removing remainders of twinning
This commit is contained in:
parent
09dfa4a419
commit
d35452533c
|
@ -29,59 +29,35 @@ module plastic_disloUCLA
|
|||
plastic_disloUCLA_Noutput !< number of outputs per instance of this plasticity
|
||||
|
||||
integer(pInt), dimension(:), allocatable, private :: &
|
||||
plastic_disloUCLA_totalNslip, & !< total number of active slip systems for each instance
|
||||
plastic_disloUCLA_totalNtwin !< total number of active twin systems for each instance
|
||||
plastic_disloUCLA_totalNslip !< total number of active slip systems for each instance
|
||||
|
||||
integer(pInt), dimension(:,:), allocatable, private :: &
|
||||
plastic_disloUCLA_Nslip, & !< number of active slip systems for each family and instance
|
||||
plastic_disloUCLA_Ntwin !< number of active twin systems for each family and instance
|
||||
plastic_disloUCLA_Nslip !< number of active slip systems for each family and instance
|
||||
|
||||
|
||||
real(pReal), dimension(:), allocatable, private :: &
|
||||
plastic_disloUCLA_CAtomicVolume, & !< atomic volume in Bugers vector unit
|
||||
plastic_disloUCLA_D0, & !< prefactor for self-diffusion coefficient
|
||||
plastic_disloUCLA_Qsd, & !< activation energy for dislocation climb
|
||||
plastic_disloUCLA_GrainSize, & !< grain size
|
||||
plastic_disloUCLA_MaxTwinFraction, & !< maximum allowed total twin volume fraction
|
||||
plastic_disloUCLA_CEdgeDipMinDistance, & !<
|
||||
plastic_disloUCLA_Cmfptwin, & !<
|
||||
plastic_disloUCLA_Cthresholdtwin, & !<
|
||||
plastic_disloUCLA_SolidSolutionStrength, & !< Strength due to elements in solid solution
|
||||
plastic_disloUCLA_L0, & !< Length of twin nuclei in Burgers vectors
|
||||
plastic_disloUCLA_xc, & !< critical distance for formation of twin nucleus
|
||||
plastic_disloUCLA_VcrossSlip, & !< cross slip volume
|
||||
plastic_disloUCLA_SFE_0K, & !< stacking fault energy at zero K
|
||||
plastic_disloUCLA_dSFE_dT, & !< temperature dependance of stacking fault energy
|
||||
plastic_disloUCLA_dipoleFormationFactor, & !< scaling factor for dipole formation: 0: off, 1: on. other values not useful
|
||||
plastic_disloUCLA_aTolRho, & !< absolute tolerance for integration of dislocation density
|
||||
plastic_disloUCLA_aTolTwinFrac !< absolute tolerance for integration of twin volume fraction
|
||||
plastic_disloUCLA_aTolRho !< absolute tolerance for integration of dislocation density
|
||||
|
||||
real(pReal), dimension(:,:,:,:), allocatable, private :: &
|
||||
plastic_disloUCLA_Ctwin66 !< twin elasticity matrix in Mandel notation for each instance
|
||||
real(pReal), dimension(:,:,:,:,:,:), allocatable, private :: &
|
||||
plastic_disloUCLA_Ctwin3333 !< twin elasticity matrix for each instance
|
||||
real(pReal), dimension(:,:), allocatable, private :: &
|
||||
plastic_disloUCLA_rhoEdge0, & !< initial edge dislocation density per slip system for each family and instance
|
||||
plastic_disloUCLA_rhoEdgeDip0, & !< initial edge dipole density per slip system for each family and instance
|
||||
plastic_disloUCLA_burgersPerSlipFamily, & !< absolute length of burgers vector [m] for each slip family and instance
|
||||
plastic_disloUCLA_burgersPerSlipSystem, & !< absolute length of burgers vector [m] for each slip system and instance
|
||||
plastic_disloUCLA_burgersPerTwinFamily, & !< absolute length of burgers vector [m] for each twin family and instance
|
||||
plastic_disloUCLA_burgersPerTwinSystem, & !< absolute length of burgers vector [m] for each twin system and instance
|
||||
plastic_disloUCLA_QedgePerSlipFamily, & !< activation energy for glide [J] for each slip family and instance
|
||||
plastic_disloUCLA_QedgePerSlipSystem, & !< activation energy for glide [J] for each slip system and instance
|
||||
plastic_disloUCLA_v0PerSlipFamily, & !< dislocation velocity prefactor [m/s] for each family and instance
|
||||
plastic_disloUCLA_v0PerSlipSystem, & !< dislocation velocity prefactor [m/s] for each slip system and instance
|
||||
plastic_disloUCLA_tau_peierlsPerSlipFamily, & !< Peierls stress [Pa] for each family and instance
|
||||
plastic_disloUCLA_Ndot0PerTwinFamily, & !< twin nucleation rate [1/m³s] for each twin family and instance
|
||||
plastic_disloUCLA_Ndot0PerTwinSystem, & !< twin nucleation rate [1/m³s] for each twin system and instance
|
||||
plastic_disloUCLA_tau_r, & !< stress to bring partial close together for each twin system and instance
|
||||
plastic_disloUCLA_twinsizePerTwinFamily, & !< twin thickness [m] for each twin family and instance
|
||||
plastic_disloUCLA_twinsizePerTwinSystem, & !< twin thickness [m] for each twin system and instance
|
||||
plastic_disloUCLA_CLambdaSlipPerSlipFamily, & !< Adj. parameter for distance between 2 forest dislocations for each slip family and instance
|
||||
plastic_disloUCLA_CLambdaSlipPerSlipSystem, & !< Adj. parameter for distance between 2 forest dislocations for each slip system and instance
|
||||
plastic_disloUCLA_interaction_SlipSlip, & !< coefficients for slip-slip interaction for each interaction type and instance
|
||||
plastic_disloUCLA_interaction_SlipTwin, & !< coefficients for slip-twin interaction for each interaction type and instance
|
||||
plastic_disloUCLA_interaction_TwinSlip, & !< coefficients for twin-slip interaction for each interaction type and instance
|
||||
plastic_disloUCLA_interaction_TwinTwin, & !< coefficients for twin-twin interaction for each interaction type and instance
|
||||
plastic_disloUCLA_pPerSlipFamily, & !< p-exponent in glide velocity
|
||||
plastic_disloUCLA_qPerSlipFamily, & !< q-exponent in glide velocity
|
||||
!* mobility law parameters
|
||||
|
@ -91,13 +67,9 @@ module plastic_disloUCLA
|
|||
plastic_disloUCLA_dislolength, & !< dislocation length (lamda)
|
||||
plastic_disloUCLA_friction, & !< friction coeff. B (kMC)
|
||||
!*
|
||||
plastic_disloUCLA_rPerTwinFamily, & !< r-exponent in twin nucleation rate
|
||||
plastic_disloUCLA_nonSchmidCoeff !< non-Schmid coefficients (bcc)
|
||||
real(pReal), dimension(:,:,:), allocatable, private :: &
|
||||
plastic_disloUCLA_interactionMatrix_SlipSlip, & !< interaction matrix of the different slip systems for each instance
|
||||
plastic_disloUCLA_interactionMatrix_SlipTwin, & !< interaction matrix of slip systems with twin systems for each instance
