fixed serious bug regarding wrong reshaping order (was 'C' now 'F') of 3dim to 1dim and back.
This commit is contained in:
parent
b9021f3b3f
commit
d3a7ceff15
|
@ -159,7 +159,9 @@ for name in filenames:
|
||||||
if table.label_dimension(options.id) != 1: errors.append('grain identifier {} not found.'.format(options.id))
|
if table.label_dimension(options.id) != 1: errors.append('grain identifier {} not found.'.format(options.id))
|
||||||
else: idCol = table.label_index(options.id)
|
else: idCol = table.label_index(options.id)
|
||||||
|
|
||||||
if remarks != []: damask.util.croak(remarks)
|
if remarks != []:
|
||||||
|
damask.util.croak(remarks)
|
||||||
|
remarks = []
|
||||||
if errors != []:
|
if errors != []:
|
||||||
damask.util.croak(errors)
|
damask.util.croak(errors)
|
||||||
table.close(dismiss = True)
|
table.close(dismiss = True)
|
||||||
|
@ -184,6 +186,8 @@ for name in filenames:
|
||||||
N = grid.prod()
|
N = grid.prod()
|
||||||
|
|
||||||
if N != len(table.data): errors.append('data count {} does not match grid {}.'.format(N,'x'.join(map(str,grid))))
|
if N != len(table.data): errors.append('data count {} does not match grid {}.'.format(N,'x'.join(map(str,grid))))
|
||||||
|
else: remarks.append('grid: {}x{}x{}'.format(*grid))
|
||||||
|
if remarks != []: damask.util.croak(remarks)
|
||||||
if errors != []:
|
if errors != []:
|
||||||
damask.util.croak(errors)
|
damask.util.croak(errors)
|
||||||
table.close(dismiss = True)
|
table.close(dismiss = True)
|
||||||
|
@ -194,33 +198,37 @@ for name in filenames:
|
||||||
stack = [table.data]
|
stack = [table.data]
|
||||||
|
|
||||||
neighborhood = neighborhoods[options.neighborhood]
|
neighborhood = neighborhoods[options.neighborhood]
|
||||||
convoluted = np.empty([len(neighborhood)]+list(grid+2),'i')
|
diffToNeighbor = np.empty(list(grid+2)+[len(neighborhood)],'i')
|
||||||
microstructure = periodic_3Dpad(np.array(table.data[:,idCol].reshape(grid),'i'))
|
microstructure = periodic_3Dpad(table.data[:,idCol].astype('i').reshape(grid,order='F'))
|
||||||
|
|
||||||
for i,p in enumerate(neighborhood):
|
for i,p in enumerate(neighborhood):
|
||||||
stencil = np.zeros((3,3,3),'i')
|
stencil = np.zeros((3,3,3),'i')
|
||||||
stencil[1,1,1] = -1
|
stencil[1,1,1] = -1
|
||||||
stencil[p[0]+1,
|
stencil[p[0]+1,
|
||||||
p[1]+1,
|
p[1]+1,
|
||||||
p[2]+1] = 1
|
p[2]+1] = 1
|
||||||
convoluted[i,:,:,:] = ndimage.convolve(microstructure,stencil)
|
diffToNeighbor[:,:,:,i] = ndimage.convolve(microstructure,stencil) # compare ID at each point...
|
||||||
|
# ...to every one in the specified neighborhood
|
||||||
|
# for same IDs at both locations ==> 0
|
||||||
|
|
||||||
distance = np.ones((len(feature_list),grid[0],grid[1],grid[2]),'d')
|
diffToNeighbor = np.sort(diffToNeighbor) # sort diff such that number of changes in diff (steps)...
|
||||||
|
# ...reflects number of unique neighbors
|
||||||
convoluted = np.sort(convoluted,axis = 0)
|
uniques = np.where(diffToNeighbor[1:-1,1:-1,1:-1,0] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
|
||||||
uniques = np.where(convoluted[0,1:-1,1:-1,1:-1] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
|
|
||||||
|
|
||||||
for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood
|
for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood
|
||||||
uniques += np.where(np.logical_and(
|
uniques += np.where(np.logical_and(
|
||||||
convoluted[i,1:-1,1:-1,1:-1] != convoluted[i-1,1:-1,1:-1,1:-1], # flip of ID difference detected?
|
diffToNeighbor[1:-1,1:-1,1:-1,i] != 0, # not myself?
|
||||||
convoluted[i,1:-1,1:-1,1:-1] != 0), # not myself?
|
diffToNeighbor[1:-1,1:-1,1:-1,i] != diffToNeighbor[1:-1,1:-1,1:-1,i-1],
|
||||||
1,0) # count flip
|
), # flip of ID difference detected?
|
||||||
|
1,0) # count that flip
|
||||||
|
|
||||||
|
distance = np.ones((len(feature_list),grid[0],grid[1],grid[2]),'d')
|
||||||
|
|
||||||
for i,feature_id in enumerate(feature_list):
|
for i,feature_id in enumerate(feature_list):
|
||||||
distance[i,:,:,:] = np.where(uniques >= features[feature_id]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present
|
distance[i,:,:,:] = np.where(uniques >= features[feature_id]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present
|
||||||
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
|
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
|
||||||
|
|
||||||
distance.shape = ([len(feature_list),grid.prod(),1])
|
distance = distance.reshape([len(feature_list),grid.prod(),1],order='F')
|
||||||
for i in xrange(len(feature_list)):
|
for i in xrange(len(feature_list)):
|
||||||
stack.append(distance[i,:])
|
stack.append(distance[i,:])
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue