|
|
|
@ -1,13 +1,13 @@
|
|
|
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
|
|
|
|
|
|
import math,os
|
|
|
|
|
import math
|
|
|
|
|
import numpy as np
|
|
|
|
|
from . import Lambert
|
|
|
|
|
|
|
|
|
|
P = -1
|
|
|
|
|
|
|
|
|
|
####################################################################################################
|
|
|
|
|
class Quaternion2:
|
|
|
|
|
class Quaternion:
|
|
|
|
|
u"""
|
|
|
|
|
Quaternion with basic operations
|
|
|
|
|
|
|
|
|
@ -50,7 +50,7 @@ class Quaternion2:
|
|
|
|
|
|
|
|
|
|
def __add__(self, other):
|
|
|
|
|
"""Addition"""
|
|
|
|
|
if isinstance(other, Quaternion2):
|
|
|
|
|
if isinstance(other, Quaternion):
|
|
|
|
|
return self.__class__(q=self.q + other.q,
|
|
|
|
|
p=self.p + other.p)
|
|
|
|
|
else:
|
|
|
|
@ -58,7 +58,7 @@ class Quaternion2:
|
|
|
|
|
|
|
|
|
|
def __iadd__(self, other):
|
|
|
|
|
"""In-place addition"""
|
|
|
|
|
if isinstance(other, Quaternion2):
|
|
|
|
|
if isinstance(other, Quaternion):
|
|
|
|
|
self.q += other.q
|
|
|
|
|
self.p += other.p
|
|
|
|
|
return self
|
|
|
|
@ -72,7 +72,7 @@ class Quaternion2:
|
|
|
|
|
|
|
|
|
|
def __sub__(self, other):
|
|
|
|
|
"""Subtraction"""
|
|
|
|
|
if isinstance(other, Quaternion2):
|
|
|
|
|
if isinstance(other, Quaternion):
|
|
|
|
|
return self.__class__(q=self.q - other.q,
|
|
|
|
|
p=self.p - other.p)
|
|
|
|
|
else:
|
|
|
|
@ -80,7 +80,7 @@ class Quaternion2:
|
|
|
|
|
|
|
|
|
|
def __isub__(self, other):
|
|
|
|
|
"""In-place subtraction"""
|
|
|
|
|
if isinstance(other, Quaternion2):
|
|
|
|
|
if isinstance(other, Quaternion):
|
|
|
|
|
self.q -= other.q
|
|
|
|
|
self.p -= other.p
|
|
|
|
|
return self
|
|
|
|
@ -96,7 +96,7 @@ class Quaternion2:
|
|
|
|
|
|
|
|
|
|
def __mul__(self, other):
|
|
|
|
|
"""Multiplication with quaternion or scalar"""
|
|
|
|
|
if isinstance(other, Quaternion2):
|
|
|
|
|
if isinstance(other, Quaternion):
|
|
|
|
|
return self.__class__(q=self.q*other.q - np.dot(self.p,other.p),
|
|
|
|
|
p=self.q*other.p + other.q*self.p + P * np.cross(self.p,other.p))
|
|
|
|
|
elif isinstance(other, (int, float)):
|
|
|
|
@ -107,7 +107,7 @@ class Quaternion2:
|
|
|
|
|
|
|
|
|
|
def __imul__(self, other):
|
|
|
|
|
"""In-place multiplication with quaternion or scalar"""
|
|
|
|
|
if isinstance(other, Quaternion2):
|
|
|
|
|
if isinstance(other, Quaternion):
|
|
|
|
|
self.q = self.q*other.q - np.dot(self.p,other.p)
|
|
|
|
|
self.p = self.q*other.p + other.q*self.p + P * np.cross(self.p,other.p)
|
|
|
|
|
return self
|
|
|
|
@ -120,7 +120,7 @@ class Quaternion2:
|
|
|
|
|
|
|
|
|
|
def __truediv__(self, other):
|
|
|
|
|
"""Divsion with quaternion or scalar"""
|
|
|
|
|
if isinstance(other, Quaternion2):
|
|
|
|
|
if isinstance(other, Quaternion):
|
|
|
|
|
s = other.conjugate()/abs(other)**2.
|
|
|
|
|
return self.__class__(q=self.q * s,
|
|
|
|
|
p=self.p * s)
|
|
|
|
@ -133,7 +133,7 @@ class Quaternion2:
|
|
|
|
|
|
|
|
|
|
def __itruediv__(self, other):
|
|
|
|
|
"""In-place divsion with quaternion or scalar"""
|
|
|
|
|
if isinstance(other, Quaternion2):
|
|
|
|
|
if isinstance(other, Quaternion):
|
|
|
|
|
s = other.conjugate()/abs(other)**2.
|
|
|
|
|
self *= s
|
|
|
|
|
return self
|
|
|
|
@ -215,7 +215,8 @@ class Rotation:
|
|
|
|
|
u"""
|
|
|
|
|
Orientation stored as unit quaternion.
|
|
|
|
|
|
|
|
|
|
All methods and naming conventions based on Rowenhorst_etal2015
|
|
|
|
|
Following: D Rowenhorst et al. Consistent representations of and conversions between 3D rotations
|
|
|
|
|
10.1088/0965-0393/23/8/083501
|
|
|
|
|
Convention 1: coordinate frames are right-handed
|
|
|
|
|
Convention 2: a rotation angle ω is taken to be positive for a counterclockwise rotation
|
|
|
|
|
when viewing from the end point of the rotation axis towards the origin
|
|
|
|
@ -242,10 +243,10 @@ class Rotation:
|
|
|
|
|
If a quaternion is given, it needs to comply with the convection. Use .fromQuaternion
|
|
|
|
|
to check the input.
|
|
|
|
|
"""
|
|
|
|
|
if isinstance(quaternion,Quaternion2):
|
|
|
|
|
if isinstance(quaternion,Quaternion):
|
|
|
|
|
self.quaternion = quaternion.copy()
|
|
|
|
|
else:
|
|
|
|
|
self.quaternion = Quaternion2(q=quaternion[0],p=quaternion[1:4])
|
|
|
|
|
self.quaternion = Quaternion(q=quaternion[0],p=quaternion[1:4])
|
|
|
|
|
self.quaternion.homomorph() # ToDo: Needed?
|
|
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
@ -455,373 +456,6 @@ class Rotation:
|
|
|
|
|
return self.__class__(other.quaternion*self.quaternion.conjugated())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ******************************************************************************************
|
|
|
|
|
class Quaternion:
|
|
|
|
|
u"""
|
|
|
|
|
Orientation represented as unit quaternion.
|
|
|
|
|
|
|
|
|
|
All methods and naming conventions based on Rowenhorst_etal2015
|
|
|
|
|
Convention 1: coordinate frames are right-handed
|
|
|
|
|
Convention 2: a rotation angle ω is taken to be positive for a counterclockwise rotation
|
|
|
|
|
when viewing from the end point of the rotation axis towards the origin
|
|
|
|
|
Convention 3: rotations will be interpreted in the passive sense
|
|
|
|
|
Convention 4: Euler angle triplets are implemented using the Bunge convention,
|
|
|
|
|
with the angular ranges as [0, 2π],[0, π],[0, 2π]
|
|
|
|
|
Convention 5: the rotation angle ω is limited to the interval [0, π]
|
|
|
|
|
Convention 6: P = -1 (as default)
|
|
|
|
|
|
|
|
|
|
w is the real part, (x, y, z) are the imaginary parts.
|
|
|
|
|
|
|
|
|
|
Vector "a" (defined in coordinate system "A") is passively rotated
|
|
|
|
|
resulting in new coordinates "b" when expressed in system "B".
|
|
|
|
|
b = Q * a
|
|
|
|
|
b = np.dot(Q.asMatrix(),a)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
|
quat = None,
|
|
|
|
|
q = 1.0,
|
|
|
|
|
p = np.zeros(3,dtype=float)):
|
|
|
|
|
"""Initializes to identity unless specified"""
|
|
|
|
|
self.q = quat[0] if quat is not None else q
|
|
|
|
|
self.p = np.array(quat[1:4]) if quat is not None else p
|
|
|
|
|
self.homomorph()
|
|
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
|
"""Components"""
|
|
|
|
|
return iter(self.asList())
|
|
|
|
|
|
|
|
|
|
def __copy__(self):
|
|
|
|
|
"""Copy"""
|
|
|
|
|
return self.__class__(q=self.q,p=self.p.copy())
|
|
|
|
|
|
|
|
|
|
copy = __copy__
|
|
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
|
"""Readable string"""
|
|
|
|
|
return 'Quaternion(real={q:+.6f}, imag=<{p[0]:+.6f}, {p[1]:+.6f}, {p[2]:+.6f}>)'.format(q=self.q,p=self.p)
|
|
|
|
|
|
|
|
|
|
def __pow__(self, exponent):
|
|
|
|
|
"""Power"""
|
|
|
|
|
omega = math.acos(self.q)
|
|
|
|
|
return self.__class__(q= math.cos(exponent*omega),
|
|
|
|
|
p=self.p * math.sin(exponent*omega)/math.sin(omega))
|
|
|
|
|
|
|
|
|
|
def __ipow__(self, exponent):
|
|
|
|
|
"""In-place power"""
|
|
|
|
|
omega = math.acos(self.q)
|
|
|
|
|
self.q = math.cos(exponent*omega)
|
|
|
|
|
self.p *= math.sin(exponent*omega)/math.sin(omega)
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def __mul__(self, other):
|
|
|
|
|
"""Multiplication"""
|
|
|
|
|
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
|
|
|
|
P = -1.0
|
|
|
|
|
try: # quaternion
|
|
|
|
|
return self.__class__(q=self.q*other.q - np.dot(self.p,other.p),
|
|
|
|
|
p=self.q*other.p + other.q*self.p + P * np.cross(self.p,other.p))
|
|
|
|
|
except: pass
|
|
|
|
|
try: # vector (perform passive rotation)
|
|
|
|
|
( x, y, z) = self.p
|
|
|
|
|
(Vx,Vy,Vz) = other[0:3]
|
|
|
|
|
A = self.q*self.q - np.dot(self.p,self.p)
|
|
|
|
|
B = 2.0 * (x*Vx + y*Vy + z*Vz)
|
|
|
|
|
C = 2.0 * P*self.q
|
|
|
|
|
|
|
|
|
|
return np.array([
|
|
|
|
|
A*Vx + B*x + C*(y*Vz - z*Vy),
|
|
|
|
|
A*Vy + B*y + C*(z*Vx - x*Vz),
|
|
|
|
|
A*Vz + B*z + C*(x*Vy - y*Vx),
|
|
|
|
|
])
|
|
|
|
|
except: pass
|
|