|
||||
plastic_disloUCLA_interactionMatrix_TwinSlip, & !< interaction matrix of twin systems with slip systems for each instance
|
||||
plastic_disloUCLA_interactionMatrix_TwinTwin, & !< interaction matrix of the different twin systems for each instance
|
||||
plastic_disloUCLA_forestProjectionEdge !< matrix of forest projections of edge dislocations for each instance
|
||||
|
||||
enum, bind(c)
|
||||
|
@ -110,13 +82,7 @@ module plastic_disloUCLA
|
|||
resolved_stress_slip_ID, &
|
||||
threshold_stress_slip_ID, &
|
||||
edge_dipole_distance_ID, &
|
||||
stress_exponent_ID, &
|
||||
twin_fraction_ID, &
|
||||
shear_rate_twin_ID, &
|
||||
accumulated_shear_twin_ID, &
|
||||
mfp_twin_ID, &
|
||||
resolved_stress_twin_ID, &
|
||||
threshold_stress_twin_ID
|
||||
stress_exponent_ID
|
||||
end enum
|
||||
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
|
||||
plastic_disloUCLA_outputID !< ID of each post result output
|
||||
|
@ -126,16 +92,9 @@ module plastic_disloUCLA
|
|||
rhoEdge, &
|
||||
rhoEdgeDip, &
|
||||
accshear_slip, &
|
||||
twinFraction, &
|
||||
accshear_twin, &
|
||||
invLambdaSlip, &
|
||||
invLambdaSlipTwin, &
|
||||
invLambdaTwin, &
|
||||
mfp_slip, &
|
||||
mfp_twin, &
|
||||
threshold_stress_slip, &
|
||||
threshold_stress_twin, &
|
||||
twinVolume
|
||||
threshold_stress_slip
|
||||
end type
|
||||
type(tDisloUCLAState ), allocatable, dimension(:), private :: &
|
||||
state, &
|
||||
|
@ -201,11 +160,10 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
integer(pInt), intent(in) :: fileUnit
|
||||
|
||||
integer(pInt), allocatable, dimension(:) :: chunkPos
|
||||
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,maxTotalNslip,maxTotalNtwin,&
|
||||
f,instance,j,k,l,m,n,o,p,q,r,s,ns,nt, &
|
||||
Nchunks_SlipSlip = 0_pInt, Nchunks_SlipTwin = 0_pInt, &
|
||||
Nchunks_TwinSlip = 0_pInt, Nchunks_TwinTwin = 0_pInt, &
|
||||
Nchunks_SlipFamilies = 0_pInt, Nchunks_TwinFamilies = 0_pInt, Nchunks_nonSchmid = 0_pInt, &
|
||||
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,maxTotalNslip,&
|
||||
f,instance,j,k,o,ns, &
|
||||
Nchunks_SlipSlip = 0_pInt, &
|
||||
Nchunks_SlipFamilies = 0_pInt,Nchunks_nonSchmid = 0_pInt, &
|
||||
offset_slip, index_myFamily, index_otherFamily, &
|
||||
startIndex, endIndex
|
||||
integer(pInt) :: sizeState, sizeDotState, sizeDeltaState
|
||||
|
@ -213,7 +171,7 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
character(len=65536) :: &
|
||||
tag = '', &
|
||||
line = ''
|
||||
real(pReal), dimension(:), allocatable :: tempPerSlip, tempPerTwin
|
||||
real(pReal), dimension(:), allocatable :: tempPerSlip
|
||||
|
||||
mainProcess: if (worldrank == 0) then
|
||||
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_DISLOUCLA_label//' init -+>>>'
|
||||
|
@ -234,25 +192,14 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
allocate(plastic_disloUCLA_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
|
||||
allocate(plastic_disloUCLA_Noutput(maxNinstance), source=0_pInt)
|
||||
allocate(plastic_disloUCLA_Nslip(lattice_maxNslipFamily,maxNinstance), source=0_pInt)
|
||||
allocate(plastic_disloUCLA_Ntwin(lattice_maxNtwinFamily,maxNinstance), source=0_pInt)
|
||||
allocate(plastic_disloUCLA_totalNslip(maxNinstance), source=0_pInt)
|
||||
allocate(plastic_disloUCLA_totalNtwin(maxNinstance), source=0_pInt)
|
||||
allocate(plastic_disloUCLA_CAtomicVolume(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_D0(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_Qsd(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_GrainSize(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_MaxTwinFraction(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_CEdgeDipMinDistance(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_Cmfptwin(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_Cthresholdtwin(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_SolidSolutionStrength(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_L0(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_xc(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_VcrossSlip(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_aTolRho(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_aTolTwinFrac(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_SFE_0K(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_dSFE_dT(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_dipoleFormationFactor(maxNinstance), source=1.0_pReal) !should be on by default
|
||||
allocate(plastic_disloUCLA_rhoEdge0(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_rhoEdgeDip0(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
||||
|
@ -262,22 +209,18 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
allocate(plastic_disloUCLA_kinkwidth(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_dislolength(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_friction(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_burgersPerTwinFamily(lattice_maxNtwinFamily,maxNinstance),source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_QedgePerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_v0PerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_tau_peierlsPerSlipFamily(lattice_maxNslipFamily,maxNinstance), &
|
||||
source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_pPerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_qPerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_Ndot0PerTwinFamily(lattice_maxNtwinFamily,maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_twinsizePerTwinFamily(lattice_maxNtwinFamily,maxNinstance),source=0.0_pReal)
|
||||
|
||||
allocate(plastic_disloUCLA_CLambdaSlipPerSlipFamily(lattice_maxNslipFamily,maxNinstance), &
|
||||
source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_rPerTwinFamily(lattice_maxNtwinFamily,maxNinstance),source=0.0_pReal)
|
||||
|
||||
allocate(plastic_disloUCLA_interaction_SlipSlip(lattice_maxNinteraction,maxNinstance),source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_interaction_SlipTwin(lattice_maxNinteraction,maxNinstance),source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_interaction_TwinSlip(lattice_maxNinteraction,maxNinstance),source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_interaction_TwinTwin(lattice_maxNinteraction,maxNinstance),source=0.0_pReal)
