0.0',
|
||||
'0.0', '0.0', '0.0' ]),
|
||||
(['1.0', '0.0', '2.0*np.cos(np.pi*2*nodes[...,2]/size[2])'],
|
||||
['0.0', '0.0', '0.0',
|
||||
'0.0', '0.0', '0.0',
|
||||
'0.0', '0.0', '-2.0*np.pi*2/size[2]*np.sin(np.pi*2*nodes[...,2]/size[2])']),
|
||||
(['np.cos(np.pi*2*nodes[...,2]/size[2])', '3.0', 'np.sin(np.pi*2*nodes[...,2]/size[2])'],
|
||||
['0.0', '0.0', '-np.sin(np.pi*2*nodes[...,2]/size[2])*np.pi*2/size[2]',
|
||||
'0.0', '0.0', '0.0',
|
||||
'0.0', '0.0', 'np.cos(np.pi*2*nodes[...,2]/size[2])*np.pi*2/size[2]']),
|
||||
(['np.sin(np.pi*2*nodes[...,0]/size[0])','np.sin(np.pi*2*nodes[...,1]/size[1])',\
|
||||
'np.sin(np.pi*2*nodes[...,2]/size[2])'],
|
||||
['np.cos(np.pi*2*nodes[...,0]/size[0])*np.pi*2/size[0]', '0.0', '0.0',
|
||||
'0.0', 'np.cos(np.pi*2*nodes[...,1]/size[1])*np.pi*2/size[1]', '0.0',
|
||||
'0.0', '0.0', 'np.cos(np.pi*2*nodes[...,2]/size[2])*np.pi*2/size[2]']),
|
||||
(['np.sin(np.pi*2*nodes[...,0]/size[0])' ],
|
||||
['np.cos(np.pi*2*nodes[...,0]/size[0])*np.pi*2/size[0]', '0.0', '0.0' ]),
|
||||
(['8.0' ],
|
||||
['0.0', '0.0', '0.0' ])]
|
||||
|
||||
@pytest.mark.parametrize('field_def,grad_def',grad_test_data)
|
||||
|
||||
def test_grad(self,field_def,grad_def):
|
||||
size = np.random.random(3)+1.0
|
||||
grid = np.random.randint(8,32,(3))
|
||||
|
||||
nodes = grid_filters.cell_coord0(grid,size)
|
||||
my_locals = locals() # needed for list comprehension
|
||||
|
||||
field = np.stack([np.broadcast_to(eval(f,globals(),my_locals),grid) for f in field_def],axis=-1)
|
||||
field = field.reshape(tuple(grid) + ((3,) if len(field_def)==3 else (1,)))
|
||||
grad = np.stack([np.broadcast_to(eval(c,globals(),my_locals),grid) for c in grad_def], axis=-1)
|
||||
grad = grad.reshape(tuple(grid) + ((3,3) if len(grad_def)==9 else (3,)))
|
||||
|
||||
assert np.allclose(grad,grid_filters.gradient(size,field))
|
||||
|
Loading…
Reference in New Issue