|
|
|
try: # scalar
|
|
|
|
|
return self.__class__(q=self.q*other,
|
|
|
|
|
p=self.p*other)
|
|
|
|
|
except:
|
|
|
|
|
return self.copy()
|
|
|
|
|
|
|
|
|
|
def __imul__(self, other):
|
|
|
|
|
"""In-place multiplication"""
|
|
|
|
|
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
|
|
|
|
P = -1.0
|
|
|
|
|
try: # Quaternion
|
|
|
|
|
self.q = self.q*other.q - np.dot(self.p,other.p)
|
|
|
|
|
self.p = self.q*other.p + other.q*self.p + P * np.cross(self.p,other.p)
|
|
|
|
|
except: pass
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def __div__(self, other):
|
|
|
|
|
"""Division"""
|
|
|
|
|
if isinstance(other, (int,float)):
|
|
|
|
|
return self.__class__(q=self.q / other,
|
|
|
|
|
p=self.p / other)
|
|
|
|
|
else:
|
|
|
|
|
return NotImplemented
|
|
|
|
|
|
|
|
|
|
def __idiv__(self, other):
|
|
|
|
|
"""In-place division"""
|
|
|
|
|
if isinstance(other, (int,float)):
|
|
|
|
|
self.q /= other
|
|
|
|
|
self.p /= other
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def __add__(self, other):
|
|
|
|
|
"""Addition"""
|
|
|
|
|
if isinstance(other, Quaternion):
|
|
|
|
|
return self.__class__(q=self.q + other.q,
|
|
|
|
|
p=self.p + other.p)
|
|
|
|
|
else:
|
|
|
|
|
return NotImplemented
|
|
|
|
|
|
|
|
|
|
def __iadd__(self, other):
|
|
|
|
|
"""In-place addition"""
|
|
|
|
|
if isinstance(other, Quaternion):
|
|
|
|
|
self.q += other.q
|
|
|
|
|
self.p += other.p
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def __sub__(self, other):
|
|
|
|
|
"""Subtraction"""
|
|
|
|
|
if isinstance(other, Quaternion):
|
|
|
|
|
return self.__class__(q=self.q - other.q,
|
|
|
|
|
p=self.p - other.p)
|
|
|
|
|
else:
|
|
|
|
|
return NotImplemented
|
|
|
|
|
|
|
|
|
|
def __isub__(self, other):
|
|
|
|
|
"""In-place subtraction"""
|
|
|
|
|
if isinstance(other, Quaternion):
|
|
|
|
|
self.q -= other.q
|
|
|
|
|
self.p -= other.p
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def __neg__(self):
|
|
|
|
|
"""Additive inverse"""
|
|
|
|
|
self.q = -self.q
|
|
|
|
|
self.p = -self.p
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def __abs__(self):
|
|
|
|
|
"""Norm"""
|
|
|
|
|
return math.sqrt(self.q ** 2 + np.dot(self.p,self.p))
|
|
|
|
|
|
|
|
|
|
magnitude = __abs__
|
|
|
|
|
|
|
|
|
|
def __eq__(self,other):
|
|
|
|
|
"""Equal (sufficiently close) to each other"""
|
|
|
|
|
return np.isclose(( self-other).magnitude(),0.0) \
|
|
|
|
|
or np.isclose((-self-other).magnitude(),0.0)
|
|
|
|
|
|
|
|
|
|
def __ne__(self,other):
|
|
|
|
|
"""Not equal (sufficiently close) to each other"""
|
|
|
|
|
return not self.__eq__(other)
|
|
|
|
|
|
|
|
|
|
def __cmp__(self,other):
|
|
|
|
|
"""Linear ordering"""
|
|
|
|
|
return (1 if np.linalg.norm(self.asRodrigues()) > np.linalg.norm(other.asRodrigues()) else 0) \
|
|
|
|
|
- (1 if np.linalg.norm(self.asRodrigues()) < np.linalg.norm(other.asRodrigues()) else 0)
|
|
|
|
|
|
|
|
|
|
def magnitude_squared(self):
|
|
|
|
|
return self.q ** 2 + np.dot(self.p,self.p)
|
|
|
|
|
|
|
|
|
|
def normalize(self):
|
|
|
|
|
d = self.magnitude()
|
|
|
|
|
if d > 0.0:
|
|
|
|
|
self.q /= d
|
|
|
|
|
self.p /= d
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def conjugate(self):
|
|
|
|
|
self.p = -self.p
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def homomorph(self):
|
|
|
|
|
if self.q < 0.0:
|
|
|
|
|
self.q = -self.q
|
|
|
|
|
self.p = -self.p
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def normalized(self):
|
|
|
|
|
return self.copy().normalize()
|
|
|
|
|
|
|
|
|
|
def conjugated(self):
|
|
|
|
|
return self.copy().conjugate()
|
|
|
|
|
|
|
|
|
|
def homomorphed(self):
|
|
|
|
|
return self.copy().homomorph()
|
|
|
|
|
|
|
|
|
|
def asList(self):
|
|
|
|
|
return [self.q]+list(self.p)
|
|
|
|
|
|
|
|
|
|
def asM(self): # to find Averaging Quaternions (see F. Landis Markley et al.)