|
||||
|
||||
allocate(plastic_disloUCLA_nonSchmidCoeff(lattice_maxNnonSchmid,maxNinstance), source=0.0_pReal)
|
||||
|
||||
|
||||
|
@ -298,16 +241,10 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
phase = phase + 1_pInt ! advance phase section counter
|
||||
if (phase_plasticity(phase) == PLASTICITY_DISLOUCLA_ID) then
|
||||
Nchunks_SlipFamilies = count(lattice_NslipSystem(:,phase) > 0_pInt)
|
||||
Nchunks_TwinFamilies = count(lattice_NtwinSystem(:,phase) > 0_pInt)
|
||||
Nchunks_SlipSlip = maxval(lattice_interactionSlipSlip(:,:,phase))
|
||||
Nchunks_SlipTwin = maxval(lattice_interactionSlipTwin(:,:,phase))
|
||||
Nchunks_TwinSlip = maxval(lattice_interactionTwinSlip(:,:,phase))
|
||||
Nchunks_TwinTwin = maxval(lattice_interactionTwinTwin(:,:,phase))
|
||||
Nchunks_nonSchmid = lattice_NnonSchmid(phase)
|
||||
if(allocated(tempPerSlip)) deallocate(tempPerSlip)
|
||||
if(allocated(tempPerTwin)) deallocate(tempPerTwin)
|
||||
allocate(tempPerSlip(Nchunks_SlipFamilies))
|
||||
allocate(tempPerTwin(Nchunks_TwinFamilies))
|
||||
endif
|
||||
cycle ! skip to next line
|
||||
endif
|
||||
|
@ -433,7 +370,7 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
plastic_disloUCLA_nonSchmidCoeff(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
|
||||
enddo
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! parameters independent of number of slip/twin systems
|
||||
! parameters independent of number of slip systems
|
||||
case ('grainsize')
|
||||
plastic_disloUCLA_GrainSize(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
case ('d0')
|
||||
|
@ -444,12 +381,6 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
plastic_disloUCLA_aTolRho(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
case ('solidsolutionstrength')
|
||||
plastic_disloUCLA_SolidSolutionStrength(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
case ('l0')
|
||||
plastic_disloUCLA_L0(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
case ('xc')
|
||||
plastic_disloUCLA_xc(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
case ('vcrossslip')
|
||||
plastic_disloUCLA_VcrossSlip(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
case ('cedgedipmindistance')
|
||||
plastic_disloUCLA_CEdgeDipMinDistance(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
case ('catomicvolume')
|
||||
|
@ -465,8 +396,6 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
instance = phase_plasticityInstance(phase)
|
||||
if (sum(plastic_disloUCLA_Nslip(:,instance)) < 0_pInt) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='Nslip ('//PLASTICITY_DISLOUCLA_label//')')
|
||||
if (sum(plastic_disloUCLA_Ntwin(:,instance)) < 0_pInt) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='Ntwin ('//PLASTICITY_DISLOUCLA_label//')')
|
||||
do f = 1_pInt,lattice_maxNslipFamily
|
||||
if (plastic_disloUCLA_Nslip(f,instance) > 0_pInt) then
|
||||
if (plastic_disloUCLA_rhoEdge0(f,instance) < 0.0_pReal) &
|
||||
|
@ -487,48 +416,30 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
call IO_error(211_pInt,el=instance,ext_msg='D0 ('//PLASTICITY_DISLOUCLA_label//')')
|
||||
if (plastic_disloUCLA_Qsd(instance) <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='Qsd ('//PLASTICITY_DISLOUCLA_label//')')
|
||||
if (plastic_disloUCLA_aTolRho(instance) <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='aTolRho ('//PLASTICITY_DISLOUCLA_label//')')
|
||||
! if (plastic_disloUCLA_aTolRho(instance) <= 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=instance,ext_msg='aTolRho ('//PLASTICITY_DISLOUCLA_label//')')
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Determine total number of active slip or twin systems
|
||||
! Determine total number of active slip systems
|
||||
plastic_disloUCLA_Nslip(:,instance) = min(lattice_NslipSystem(:,phase),plastic_disloUCLA_Nslip(:,instance))
|
||||
plastic_disloUCLA_Ntwin(:,instance) = min(lattice_NtwinSystem(:,phase),plastic_disloUCLA_Ntwin(:,instance))
|
||||
plastic_disloUCLA_totalNslip(instance) = sum(plastic_disloUCLA_Nslip(:,instance))
|
||||
plastic_disloUCLA_totalNtwin(instance) = sum(plastic_disloUCLA_Ntwin(:,instance))
|
||||
endif myPhase
|
||||
enddo sanityChecks
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! allocation of variables whose size depends on the total number of active slip systems
|
||||
maxTotalNslip = maxval(plastic_disloUCLA_totalNslip)
|
||||
maxTotalNtwin = maxval(plastic_disloUCLA_totalNtwin)
|
||||
|
||||
allocate(plastic_disloUCLA_burgersPerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_burgersPerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_QedgePerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_v0PerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_Ndot0PerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_tau_r(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_twinsizePerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_CLambdaSlipPerSlipSystem(maxTotalNslip, maxNinstance),source=0.0_pReal)
|
||||
|
||||
allocate(plastic_disloUCLA_interactionMatrix_SlipSlip(maxval(plastic_disloUCLA_totalNslip),& ! slip resistance from slip activity
|
||||
maxval(plastic_disloUCLA_totalNslip),&
|
||||
maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_interactionMatrix_SlipTwin(maxval(plastic_disloUCLA_totalNslip),& ! slip resistance from twin activity
|
||||
maxval(plastic_disloUCLA_totalNtwin),&
|
||||
maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_interactionMatrix_TwinSlip(maxval(plastic_disloUCLA_totalNtwin),& ! twin resistance from slip activity
|
||||
maxval(plastic_disloUCLA_totalNslip),&
|
||||
maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_interactionMatrix_TwinTwin(maxval(plastic_disloUCLA_totalNtwin),& ! twin resistance from twin activity
|
||||
maxval(plastic_disloUCLA_totalNtwin),&
|
||||
maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_forestProjectionEdge(maxTotalNslip,maxTotalNslip,maxNinstance), &
|
||||
source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_Ctwin66(6,6,maxTotalNtwin,maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_Ctwin3333(3,3,3,3,maxTotalNtwin,maxNinstance), source=0.0_pReal)
|
||||
|
||||
