using only internal schmid and non schmid matrices

This commit is contained in:
Martin Diehl 2018-08-25 19:52:26 +02:00
parent 6b8ecbe653
commit d055ef665a
1 changed files with 10 additions and 18 deletions

View File

@ -524,8 +524,6 @@ pure subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar,ipc,
gdot_twin,dgdot_dtautwin,tau_twin gdot_twin,dgdot_dtautwin,tau_twin
real(pReal), dimension(3,3,3,3) :: & real(pReal), dimension(3,3,3,3) :: &
dLp_dMstar3333 !< derivative of Lp with respect to Mstar as 4th order tensor dLp_dMstar3333 !< derivative of Lp with respect to Mstar as 4th order tensor
real(pReal), dimension(3,3,2) :: &
nonSchmid_tensor
type(tParameters) :: prm type(tParameters) :: prm
type(tPhenopowerlawState) :: stt type(tPhenopowerlawState) :: stt
@ -548,19 +546,13 @@ pure subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar,ipc,
j = j+1_pInt j = j+1_pInt
! Calculation of Lp ! Calculation of Lp
tau_slip_pos = math_mul33xx33(Mstar,prm%Schmid_slip) tau_slip_pos = math_mul33xx33(Mstar,prm%Schmid_slip(1:3,1:3,j))
tau_slip_neg = tau_slip_pos tau_slip_neg = tau_slip_pos
nonSchmid_tensor(1:3,1:3,1) = lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph)
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1)
do k = 1,size(prm%nonSchmidCoeff) do k = 1,size(prm%nonSchmidCoeff)
tau_slip_pos = tau_slip_pos & tau_slip_pos = tau_slip_pos &
+ math_mul33xx33(Mstar,prm%nonSchmidCoeff(k)*lattice_Sslip(1:3,1:3,2*k,index_myFamily+i,ph)) + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
tau_slip_neg = tau_slip_neg & tau_slip_neg = tau_slip_neg &
+ math_mul33xx33(Mstar,prm%nonSchmidCoeff(k)*lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,ph)) + math_mul33xx33(Mstar,prm%nonSchmid_neg(1:3,1:3,k,j))
nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + &
prm%nonSchmidCoeff(k)*lattice_Sslip(1:3,1:3,2*k,index_myFamily+i,ph)
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + &
prm%nonSchmidCoeff(k)*lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,ph)
enddo enddo
gdot_slip_pos = 0.5_pReal*prm%gdot0_slip* & gdot_slip_pos = 0.5_pReal*prm%gdot0_slip* &
((abs(tau_slip_pos)/(stt%s_slip(j,of)))**prm%n_slip)*sign(1.0_pReal,tau_slip_pos) ((abs(tau_slip_pos)/(stt%s_slip(j,of)))**prm%n_slip)*sign(1.0_pReal,tau_slip_pos)
@ -569,23 +561,23 @@ pure subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar,ipc,
((abs(tau_slip_neg)/(stt%s_slip(j,of)))**prm%n_slip)*sign(1.0_pReal,tau_slip_neg) ((abs(tau_slip_neg)/(stt%s_slip(j,of)))**prm%n_slip)*sign(1.0_pReal,tau_slip_neg)
Lp = Lp + (1.0_pReal-stt%sumF(of))*& Lp = Lp + (1.0_pReal-stt%sumF(of))*&
(gdot_slip_pos+gdot_slip_neg)*lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph) (gdot_slip_pos+gdot_slip_neg)*prm%Schmid_slip(1:3,1:3,j)
! Calculation of the tangent of Lp ! Calculation of the tangent of Lp
if (dNeq0(tau_slip_pos)) then if (dNeq0(tau_slip_pos)) then
dgdot_dtauslip_pos = gdot_slip_pos*prm%n_slip/tau_slip_pos dgdot_dtauslip_pos = gdot_slip_pos*prm%n_slip/tau_slip_pos
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dMstar3333(k,l,m,n) = dLp_dMstar3333(k,l,m,n) + & dLp_dMstar3333(k,l,m,n) = dLp_dMstar3333(k,l,m,n) &
dgdot_dtauslip_pos*lattice_Sslip(k,l,1,index_myFamily+i,ph)* & + dgdot_dtauslip_pos*prm%Schmid_slip(k,l,j) &
nonSchmid_tensor(m,n,1) *(prm%Schmid_slip(m,n,j) + sum(prm%nonSchmid_pos(m,n,:,j)))
endif endif
if (dNeq0(tau_slip_neg)) then if (dNeq0(tau_slip_neg)) then
dgdot_dtauslip_neg = gdot_slip_neg*prm%n_slip/tau_slip_neg dgdot_dtauslip_neg = gdot_slip_neg*prm%n_slip/tau_slip_neg
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dMstar3333(k,l,m,n) = dLp_dMstar3333(k,l,m,n) + & dLp_dMstar3333(k,l,m,n) = dLp_dMstar3333(k,l,m,n) &
dgdot_dtauslip_neg*lattice_Sslip(k,l,1,index_myFamily+i,ph)* & + dgdot_dtauslip_neg*prm%Schmid_slip(k,l,j) &
nonSchmid_tensor(m,n,2) *(prm%Schmid_slip(m,n,j) + sum(prm%nonSchmid_neg(m,n,:,j)))
endif endif
enddo slipSystems enddo slipSystems
enddo slipFamilies enddo slipFamilies