|
|
|
|
|
return np.outer(self.asList(),self.asList())
|
|
|
|
|
|
|
|
|
|
def asMatrix(self):
|
|
|
|
|
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
|
|
|
|
P = -1.0
|
|
|
|
|
qbarhalf = 0.5*(self.q**2 - np.dot(self.p,self.p))
|
|
|
|
|
return 2.0*np.array(
|
|
|
|
|
[[ qbarhalf + self.p[0]**2 ,
|
|
|
|
|
self.p[0]*self.p[1] -P* self.q*self.p[2],
|
|
|
|
|
self.p[0]*self.p[2] +P* self.q*self.p[1] ],
|
|
|
|
|
[ self.p[0]*self.p[1] +P* self.q*self.p[2],
|
|
|
|
|
qbarhalf + self.p[1]**2 ,
|
|
|
|
|
self.p[1]*self.p[2] -P* self.q*self.p[0] ],
|
|
|
|
|
[ self.p[0]*self.p[2] -P* self.q*self.p[1],
|
|
|
|
|
self.p[1]*self.p[2] +P* self.q*self.p[0],
|
|
|
|
|
qbarhalf + self.p[2]**2 ],
|
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
def asAngleAxis(self,
|
|
|
|
|
degrees = False,
|
|
|
|
|
flat = False):
|
|
|
|
|
|
|
|
|
|
angle = 2.0*math.acos(self.q)
|
|
|
|
|
|
|
|
|
|
if np.isclose(angle,0.0):
|
|
|
|
|
angle = 0.0
|
|
|
|
|
axis = np.array([0.0,0.0,1.0])
|
|
|
|
|
elif np.isclose(self.q,0.0):
|
|
|
|
|
angle = math.pi
|
|
|
|
|
axis = self.p
|
|
|
|
|
else:
|
|
|
|
|
axis = np.sign(self.q)*self.p/np.linalg.norm(self.p)
|
|
|
|
|
|
|
|
|
|
angle = np.degrees(angle) if degrees else angle
|
|
|
|
|
|
|
|
|
|
return np.hstack((angle,axis)) if flat else (angle,axis)
|
|
|
|
|
|
|
|
|
|
def asRodrigues(self):
|
|
|
|
|
return np.inf*np.ones(3) if np.isclose(self.q,0.0) else self.p/self.q
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# # Static constructors
|
|
|
|
|
@classmethod
|
|
|
|
|
def fromIdentity(cls):
|
|
|
|
|
return cls()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def fromRandom(cls,randomSeed = None):
|
|
|
|
|
import binascii
|
|
|
|
|
if randomSeed is None:
|
|
|
|
|
randomSeed = int(binascii.hexlify(os.urandom(4)),16)
|
|
|
|
|
np.random.seed(randomSeed)
|
|
|
|
|
r = np.random.random(3)
|
|
|
|
|
A = math.sqrt(max(0.0,r[2]))
|
|
|
|
|
B = math.sqrt(max(0.0,1.0-r[2]))
|
|
|
|
|
w = math.cos(2.0*math.pi*r[0])*A
|
|
|
|
|
x = math.sin(2.0*math.pi*r[1])*B
|
|
|
|
|
y = math.cos(2.0*math.pi*r[1])*B
|
|
|
|
|
z = math.sin(2.0*math.pi*r[0])*A
|
|
|
|
|
return cls(quat=[w,x,y,z])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def fromRodrigues(cls, rodrigues):
|
|
|
|
|
if not isinstance(rodrigues, np.ndarray): rodrigues = np.array(rodrigues)
|
|
|
|
|
norm = np.linalg.norm(rodrigues)
|
|
|
|
|
halfangle = math.atan(norm)
|
|
|
|
|
s = math.sin(halfangle)
|
|
|
|
|
c = math.cos(halfangle)
|
|
|
|
|
return cls(q=c,p=s*rodrigues/norm)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def fromAngleAxis(cls,
|
|
|
|
|
angle,
|
|
|
|
|
axis,
|
|
|
|
|
degrees = False):
|
|
|
|
|
if not isinstance(axis, np.ndarray): axis = np.array(axis,dtype=float)
|
|
|
|
|
axis = axis.astype(float)/np.linalg.norm(axis)
|
|
|
|
|
angle = np.radians(angle) if degrees else angle
|
|
|
|
|
s = math.sin(0.5 * angle)
|
|
|
|
|
c = math.cos(0.5 * angle)
|
|
|
|
|
return cls(q=c,p=axis*s)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def fromEulers(cls,
|
|
|
|
|
eulers,
|
|
|
|
|
degrees = False):
|
|
|
|
|
if not isinstance(eulers, np.ndarray): eulers = np.array(eulers,dtype=float)
|
|
|
|
|
eulers = np.radians(eulers) if degrees else eulers
|
|
|
|
|
|
|
|
|
|
sigma = 0.5*(eulers[0]+eulers[2])
|
|
|
|
|
delta = 0.5*(eulers[0]-eulers[2])
|
|
|
|
|
c = np.cos(0.5*eulers[1])
|
|
|
|
|
s = np.sin(0.5*eulers[1])
|
|
|
|
|
|
|
|
|
|
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
|
|
|
|
P = -1.0
|
|
|
|
|
w = c * np.cos(sigma)
|
|
|
|
|
x = -P * s * np.cos(delta)
|
|
|
|
|
y = -P * s * np.sin(delta)
|
|
|
|
|
z = -P * c * np.sin(sigma)
|
|
|
|
|
return cls(quat=[w,x,y,z])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Modified Method to calculate Quaternion from Orientation Matrix,
|
|
|
|
|
# Source: http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def fromMatrix(cls, m):
|
|
|
|
|
if m.shape != (3,3) and np.prod(m.shape) == 9:
|
|
|
|
|
m = m.reshape(3,3)
|
|
|
|
|
|
|
|
|
|
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
|
|
|
|
P = -1.0
|
|
|
|
|
w = 0.5*math.sqrt(max(0.0,1.0+m[0,0]+m[1,1]+m[2,2]))
|
|
|
|
|
x = P*0.5*math.sqrt(max(0.0,1.0+m[0,0]-m[1,1]-m[2,2]))
|
|
|
|
|
y = P*0.5*math.sqrt(max(0.0,1.0-m[0,0]+m[1,1]-m[2,2]))
|
|
|
|
|
z = P*0.5*math.sqrt(max(0.0,1.0-m[0,0]-m[1,1]+m[2,2]))
|
|
|
|
|
|
|
|
|
|
x *= -1 if m[2,1] < m[1,2] else 1
|
|
|
|
|
y *= -1 if m[0,2] < m[2,0] else 1
|
|
|
|
|
z *= -1 if m[1,0] < m[0,1] else 1
|
|
|
|
|
|
|
|
|
|
return cls(quat=np.array([w,x,y,z])/math.sqrt(w**2 + x**2 + y**2 + z**2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def new_interpolate(cls, q1, q2, t):
|
|
|
|
|
"""
|
|
|
|
|
Interpolation
|
|
|
|
|
|
|
|
|
|
See http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070017872_2007014421.pdf
|
|
|
|
|
for (another?) way to interpolate quaternions.