allocate(state(maxNinstance))
|
||||
allocate(state0(maxNinstance))
|
||||
|
@ -538,9 +449,7 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
myPhase2: if (phase_plasticity(phase) == PLASTICITY_disloUCLA_ID) then
|
||||
NofMyPhase=count(material_phase==phase)
|
||||
instance = phase_plasticityInstance(phase)
|
||||
|
||||
ns = plastic_disloUCLA_totalNslip(instance)
|
||||
nt = plastic_disloUCLA_totalNtwin(instance)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Determine size of postResults array
|
||||
|
@ -568,21 +477,18 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
! allocate state arrays
|
||||
|
||||
sizeDotState = int(size(['rhoEdge ','rhoEdgeDip ','accshearslip']),pInt) * ns &
|
||||
+ int(size(['twinFraction','accsheartwin']),pInt) * nt
|
||||
sizeDotState = int(size(['rhoEdge ','rhoEdgeDip ','accshearslip']),pInt) * ns
|
||||
sizeDeltaState = 0_pInt
|
||||
sizeState = sizeDotState &
|
||||
+ int(size(['invLambdaSlip ','invLambdaSlipTwin ',&
|
||||
'meanFreePathSlip ','tauSlipThreshold ']),pInt) * ns &
|
||||
+ int(size(['invLambdaTwin ','meanFreePathTwin','tauTwinThreshold',&
|
||||
'twinVolume ']),pInt) * nt
|
||||
+ int(size(['invLambdaSlip ',&
|
||||
'meanFreePathSlip ','tauSlipThreshold ']),pInt) * ns
|
||||
|
||||
plasticState(phase)%sizeState = sizeState
|
||||
plasticState(phase)%sizeDotState = sizeDotState
|
||||
plasticState(phase)%sizeDeltaState = sizeDeltaState
|
||||
plasticState(phase)%sizePostResults = plastic_disloUCLA_sizePostResults(instance)
|
||||
plasticState(phase)%nSlip = plastic_disloucla_totalNslip(instance)
|
||||
plasticState(phase)%nTwin = plastic_disloucla_totalNtwin(instance)
|
||||
plasticState(phase)%nTwin = 0_pInt
|
||||
plasticState(phase)%nTrans= 0_pInt
|
||||
allocate(plasticState(phase)%aTolState (sizeState), source=0.0_pReal)
|
||||
allocate(plasticState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
|
||||
|
@ -634,7 +540,6 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
|
||||
!* Calculation of forest projections for edge dislocations
|
||||
!* Interaction matrices
|
||||
|
||||
otherSlipFamilies: do o = 1_pInt,lattice_maxNslipFamily
|
||||
index_otherFamily = sum(plastic_disloUCLA_Nslip(1:o-1_pInt,instance))
|
||||
otherSlipSystems: do k = 1_pInt,plastic_disloUCLA_Nslip(o,instance)
|
||||
|
@ -648,78 +553,9 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
phase), instance )
|
||||
enddo otherSlipSystems; enddo otherSlipFamilies
|
||||
|
||||
otherTwinFamilies: do o = 1_pInt,lattice_maxNtwinFamily
|
||||
index_otherFamily = sum(plastic_disloUCLA_Ntwin(1:o-1_pInt,instance))
|
||||
otherTwinSystems: do k = 1_pInt,plastic_disloUCLA_Ntwin(o,instance)
|
||||
plastic_disloUCLA_interactionMatrix_SlipTwin(index_myFamily+j,index_otherFamily+k,instance) = &
|
||||
plastic_disloUCLA_interaction_SlipTwin(lattice_interactionSlipTwin( &
|
||||
sum(lattice_NslipSystem(1:f-1_pInt,phase))+j, &
|
||||
sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, &
|
||||
phase), instance )
|
||||
enddo otherTwinSystems; enddo otherTwinFamilies
|
||||
|
||||
enddo mySlipSystems
|
||||
enddo mySlipFamilies
|
||||
|
||||
!* Process twin related parameters ------------------------------------------------
|
||||
|
||||
myTwinFamilies: do f = 1_pInt,lattice_maxNtwinFamily
|
||||
index_myFamily = sum(plastic_disloUCLA_Ntwin(1:f-1_pInt,instance)) ! index in truncated twin system list
|
||||
myTwinSystems: do j = 1_pInt,plastic_disloUCLA_Ntwin(f,instance)
|
||||
|
||||
!* Burgers vector,
|
||||
! nucleation rate prefactor,
|
||||
! and twin size
|
||||
|
||||
plastic_disloUCLA_burgersPerTwinSystem(index_myFamily+j,instance) = &
|
||||
plastic_disloUCLA_burgersPerTwinFamily(f,instance)
|
||||
|
||||
plastic_disloUCLA_Ndot0PerTwinSystem(index_myFamily+j,instance) = &
|
||||
plastic_disloUCLA_Ndot0PerTwinFamily(f,instance)
|
||||
|
||||
plastic_disloUCLA_twinsizePerTwinSystem(index_myFamily+j,instance) = &
|
||||
plastic_disloUCLA_twinsizePerTwinFamily(f,instance)
|
||||
|
||||
!* Rotate twin elasticity matrices
|
||||
index_otherFamily = sum(lattice_NtwinSystem(1:f-1_pInt,phase)) ! index in full lattice twin list
|
||||
do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt
|
||||
do p = 1_pInt,3_pInt; do q = 1_pInt,3_pInt; do r = 1_pInt,3_pInt; do s = 1_pInt,3_pInt
|
||||
plastic_disloUCLA_Ctwin3333(l,m,n,o,index_myFamily+j,instance) = &
|
||||
plastic_disloUCLA_Ctwin3333(l,m,n,o,index_myFamily+j,instance) + &
|
||||
lattice_C3333(p,q,r,s,instance) * &
|
||||
lattice_Qtwin(l,p,index_otherFamily+j,phase) * &
|
||||
lattice_Qtwin(m,q,index_otherFamily+j,phase) * &
|
||||
lattice_Qtwin(n,r,index_otherFamily+j,phase) * &
|
||||
lattice_Qtwin(o,s,index_otherFamily+j,phase)
|
||||
enddo; enddo; enddo; enddo
|
||||
enddo; enddo; enddo; enddo
|
||||
plastic_disloUCLA_Ctwin66(1:6,1:6,index_myFamily+j,instance) = &
|
||||
math_Mandel3333to66(plastic_disloUCLA_Ctwin3333(1:3,1:3,1:3,1:3,index_myFamily+j,instance))
|
||||
|
||||
!* Interaction matrices
|
||||
otherSlipFamilies2: do o = 1_pInt,lattice_maxNslipFamily
|
||||
index_otherFamily = sum(plastic_disloUCLA_Nslip(1:o-1_pInt,instance))
|
||||
otherSlipSystems2: do k = 1_pInt,plastic_disloUCLA_Nslip(o,instance)
|
||||
plastic_disloUCLA_interactionMatrix_TwinSlip(index_myFamily+j,index_otherFamily+k,instance) = &
|
||||
plastic_disloUCLA_interaction_TwinSlip(lattice_interactionTwinSlip( &
|
||||
sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, &
|
||||
sum(lattice_NslipSystem(1:o-1_pInt,phase))+k, &
|
||||
phase), instance )
|
||||
enddo otherSlipSystems2; enddo otherSlipFamilies2
|
||||
|
||||
otherTwinFamilies2: do o = 1_pInt,lattice_maxNtwinFamily
|
||||
index_otherFamily = sum(plastic_disloUCLA_Ntwin(1:o-1_pInt,instance))
|
||||
otherTwinSystems2: do k = 1_pInt,plastic_disloUCLA_Ntwin(o,instance)
|
||||
plastic_disloUCLA_interactionMatrix_TwinTwin(index_myFamily+j,index_otherFamily+k,instance) = &
|
||||
plastic_disloUCLA_interaction_TwinTwin(lattice_interactionTwinTwin( &
|
||||
sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, &
|
||||
sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, &
|
||||
phase), instance )
|
||||
enddo otherTwinSystems2; enddo otherTwinFamilies2
|
||||
|
||||
enddo myTwinSystems
|
||||
enddo myTwinFamilies
|
||||
|
||||
startIndex=1_pInt
|
||||
endIndex=ns
|
||||
state(instance)%rhoEdge=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
|
@ -738,58 +574,21 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
state0(instance)%accshear_slip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
dotState(instance)%accshear_slip=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1_pInt
|
||||
endIndex=endIndex+nt
|
||||
state(instance)%twinFraction=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%twinFraction=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
dotState(instance)%twinFraction=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1_pInt
|
||||
endIndex=endIndex+nt
|
||||
state(instance)%accshear_twin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%accshear_twin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
dotState(instance)%accshear_twin=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1_pInt
|
||||
endIndex=endIndex+ns
|
||||
state(instance)%invLambdaSlip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%invLambdaSlip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+ns
|
||||
state(instance)%invLambdaSlipTwin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%invLambdaSlipTwin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+nt
|
||||
state(instance)%invLambdaTwin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%invLambdaTwin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
startIndex=endIndex+1_pInt
|
||||
endIndex=endIndex+ns
|
||||
state(instance)%mfp_slip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%mfp_slip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+nt
|
||||
state(instance)%mfp_twin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%mfp_twin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
startIndex=endIndex+1_pInt
|
||||
endIndex=endIndex+ns
|
||||
state(instance)%threshold_stress_slip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%threshold_stress_slip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+nt
|
||||
state(instance)%threshold_stress_twin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%threshold_stress_twin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+nt
|
||||
state(instance)%twinVolume=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%twinVolume=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
call plastic_disloUCLA_stateInit(phase,instance)
|
||||
call plastic_disloUCLA_aTolState(phase,instance)
|
||||
endif myPhase2
|
||||
|
@ -817,18 +616,15 @@ subroutine plastic_disloUCLA_stateInit(ph,instance)
|
|||
|
||||
real(pReal), dimension(plasticState(ph)%sizeState) :: tempState
|
||||
|
||||
integer(pInt) :: i,j,f,ns,nt, index_myFamily
|
||||
integer(pInt) :: i,f,ns, index_myFamily
|
||||
real(pReal), dimension(plastic_disloUCLA_totalNslip(instance)) :: &
|
||||
rhoEdge0, &
|
||||
rhoEdgeDip0, &
|
||||
invLambdaSlip0, &
|
||||
MeanFreePathSlip0, &
|
||||
tauSlipThreshold0
|
||||
real(pReal), dimension(plastic_disloUCLA_totalNtwin(instance)) :: &
|
||||
MeanFreePathTwin0,TwinVolume0
|
||||
tempState = 0.0_pReal
|
||||
ns = plastic_disloUCLA_totalNslip(instance)
|
||||
nt = plastic_disloUCLA_totalNtwin(instance)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! initialize basic slip state variables
|
||||
|
@ -850,32 +646,19 @@ subroutine plastic_disloUCLA_stateInit(ph,instance)
|
|||
forall (i = 1_pInt:ns) &
|
||||
invLambdaSlip0(i) = sqrt(dot_product((rhoEdge0+rhoEdgeDip0),plastic_disloUCLA_forestProjectionEdge(1:ns,i,instance)))/ &
|
||||
plastic_disloUCLA_CLambdaSlipPerSlipSystem(i,instance)
|
||||
tempState(3_pInt*ns+2_pInt*nt+1:4_pInt*ns+2_pInt*nt) = invLambdaSlip0
|
||||
tempState(3_pInt*ns+1:4_pInt*ns) = invLambdaSlip0
|
||||
|
||||
forall (i = 1_pInt:ns) &
|
||||
MeanFreePathSlip0(i) = &
|
||||
plastic_disloUCLA_GrainSize(instance)/(1.0_pReal+invLambdaSlip0(i)*plastic_disloUCLA_GrainSize(instance))
|
||||
tempState(5_pInt*ns+3_pInt*nt+1:6_pInt*ns+3_pInt*nt) = MeanFreePathSlip0
|
||||
tempState(4_pInt*ns+1:5_pInt*ns) = MeanFreePathSlip0
|
||||
|
||||
forall (i = 1_pInt:ns) &
|
||||
tauSlipThreshold0(i) = &
|
||||
lattice_mu(ph)*plastic_disloUCLA_burgersPerSlipSystem(i,instance) * &
|
||||
sqrt(dot_product((rhoEdge0+rhoEdgeDip0),plastic_disloUCLA_interactionMatrix_SlipSlip(i,1:ns,instance)))
|
||||
|
||||
tempState(6_pInt*ns+4_pInt*nt+1:7_pInt*ns+4_pInt*nt) = tauSlipThreshold0
|
||||
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! initialize dependent twin microstructural variables
|
||||
forall (j = 1_pInt:nt) &
|
||||
MeanFreePathTwin0(j) = plastic_disloUCLA_GrainSize(instance)
|
||||
tempState(6_pInt*ns+3_pInt*nt+1_pInt:6_pInt*ns+4_pInt*nt) = MeanFreePathTwin0
|
||||
|
||||
forall (j = 1_pInt:nt) &
|
||||
TwinVolume0(j) = &
|
||||
(pi/4.0_pReal)*plastic_disloUCLA_twinsizePerTwinSystem(j,instance)*MeanFreePathTwin0(j)**(2.0_pReal)
|
||||
tempState(7_pInt*ns+5_pInt*nt+1_pInt:7_pInt*ns+6_pInt*nt) = TwinVolume0
|
||||
tempState(5_pInt*ns+1:6_pInt*ns) = tauSlipThreshold0
|
||||
|
||||
plasticState(ph)%state0 = spread(tempState,2,size(plasticState(ph)%state(1,:)))
|
||||
|
||||
|
@ -901,19 +684,6 @@ subroutine plastic_disloUCLA_aTolState(ph,instance)
|
|||
plasticState(ph)%aTolState(2_pInt*plastic_disloUCLA_totalNslip(instance)+1_pInt: &
|
||||
3_pInt*plastic_disloUCLA_totalNslip(instance))=1e6_pReal
|
||||
|
||||
|
||||
! Tolerance state for twin volume fraction
|
||||
plasticState(ph)%aTolState(3_pInt*plastic_disloUCLA_totalNslip(instance)+1_pInt: &
|
||||
3_pInt*plastic_disloUCLA_totalNslip(instance)+&
|
||||
plastic_disloUCLA_totalNtwin(instance)) = &
|
||||
plastic_disloUCLA_aTolTwinFrac(instance)
|
||||
|
||||
! Tolerance state for accumulated shear due to twin
|
||||
plasticState(ph)%aTolState(3_pInt*plastic_disloUCLA_totalNslip(instance)+ &
|
||||
plastic_disloUCLA_totalNtwin(instance)+1_pInt: &
|
||||
3_pInt*plastic_disloUCLA_totalNslip(instance)+ &
|
||||
2_pInt*plastic_disloUCLA_totalNtwin(instance)) = 1e6_pReal
|
||||
|
||||
end subroutine plastic_disloUCLA_aTolState
|
||||
|
||||
|
||||
|
@ -924,12 +694,10 @@ subroutine plastic_disloUCLA_microstructure(temperature,ipc,ip,el)
|
|||
use math, only: &
|
||||
pi
|
||||
use material, only: &
|
||||
material_phase, &
|
||||