|
|
|
|
|
"""
|
|
|
|
|
assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion)
|
|
|
|
|
Q = cls()
|
|
|
|
|
|
|
|
|
|
costheta = q1.q*q2.q + np.dot(q1.p,q2.p)
|
|
|
|
|
if costheta < 0.:
|
|
|
|
|
costheta = -costheta
|
|
|
|
|
q1 = q1.conjugated()
|
|
|
|
|
elif costheta > 1.:
|
|
|
|
|
costheta = 1.
|
|
|
|
|
|
|
|
|
|
theta = math.acos(costheta)
|
|
|
|
|
if abs(theta) < 0.01:
|
|
|
|
|
Q.q = q2.q
|
|
|
|
|
Q.p = q2.p
|
|
|
|
|
return Q
|
|
|
|
|
|
|
|
|
|
sintheta = math.sqrt(1.0 - costheta * costheta)
|
|
|
|
|
if abs(sintheta) < 0.01:
|
|
|
|
|
Q.q = (q1.q + q2.q) * 0.5
|
|
|
|
|
Q.p = (q1.p + q2.p) * 0.5
|
|
|
|
|
return Q
|
|
|
|
|
|
|
|
|
|
ratio1 = math.sin((1.0 - t) * theta) / sintheta
|
|
|
|
|
ratio2 = math.sin( t * theta) / sintheta
|
|
|
|
|
|
|
|
|
|
Q.q = q1.q * ratio1 + q2.q * ratio2
|
|
|
|
|
Q.p = q1.p * ratio1 + q2.p * ratio2
|
|
|
|
|
return Q
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ******************************************************************************************
|
|
|
|
|
class Symmetry:
|
|
|
|
|
"""
|
|
|
|
@ -932,26 +566,16 @@ class Symmetry:
|
|
|
|
|
[ 1.0,0.0,0.0,0.0 ],
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
return list(map(Quaternion,
|
|
|
|
|
np.array(symQuats)[np.atleast_1d(np.array(who)) if who != [] else range(len(symQuats))]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def equivalentQuaternions(self,
|
|
|
|
|
quaternion,
|
|
|
|
|
who = []):
|
|
|
|
|
"""List of symmetrically equivalent quaternions based on own symmetry."""
|
|
|
|
|
return [q*quaternion for q in self.symmetryQuats(who)]
|
|
|
|
|
return np.array(symQuats)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def inFZ(self,R):
|
|
|
|
|
"""Check whether given Rodrigues vector falls into fundamental zone of own symmetry."""
|
|
|
|
|
if isinstance(R, Quaternion): R = R.asRodrigues() # translate accidentally passed quaternion
|
|
|
|
|
# fundamental zone in Rodrigues space is point symmetric around origin
|
|
|
|
|
"""
|
|
|
|
|
Check whether given Rodrigues vector falls into fundamental zone of own symmetry.
|
|
|
|
|
|
|
|
|
|
if R.shape[0]==4: # transition old (length not stored separately) to new
|
|
|
|
|
Fundamental zone in Rodrigues space is point symmetric around origin.
|
|
|
|
|
"""
|
|
|
|
|
Rabs = abs(R[0:3]*R[3])
|
|
|
|
|
else:
|
|
|
|
|
Rabs = abs(R)
|
|
|
|
|
|
|
|
|
|
if self.lattice == 'cubic':
|
|
|
|
|
return math.sqrt(2.0)-1.0 >= Rabs[0] \
|
|
|
|
@ -1367,27 +991,30 @@ class Lattice:
|
|
|
|
|
|
|
|
|
|
relationship = models[model]
|
|
|
|
|
|
|
|
|
|
r = {'lattice':Lattice((set(relationship['mapping'])-{self.lattice}).pop()),
|
|
|
|
|
r = {'lattice':Lattice((set(relationship['mapping'])-{self.lattice}).pop()), # target lattice
|
|
|
|
|
'rotations':[] }
|
|
|
|
|
|
|
|
|
|
myPlane_id = relationship['mapping'][self.lattice]
|
|
|
|
|
otherPlane_id = (myPlane_id+1)%2
|
|
|
|
|
myDir_id = myPlane_id +2
|
|
|
|
|
otherDir_id = otherPlane_id +2
|
|
|
|
|
|
|
|
|
|
for miller in np.hstack((relationship['planes'],relationship['directions'])):
|
|
|
|
|
myPlane = miller[myPlane_id]/ np.linalg.norm(miller[myPlane_id])
|
|
|
|
|
myDir = miller[myDir_id]/ np.linalg.norm(miller[myDir_id])
|
|
|
|
|
myMatrix = np.array([myDir,np.cross(myPlane,myDir),myPlane]).T
|
|
|
|
|
|
|
|
|
|
otherPlane = miller[otherPlane_id]/ np.linalg.norm(miller[otherPlane_id])
|
|
|
|
|
otherDir = miller[otherDir_id]/ np.linalg.norm(miller[otherDir_id])
|
|
|
|
|
|
|
|
|
|
myMatrix = np.array([myDir,np.cross(myPlane,myDir),myPlane]).T
|
|
|
|
|
otherMatrix = np.array([otherDir,np.cross(otherPlane,otherDir),otherPlane]).T
|
|
|
|
|
|
|
|
|
|
r['rotations'].append(Rotation.fromMatrix(np.dot(otherMatrix,myMatrix.T)))
|
|
|
|
|
|
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Orientation2:
|
|
|
|
|
class Orientation:
|
|
|
|
|
"""
|
|
|
|
|
Crystallographic orientation
|
|
|
|
|
|
|
|
|
@ -1431,27 +1058,23 @@ class Orientation2:
|
|
|
|
|
|
|
|
|
|
for i,sA in enumerate(mySymEqs):
|
|
|
|
|
for j,sB in enumerate(otherSymEqs):
|
|
|
|
|
theQ = sB.rotation*mis*sA.rotation.inversed()
|
|
|
|