phase_plasticityInstance, &
|
||||
phaseAt, phasememberAt
|
||||
use lattice, only: &
|
||||
lattice_mu, &
|
||||
lattice_nu
|
||||
lattice_mu
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: &
|
||||
|
@ -941,31 +709,15 @@ subroutine plastic_disloUCLA_microstructure(temperature,ipc,ip,el)
|
|||
|
||||
integer(pInt) :: &
|
||||
instance, &
|
||||
ns,nt,s,t, &
|
||||
ns,s, &
|
||||
ph, &
|
||||
of
|
||||
real(pReal) :: &
|
||||
sumf,sfe,x0
|
||||
real(pReal), dimension(plastic_disloUCLA_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: fOverStacksize
|
||||
|
||||
!* Shortened notation
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
ns = plastic_disloUCLA_totalNslip(instance)
|
||||
nt = plastic_disloUCLA_totalNtwin(instance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
|
||||
!* Stacking fault energy
|
||||
sfe = plastic_disloUCLA_SFE_0K(instance) + &
|
||||
plastic_disloUCLA_dSFE_dT(instance) * Temperature
|
||||
|
||||
!* rescaled twin volume fraction for topology
|
||||
forall (t = 1_pInt:nt) &
|
||||
fOverStacksize(t) = &
|
||||
state(instance)%twinFraction(t,of)/plastic_disloUCLA_twinsizePerTwinSystem(t,instance)
|
||||
|
||||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||||
forall (s = 1_pInt:ns) &
|
||||
|
@ -973,40 +725,14 @@ subroutine plastic_disloUCLA_microstructure(temperature,ipc,ip,el)
|
|||
sqrt(dot_product((state(instance)%rhoEdge(1_pInt:ns,of)+state(instance)%rhoEdgeDip(1_pInt:ns,of)),&
|
||||
plastic_disloUCLA_forestProjectionEdge(1:ns,s,instance)))/ &
|
||||
plastic_disloUCLA_CLambdaSlipPerSlipSystem(s,instance)
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
state(instance)%invLambdaSlipTwin(1_pInt:ns,of) = 0.0_pReal
|
||||
if (nt > 0_pInt .and. ns > 0_pInt) &
|
||||
state(instance)%invLambdaSlipTwin(1_pInt:ns,of) = &
|
||||
matmul(plastic_disloUCLA_interactionMatrix_SlipTwin(1:ns,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
if (nt > 0_pInt) &
|
||||
state(instance)%invLambdaTwin(1_pInt:nt,of) = &
|
||||
matmul(plastic_disloUCLA_interactionMatrix_TwinTwin(1:nt,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* mean free path between 2 obstacles seen by a moving dislocation
|
||||
do s = 1_pInt,ns
|
||||
if (nt > 0_pInt) then
|
||||
state(instance)%mfp_slip(s,of) = &
|
||||
plastic_disloUCLA_GrainSize(instance)/(1.0_pReal+plastic_disloUCLA_GrainSize(instance)*&
|
||||
(state(instance)%invLambdaSlip(s,of)+state(instance)%invLambdaSlipTwin(s,of)))
|
||||
else
|
||||
state(instance)%mfp_slip(s,of) = &
|
||||
plastic_disloUCLA_GrainSize(instance)/&
|
||||
(1.0_pReal+plastic_disloUCLA_GrainSize(instance)*(state(instance)%invLambdaSlip(s,of)))
|
||||
endif
|
||||
enddo
|
||||
|
||||
!* mean free path between 2 obstacles seen by a growing twin
|
||||
forall (t = 1_pInt:nt) &
|
||||
state(instance)%mfp_twin(t,of) = &
|
||||
(plastic_disloUCLA_Cmfptwin(instance)*plastic_disloUCLA_GrainSize(instance))/&
|
||||
(1.0_pReal+plastic_disloUCLA_GrainSize(instance)*state(instance)%invLambdaTwin(t,of))
|
||||
|
||||
!* threshold stress for dislocation motion
|
||||
forall (s = 1_pInt:ns) &
|
||||
state(instance)%threshold_stress_slip(s,of) = &
|
||||
|
@ -1014,28 +740,6 @@ subroutine plastic_disloUCLA_microstructure(temperature,ipc,ip,el)
|
|||
sqrt(dot_product((state(instance)%rhoEdge(1_pInt:ns,of)+state(instance)%rhoEdgeDip(1_pInt:ns,of)),&
|
||||
plastic_disloUCLA_interactionMatrix_SlipSlip(s,1:ns,instance)))
|
||||
|
||||
!* threshold stress for growing twin
|
||||
forall (t = 1_pInt:nt) &
|
||||
state(instance)%threshold_stress_twin(t,of) = &
|
||||
plastic_disloUCLA_Cthresholdtwin(instance)*&
|
||||
(sfe/(3.0_pReal*plastic_disloUCLA_burgersPerTwinSystem(t,instance))+&
|
||||
3.0_pReal*plastic_disloUCLA_burgersPerTwinSystem(t,instance)*lattice_mu(ph)/&
|
||||
(plastic_disloUCLA_L0(instance)*plastic_disloUCLA_burgersPerSlipSystem(t,instance)))
|
||||
|
||||
!* final twin volume after growth
|
||||
forall (t = 1_pInt:nt) &
|
||||
state(instance)%twinVolume(t,of) = &
|
||||
(pi/4.0_pReal)*plastic_disloUCLA_twinsizePerTwinSystem(t,instance)*state(instance)%mfp_twin(t,of)**(2.0_pReal)
|
||||
|
||||
!* equilibrium seperation of partial dislocations
|
||||
do t = 1_pInt,nt
|
||||
x0 = lattice_mu(ph)*plastic_disloUCLA_burgersPerTwinSystem(t,instance)**(2.0_pReal)/&
|
||||
(sfe*8.0_pReal*pi)*(2.0_pReal+lattice_nu(ph))/(1.0_pReal-lattice_nu(ph))
|
||||
plastic_disloUCLA_tau_r(t,instance)= &
|
||||
lattice_mu(ph)*plastic_disloUCLA_burgersPerTwinSystem(t,instance)/(2.0_pReal*pi)*&
|
||||
(1/(x0+plastic_disloUCLA_xc(instance))+cos(pi/3.0_pReal)/x0) !!! used where??
|
||||
enddo
|
||||
|
||||
end subroutine plastic_disloUCLA_microstructure
|
||||
|
||||
|
||||
|
@ -1058,17 +762,9 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
use lattice, only: &
|
||||
lattice_Sslip, &
|
||||
lattice_Sslip_v, &
|
||||
lattice_Stwin, &
|
||||
lattice_Stwin_v, &
|
||||
lattice_maxNslipFamily,&
|
||||
lattice_maxNtwinFamily, &
|
||||
lattice_NslipSystem, &
|
||||
lattice_NtwinSystem, &
|
||||
lattice_NnonSchmid, &
|
||||
lattice_shearTwin, &
|
||||
lattice_structure, &
|
||||
lattice_fcc_twinNucleationSlipPair, &
|
||||
LATTICE_fcc_ID
|
||||
lattice_NnonSchmid
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: ipc,ip,el
|
||||
|
@ -1077,10 +773,10 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
real(pReal), dimension(3,3), intent(out) :: Lp
|
||||
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99
|
||||
|
||||
integer(pInt) :: instance,ph,of,ns,nt,f,i,j,k,l,m,n,index_myFamily,s1,s2
|
||||
real(pReal) :: sumf,StressRatio_p,StressRatio_pminus1,StressRatio_r,BoltzmannRatio,DotGamma0,Ndot0, &
|
||||
integer(pInt) :: instance,ph,of,ns,f,i,j,k,l,m,n,index_myFamily
|
||||
real(pReal) :: StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0, &
|
||||
tau_slip_pos,tau_slip_neg,vel_slip,dvel_slip,&
|
||||
dgdot_dtauslip_pos,dgdot_dtauslip_neg,dgdot_dtautwin,tau_twin,gdot_twin,stressRatio
|
||||
dgdot_dtauslip_pos,dgdot_dtauslip_neg,stressRatio
|
||||
real(pReal), dimension(3,3,2) :: &
|
||||
nonSchmid_tensor
|
||||
real(pReal), dimension(3,3,3,3) :: &
|
||||
|
@ -1093,7 +789,6 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
ns = plastic_disloUCLA_totalNslip(instance)
|
||||
nt = plastic_disloUCLA_totalNtwin(instance)