|
r = sB.rotation*mis*sA.rotation.inversed()
|
|
|
|
|
for k in range(2):
|
|
|
|
|
theQ.inversed()
|
|
|
|
|
breaker = self.lattice.symmetry.inFZ(theQ.asRodrigues()) \
|
|
|
|
|
and (not SST or other.lattice.symmetry.inDisorientationSST(theQ.asRodrigues()))
|
|
|
|
|
r.inversed()
|
|
|
|
|
breaker = self.lattice.symmetry.inFZ(r.asRodrigues()) \
|
|
|
|
|
and (not SST or other.lattice.symmetry.inDisorientationSST(r.asRodrigues()))
|
|
|
|
|
if breaker: break
|
|
|
|
|
if breaker: break
|
|
|
|
|
if breaker: break
|
|
|
|
|
|
|
|
|
|
# disorientation, own sym, other sym, self-->other: True, self<--other: False
|
|
|
|
|
return theQ
|
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
def inFZ(self):
|
|
|
|
|
return self.lattice.symmetry.inFZ(self.rotation.asRodrigues())
|
|
|
|
|
|
|
|
|
|
def equivalentOrientations(self):
|
|
|
|
|
"""List of orientations which are symmetrically equivalent"""
|
|
|
|
|
q = self.lattice.symmetry.symmetryQuats()
|
|
|
|
|
q2 = [Quaternion2(q=a.asList()[0],p=a.asList()[1:4]) for a in q] # convert Quaternion to Quaternion2
|
|
|
|
|
x = [self.__class__(q3*self.rotation.quaternion,self.lattice) for q3 in q2]
|
|
|
|
|
return x
|
|
|
|
|
return [self.__class__(q*self.rotation.quaternion,self.lattice) for q in self.lattice.symmetry.symmetryQuats()]
|
|
|
|
|
|
|
|
|
|
def relatedOrientations(self,model):
|
|
|
|
|
"""List of orientations related by the given orientation relationship"""
|
|
|
|
@ -1465,176 +1088,68 @@ class Orientation2:
|
|
|
|
|
|
|
|
|
|
return self.__class__(me.rotation,self.lattice)
|
|
|
|
|
|
|
|
|
|
# ******************************************************************************************
|
|
|
|
|
class Orientation:
|
|
|
|
|
|
|
|
|
|
__slots__ = ['quaternion','symmetry']
|
|
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
|
quaternion = Quaternion.fromIdentity(),
|
|
|
|
|
Rodrigues = None,
|
|
|
|
|
Eulers = None,
|
|
|
|
|
random = False, # integer to have a fixed seed or True for real random
|
|
|
|
|
symmetry = None,
|
|
|
|
|
degrees = False,
|
|
|
|
|
):
|
|
|
|
|
if random: # produce random orientation
|
|
|
|
|
if isinstance(random, bool ):
|
|
|
|
|
self.quaternion = Quaternion.fromRandom()
|
|
|
|
|
else:
|
|
|
|
|
self.quaternion = Quaternion.fromRandom(randomSeed=random)
|
|
|
|
|
elif isinstance(Eulers, np.ndarray) and Eulers.shape == (3,): # based on given Euler angles
|
|
|
|
|
self.quaternion = Quaternion.fromEulers(Eulers,degrees=degrees)
|
|
|
|
|
elif isinstance(Rodrigues, np.ndarray) and Rodrigues.shape == (3,): # based on given Rodrigues vector
|
|
|
|
|
self.quaternion = Quaternion.fromRodrigues(Rodrigues)
|
|
|
|
|
elif isinstance(quaternion, Quaternion): # based on given quaternion
|
|
|
|
|
self.quaternion = quaternion.homomorphed()
|
|
|
|
|
elif (isinstance(quaternion, np.ndarray) and quaternion.shape == (4,)) or \
|
|
|
|
|
(isinstance(quaternion, list) and len(quaternion) == 4 ): # based on given quaternion-like array
|
|
|
|
|
self.quaternion = Quaternion(quat=quaternion).homomorphed()
|
|
|
|
|
|
|
|
|
|
self.symmetry = Symmetry(symmetry)
|
|
|
|
|
|
|
|
|
|
def __copy__(self):
|
|
|
|
|
"""Copy"""
|
|
|
|
|
return self.__class__(quaternion=self.quaternion,symmetry=self.symmetry.lattice)
|
|
|
|
|
|
|
|
|
|
copy = __copy__
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
|
"""Value as all implemented representations"""
|
|
|
|
|
return '\n'.join([
|
|
|
|
|
'Symmetry: {}'.format(self.symmetry),
|
|
|
|
|
'Quaternion: {}'.format(self.quaternion),
|
|
|
|
|
'Matrix:\n{}'.format( '\n'.join(['\t'.join(list(map(str,self.asMatrix()[i,:]))) for i in range(3)]) ),
|
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
def asRodrigues(self):
|
|
|
|
|
return self.quaternion.asRodrigues()
|
|
|
|
|
rodrigues = property(asRodrigues)
|
|
|
|
|
|
|
|
|
|
def asAngleAxis(self,
|
|
|
|
|
degrees = False,
|
|
|
|
|
flat = False):
|
|
|
|
|
return self.quaternion.asAngleAxis(degrees,flat)
|
|
|
|
|
|
|
|
|
|
def asMatrix(self):
|
|
|
|
|
return self.quaternion.asMatrix()
|
|
|
|
|
matrix = property(asMatrix)
|
|
|
|
|
|
|
|
|
|
def inFZ(self):
|
|
|
|
|
return self.symmetry.inFZ(self.quaternion.asRodrigues())
|
|
|
|
|
|
|
|
|
|
def equivalentQuaternions(self,
|
|
|
|
|
who = []):
|
|
|
|
|
return self.symmetry.equivalentQuaternions(self.quaternion,who)
|
|
|
|
|
|
|
|
|
|
def equivalentOrientations(self,
|
|
|
|
|
who = []):
|
|
|
|
|
return [Orientation(quaternion = q, symmetry = self.symmetry.lattice) for q in self.equivalentQuaternions(who)]
|
|
|
|
|
|
|
|
|
|
def reduced(self):
|
|
|
|
|
"""Transform orientation to fall into fundamental zone according to symmetry"""
|
|
|
|
|
for me in self.symmetry.equivalentQuaternions(self.quaternion):
|
|
|
|
|
if self.symmetry.inFZ(me.asRodrigues()): break
|
|
|
|
|
|
|
|
|
|
return Orientation(quaternion=me,symmetry=self.symmetry.lattice)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def disorientation(self,
|
|
|
|
|
other,
|
|
|
|
|
SST = True):
|
|
|
|
|
"""
|
|
|
|
|
Disorientation between myself and given other orientation.
|
|
|
|
|
|
|
|
|
|
Rotation axis falls into SST if SST == True.
|
|
|
|
|
(Currently requires same symmetry for both orientations.
|
|
|
|
|
Look into A. Heinz and P. Neumann 1991 for cases with differing sym.)
|
|
|
|
|
"""
|
|
|
|
|
if self.symmetry != other.symmetry:
|
|
|
|
|
raise NotImplementedError('disorientation between different symmetry classes not supported yet.')
|
|
|
|
|
|
|
|
|
|
misQ = other.quaternion*self.quaternion.conjugated()
|
|
|
|
|
mySymQs = self.symmetry.symmetryQuats() if SST else self.symmetry.symmetryQuats()[:1] # take all or only first sym operation
|
|
|
|
|
otherSymQs = other.symmetry.symmetryQuats()
|
|
|
|
|
|
|
|
|
|
for i,sA in enumerate(mySymQs):
|
|
|
|
|
for j,sB in enumerate(otherSymQs):
|
|
|
|
|
theQ = sB*misQ*sA.conjugated()
|
|
|
|
|
for k in range(2):
|
|
|
|
|
theQ.conjugate()
|
|
|
|
|
breaker = self.symmetry.inFZ(theQ) \
|
|
|
|
|
and (not SST or other.symmetry.inDisorientationSST(theQ))
|
|
|
|
|
if breaker: break
|
|
|
|
|
if breaker: break
|
|
|
|
|
if breaker: break
|
|
|
|
|
|
|
|
|
|
# disorientation, own sym, other sym, self-->other: True, self<--other: False
|
|
|
|
|
return (Orientation(quaternion = theQ,symmetry = self.symmetry.lattice),
|
|
|
|
|
i,j, k == 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def inversePole(self,
|
|
|
|
|
axis,
|
|
|
|
|
proper = False,
|
|
|
|
|
SST = True):
|
|
|
|
|
"""Axis rotated according to orientation (using crystal symmetry to ensure location falls into SST)"""
|
|
|
|
|
if SST: # pole requested to be within SST
|
|
|
|
|
for i,q in enumerate(self.symmetry.equivalentQuaternions(self.quaternion)): # test all symmetric equivalent quaternions
|
|
|
|
|
pole = q*axis # align crystal direction to axis
|
|
|
|
|
if self.symmetry.inSST(pole,proper): break # found SST version
|
|
|
|
|
for i,o in enumerate(self.equivalentOrientations()): # test all symmetric equivalent quaternions
|
|
|
|
|
pole = o.rotation*axis # align crystal direction to axis
|
|
|
|
|
if self.lattice.symmetry.inSST(pole,proper): break # found SST version
|
|
|
|
|
else:
|
|
|
|
|
pole = self.quaternion*axis # align crystal direction to axis
|
|
|
|
|
pole = self.rotation*axis # align crystal direction to axis
|
|
|
|
|
|
|
|
|
|
return (pole,i if SST else 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def IPFcolor(self,axis):
|
|
|
|
|
"""TSL color of inverse pole figure for given axis"""
|
|
|
|
|
color = np.zeros(3,'d')
|
|
|
|
|
|
|
|
|
|
for q in self.symmetry.equivalentQuaternions(self.quaternion):
|
|
|
|
|
pole = q*axis # align crystal direction to axis
|
|
|
|
|
inSST,color = self.symmetry.inSST(pole,color=True)
|
|
|
|
|
for o in self.equivalentOrientations():
|
|
|
|
|
pole = o.rotation*axis # align crystal direction to axis
|
|
|
|
|
inSST,color = self.lattice.symmetry.inSST(pole,color=True)
|
|
|
|
|
if inSST: break
|
|
|
|
|
|
|
|
|
|
return color
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def average(cls,
|
|
|
|
|
orientations,
|
|
|
|
|
multiplicity = []):
|
|
|
|
|
"""
|
|
|
|
|
Average orientation
|
|
|
|
|
|
|
|
|
|
ref: F. Landis Markley, Yang Cheng, John Lucas Crassidis, and Yaakov Oshman.