|
||||
|
||||
Lp = 0.0_pReal
|
||||
dLp_dTstar3333 = 0.0_pReal
|
||||
|
@ -1276,63 +971,6 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
enddo slipSystems
|
||||
enddo slipFamilies
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! correct Lp and dLp_dTstar3333 for twinned fraction
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
Lp = Lp * (1.0_pReal - sumf)
|
||||
dLp_dTstar3333 = dLp_dTstar3333 * (1.0_pReal - sumf)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Mechanical twinning part
|
||||
gdot_twin = 0.0_pReal
|
||||
dgdot_dtautwin = 0.0_pReal
|
||||
j = 0_pInt
|
||||
twinFamilies: do f = 1_pInt,lattice_maxNtwinFamily
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
twinSystems: do i = 1_pInt,plastic_disloUCLA_Ntwin(f,instance)
|
||||
j = j+1_pInt
|
||||
!* Resolved shear stress on twin system
|
||||
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||||
|
||||
!* Stress ratios
|
||||
if (tau_twin > tol_math_check) then
|
||||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau_twin)**plastic_disloUCLA_rPerTwinFamily(f,instance)
|
||||
!* Shear rates and their derivatives due to twin
|
||||
select case(lattice_structure(ph))
|
||||
case (LATTICE_fcc_ID)
|
||||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
if (tau_twin < plastic_disloUCLA_tau_r(j,instance)) then
|
||||
Ndot0=(abs(gdot_slip_pos(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !no non-Schmid behavior for fcc, just take the not influenced positive gdot_slip_pos (= gdot_slip_neg)
|
||||
abs(gdot_slip_pos(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
(plastic_disloUCLA_L0(instance)*plastic_disloUCLA_burgersPerSlipSystem(j,instance))*&
|
||||
(1.0_pReal-exp(-plastic_disloUCLA_VcrossSlip(instance)/(kB*Temperature)*&
|
||||
(plastic_disloUCLA_tau_r(j,instance)-tau_twin)))
|
||||
else
|
||||
Ndot0=0.0_pReal
|
||||
end if
|
||||
case default
|
||||
Ndot0=plastic_disloUCLA_Ndot0PerTwinSystem(j,instance)
|
||||
end select
|
||||
gdot_twin = &
|
||||
(plastic_disloUCLA_MaxTwinFraction(instance)-sumf)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||||
state(instance)%twinVolume(j,of)*Ndot0*exp(-StressRatio_r)
|
||||
dgdot_dtautwin = ((gdot_twin*plastic_disloUCLA_rPerTwinFamily(f,instance))/tau_twin)*StressRatio_r
|
||||
endif
|
||||
|
||||
!* Plastic velocity gradient for mechanical twinning
|
||||
Lp = Lp + gdot_twin*lattice_Stwin(1:3,1:3,index_myFamily+i,ph)
|
||||
|
||||
!* Calculation of the tangent of Lp
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dTstar3333(k,l,m,n) = &
|
||||
dLp_dTstar3333(k,l,m,n) + dgdot_dtautwin*&
|
||||
lattice_Stwin(k,l,index_myFamily+i,ph)*&
|
||||
lattice_Stwin(m,n,index_myFamily+i,ph)
|
||||
enddo twinSystems
|
||||
enddo twinFamilies
|
||||
|
||||
dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333)
|
||||
|
||||
end subroutine plastic_disloUCLA_LpAndItsTangent
|
||||
|
@ -1353,17 +991,10 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
phaseAt, phasememberAt
|
||||
use lattice, only: &
|
||||
lattice_Sslip_v, &
|
||||
lattice_Stwin_v, &
|
||||
lattice_maxNslipFamily, &
|
||||
lattice_maxNtwinFamily, &
|
||||
lattice_NslipSystem, &
|
||||
lattice_NtwinSystem, &
|
||||
lattice_NnonSchmid, &
|
||||
lattice_sheartwin, &
|
||||
lattice_mu, &
|
||||
lattice_structure, &
|
||||
lattice_fcc_twinNucleationSlipPair, &
|
||||
LATTICE_fcc_ID
|
||||
lattice_mu
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(6), intent(in):: &
|
||||
|
@ -1375,11 +1006,10 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
ip, & !< integration point
|
||||
el !< element
|
||||
|
||||
integer(pInt) :: instance,ns,nt,f,i,j,k,index_myFamily,s1,s2, &
|
||||
integer(pInt) :: instance,ns,f,i,j,k,index_myFamily, &
|
||||
ph, &
|
||||
of
|
||||
real(pReal) :: &
|
||||
sumf, &
|
||||
stressRatio_p,&
|
||||
BoltzmannRatio,&
|
||||
DotGamma0,&
|
||||
|
@ -1387,8 +1017,6 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
EdgeDipMinDistance,&
|
||||
AtomicVolume,&
|
||||
VacancyDiffusion,&
|
||||
StressRatio_r,&
|
||||
Ndot0,&
|
||||
tau_slip_pos,&
|
||||
tau_slip_neg,&
|
||||
DotRhoMultiplication,&
|
||||
|
@ -1398,7 +1026,6 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
ClimbVelocity, &
|
||||
DotRhoEdgeDipClimb, &
|
||||
DotRhoDipFormation, &
|
||||
tau_twin, &
|
||||
vel_slip, &
|
||||
gdot_slip
|
||||
real(pReal), dimension(plastic_disloUCLA_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
|
@ -1409,10 +1036,7 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
ns = plastic_disloUCLA_totalNslip(instance)
|
||||
nt = plastic_disloUCLA_totalNtwin(instance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
plasticState(ph)%dotState(:,of) = 0.0_pReal
|
||||
|
||||
!* Dislocation density evolution
|
||||
|
@ -1547,45 +1171,6 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
enddo slipSystems
|
||||
enddo slipFamilies
|
||||
|
||||
!* Twin volume fraction evolution
|
||||
j = 0_pInt
|
||||
twinFamilies: do f = 1_pInt,lattice_maxNtwinFamily
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
twinSystems: do i = 1_pInt,plastic_disloUCLA_Ntwin(f,instance)
|
||||
j = j+1_pInt
|
||||
!* Resolved shear stress on twin system
|
||||
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
if (tau_twin > tol_math_check) then
|
||||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau_twin)**plastic_disloUCLA_rPerTwinFamily(f,instance)
|
||||
!* Shear rates and their derivatives due to twin
|
||||
|
||||
select case(lattice_structure(ph))
|
||||
case (LATTICE_fcc_ID)
|
||||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
if (tau_twin < plastic_disloUCLA_tau_r(j,instance)) then
|
||||
Ndot0=(abs(gdot_slip_pos(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !no non-Schmid behavior for fcc, just take the not influenced positive slip (gdot_slip_pos = gdot_slip_neg)
|
||||
abs(gdot_slip_pos(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
(plastic_disloUCLA_L0(instance)*plastic_disloUCLA_burgersPerSlipSystem(j,instance))*&
|
||||
(1.0_pReal-exp(-plastic_disloUCLA_VcrossSlip(instance)/(kB*Temperature)*&
|
||||
(plastic_disloUCLA_tau_r(j,instance)-tau_twin)))
|
||||
else
|
||||
Ndot0=0.0_pReal
|
||||
end if
|
||||
case default
|
||||
Ndot0=plastic_disloUCLA_Ndot0PerTwinSystem(j,instance)
|
||||
end select
|
||||
|
||||
dotState(instance)%twinFraction(j, of) = &
|
||||
(plastic_disloUCLA_MaxTwinFraction(instance)-sumf)*&
|
||||
state(instance)%twinVolume(j, of)*Ndot0*exp(-StressRatio_r)
|
||||
!* Dotstate for accumulated shear due to twin
|
||||
dotState(instance)%accshear_twin(j,of) = dotState(ph)%twinFraction(j,of) * &
|
||||
lattice_sheartwin(index_myfamily+i,ph)
|
||||
endif
|
||||
enddo twinSystems
|
||||
enddo twinFamilies
|
||||
|
||||
end subroutine plastic_disloUCLA_dotState
|
||||
|
||||
|
@ -1605,17 +1190,10 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
phaseAt, phasememberAt
|
||||
use lattice, only: &
|
||||
lattice_Sslip_v, &
|
||||
lattice_Stwin_v, &
|
||||
lattice_maxNslipFamily, &
|
||||
lattice_maxNtwinFamily, &
|
||||
lattice_NslipSystem, &
|
||||
lattice_NtwinSystem, &
|
||||
lattice_NnonSchmid, &
|
||||
lattice_shearTwin, &
|
||||
lattice_mu, &
|
||||
lattice_structure, &
|
||||
lattice_fcc_twinNucleationSlipPair, &
|
||||
LATTICE_fcc_ID
|
||||
lattice_mu
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(6), intent(in) :: &
|
||||
|
@ -1632,14 +1210,13 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
|
||||
integer(pInt) :: &
|
||||
instance,&
|
||||
ns,nt,&
|
||||
ns,&
|
||||
f,o,i,c,j,k,index_myFamily,&
|
||||
s1,s2, &
|
||||
ph, &
|
||||
of
|
||||
real(pReal) :: sumf,tau_twin,StressRatio_p,StressRatio_pminus1,&
|
||||
BoltzmannRatio,DotGamma0,StressRatio_r,Ndot0,stressRatio
|
||||
real(pReal) :: dvel_slip, vel_slip
|
||||
real(pReal) :: StressRatio_p,StressRatio_pminus1,&
|
||||
BoltzmannRatio,DotGamma0,stressRatio,&
|
||||
dvel_slip, vel_slip
|
||||
real(pReal), dimension(plastic_disloUCLA_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
gdot_slip_pos,dgdot_dtauslip_pos,tau_slip_pos,gdot_slip_neg,dgdot_dtauslip_neg,tau_slip_neg
|
||||
|
||||
|
@ -1648,10 +1225,6 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
ns = plastic_disloUCLA_totalNslip(instance)
|
||||
nt = plastic_disloUCLA_totalNtwin(instance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(ph)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
|
||||
!* Required output
|
||||
c = 0_pInt
|
||||
|
@ -1666,7 +1239,7 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
case (dipole_density_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+ns) = state(instance)%rhoEdgeDip(1_pInt:ns,of)
|
||||
c = c + ns
|
||||
case (shear_rate_slip_ID,shear_rate_twin_ID,stress_exponent_ID)
|
||||
case (shear_rate_slip_ID,stress_exponent_ID)
|
||||
gdot_slip_pos = 0.0_pReal
|
||||
gdot_slip_neg = 0.0_pReal
|
||||
dgdot_dtauslip_pos = 0.0_pReal
|
||||
|
@ -1833,48 +1406,6 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
if (plastic_disloUCLA_outputID(o,instance) == shear_rate_slip_ID) then
|
||||
plastic_disloUCLA_postResults(c+1:c+ns) = (gdot_slip_pos + gdot_slip_neg)*0.5_pReal
|
||||
c = c + ns
|
||||
elseif (plastic_disloUCLA_outputID(o,instance) == shear_rate_twin_ID) then
|
||||
if (nt > 0_pInt) then
|
||||
j = 0_pInt
|
||||
twinFamilies1: do f = 1_pInt,lattice_maxNtwinFamily
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
twinSystems1: do i = 1,plastic_disloUCLA_Ntwin(f,instance)
|
||||
j = j + 1_pInt
|
||||
|
||||
!* Resolved shear stress on twin system
|
||||
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
StressRatio_r = (state(instance)%threshold_stress_twin(j, of)/ &
|
||||
tau_twin)**plastic_disloUCLA_rPerTwinFamily(f,instance)
|
||||
|
||||
!* Shear rates due to twin
|
||||
if ( tau_twin > 0.0_pReal ) then
|
||||
select case(lattice_structure(ph))
|
||||
case (LATTICE_fcc_ID)
|
||||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
if (tau_twin < plastic_disloUCLA_tau_r(j,instance)) then
|
||||
Ndot0=(abs(gdot_slip_pos(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !no non-Schmid behavior for fcc, just take the not influenced positive slip (gdot_slip_pos = gdot_slip_neg)
|
||||
abs(gdot_slip_pos(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
(plastic_disloUCLA_L0(instance)*&
|
||||
plastic_disloUCLA_burgersPerSlipSystem(j,instance))*&
|
||||
(1.0_pReal-exp(-plastic_disloUCLA_VcrossSlip(instance)/(kB*Temperature)*&
|
||||
(plastic_disloUCLA_tau_r(j,instance)-tau_twin)))
|
||||
else
|
||||
Ndot0=0.0_pReal
|
||||
end if
|
||||
|
||||
case default
|
||||
Ndot0=plastic_disloUCLA_Ndot0PerTwinSystem(j,instance)
|
||||
end select
|
||||
plastic_disloUCLA_postResults(c+j) = &
|
||||
(plastic_disloUCLA_MaxTwinFraction(instance)-sumf)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||||
state(instance)%twinVolume(j,of)*Ndot0*exp(-StressRatio_r)
|
||||
endif
|
||||
enddo twinSystems1
|
||||
enddo twinFamilies1
|
||||
endif
|
||||
c = c + nt
|
||||
elseif(plastic_disloUCLA_outputID(o,instance) == stress_exponent_ID) then
|
||||
do j = 1_pInt, ns
|
||||
if (abs(gdot_slip_pos(j)+gdot_slip_neg(j))<=tiny(0.0_pReal)) then
|
||||
|
@ -1923,32 +1454,6 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
state(instance)%mfp_slip(j,of))
|
||||
enddo slipSystems2; enddo slipFamilies2
|
||||
c = c + ns
|
||||
case (twin_fraction_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+nt) = state(instance)%twinFraction(1_pInt:nt, of)
|
||||
c = c + nt
|
||||
|
||||
case (accumulated_shear_twin_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+nt) = state(instance)%accshear_twin(1_pInt:nt, of)
|
||||
c = c + nt
|
||||
|
||||
case (mfp_twin_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+nt) = state(instance)%mfp_twin(1_pInt:nt, of)
|
||||
c = c + nt
|
||||
|
||||
case (resolved_stress_twin_ID)
|
||||
if (nt > 0_pInt) then
|
||||
j = 0_pInt
|
||||
twinFamilies2: do f = 1_pInt,lattice_maxNtwinFamily
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
twinSystems2: do i = 1_pInt,plastic_disloUCLA_Ntwin(f,instance)
|
||||
j = j + 1_pInt
|
||||
plastic_disloUCLA_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||||
enddo twinSystems2; enddo twinFamilies2
|
||||
endif
|
||||
c = c + nt
|
||||
case (threshold_stress_twin_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+nt) = state(instance)%threshold_stress_twin(1_pInt:nt, of)
|
||||
c = c + nt
|
||||
end select
|
||||
enddo
|
||||
end function plastic_disloUCLA_postResults
|
||||
|
|
Loading…
Reference in New Issue