|
|
|
|
|
Averaging Quaternions,
|
|
|
|
|
Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4 (2007), pp. 1193-1197.
|
|
|
|
|
doi: 10.2514/1.28949
|
|
|
|
|
usage:
|
|
|
|
|
a = Orientation(Eulers=np.radians([10, 10, 0]), symmetry='hexagonal')
|
|
|
|
|
b = Orientation(Eulers=np.radians([20, 0, 0]), symmetry='hexagonal')
|
|
|
|
|
avg = Orientation.average([a,b])
|
|
|
|
|
"""
|
|
|
|
|
if not all(isinstance(item, Orientation) for item in orientations):
|
|
|
|
|
raise TypeError("Only instances of Orientation can be averaged.")
|
|
|
|
|
# @classmethod
|
|
|
|
|
# def average(cls,
|
|
|
|
|
# orientations,
|
|
|
|
|
# multiplicity = []):
|
|
|
|
|
# """
|
|
|
|
|
# Average orientation
|
|
|
|
|
|
|
|
|
|
N = len(orientations)
|
|
|
|
|
if multiplicity == [] or not multiplicity:
|
|
|
|
|
multiplicity = np.ones(N,dtype='i')
|
|
|
|
|
# ref: F. Landis Markley, Yang Cheng, John Lucas Crassidis, and Yaakov Oshman.
|
|
|
|
|
# Averaging Quaternions,
|
|
|
|
|
# Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4 (2007), pp. 1193-1197.
|
|
|
|
|
# doi: 10.2514/1.28949
|
|
|
|
|
# usage:
|
|
|
|
|
# a = Orientation(Eulers=np.radians([10, 10, 0]), symmetry='hexagonal')
|
|
|
|
|
# b = Orientation(Eulers=np.radians([20, 0, 0]), symmetry='hexagonal')
|
|
|
|
|
# avg = Orientation.average([a,b])
|
|
|
|
|
# """
|
|
|
|
|
# if not all(isinstance(item, Orientation) for item in orientations):
|
|
|
|
|
# raise TypeError("Only instances of Orientation can be averaged.")
|
|
|
|
|
|
|
|
|
|
reference = orientations[0] # take first as reference
|
|
|
|
|
for i,(o,n) in enumerate(zip(orientations,multiplicity)):
|
|
|
|
|
closest = o.equivalentOrientations(reference.disorientation(o,SST = False)[2])[0] # select sym orientation with lowest misorientation
|
|
|
|
|
M = closest.quaternion.asM() * n if i == 0 else M + closest.quaternion.asM() * n # noqa add (multiples) of this orientation to average noqa
|
|
|
|
|
eig, vec = np.linalg.eig(M/N)
|
|
|
|
|
# N = len(orientations)
|
|
|
|
|
# if multiplicity == [] or not multiplicity:
|
|
|
|
|
# multiplicity = np.ones(N,dtype='i')
|
|
|
|
|
|
|
|
|
|
return Orientation(quaternion = Quaternion(quat = np.real(vec.T[eig.argmax()])),
|
|
|
|
|
symmetry = reference.symmetry.lattice)
|
|
|
|
|
# reference = orientations[0] # take first as reference
|
|
|
|
|
# for i,(o,n) in enumerate(zip(orientations,multiplicity)):
|
|
|
|
|
# closest = o.equivalentOrientations(reference.disorientation(o,SST = False)[2])[0] # select sym orientation with lowest misorientation
|
|
|
|
|
# M = closest.quaternion.asM() * n if i == 0 else M + closest.quaternion.asM() * n # noqa add (multiples) of this orientation to average noqa
|
|
|
|
|
# eig, vec = np.linalg.eig(M/N)
|
|
|
|
|
|
|
|
|
|
# return Orientation(quaternion = Quaternion(quat = np.real(vec.T[eig.argmax()])),
|
|
|
|
|
# symmetry = reference.symmetry.lattice)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
####################################################################################################
|
|
|
|
|
# Code below available according to the followin conditions on https://github.com/MarDiehl/3Drotations
|
|
|
|
|
# Code below available according to the following conditions on https://github.com/MarDiehl/3Drotations
|
|
|
|
|
####################################################################################################
|
|
|
|
|
# Copyright (c) 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
|
|
|
|
# Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University
|
|
|
|
@ -1769,7 +1284,6 @@ def qu2eu(qu):
|
|
|
|
|
eu = np.array([np.arctan2(-P*2.0*qu[0]*qu[3],qu[0]**2-qu[3]**2), 0.0, 0.0]) if iszero(q12) else \
|
|
|
|
|
np.array([np.arctan2(2.0*qu[1]*qu[2],qu[1]**2-qu[2]**2), np.pi, 0.0])
|
|
|
|
|
else:
|
|
|
|
|
#chiInv = 1.0/chi ToDo: needed for what?
|
|
|
|
|
eu = np.array([np.arctan2((-P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]-qu[2]*qu[3])*chi ),
|
|
|
|
|
np.arctan2( 2.0*chi, q03-q12 ),
|
|
|
|
|
np.arctan2(( P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]+qu[2]*qu[3])*chi )])
|
|
|
|
|