moved specific functions into the scope of the calling functions

This commit is contained in:
Martin Diehl 2017-08-12 06:03:40 +02:00
parent 9823f5f495
commit cf6894442b
1 changed files with 157 additions and 169 deletions

View File

@ -6,7 +6,6 @@
!> @brief Mathematical library, including random number generation and tensor represenations !> @brief Mathematical library, including random number generation and tensor represenations
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module math module math
use, intrinsic :: iso_c_binding
use prec, only: & use prec, only: &
pReal, & pReal, &
pInt pInt
@ -161,13 +160,10 @@ module math
math_rotate_forward3333, & math_rotate_forward3333, &
math_limit math_limit
private :: & private :: &
math_partition, &
halton, & halton, &
halton_memory, & halton_memory, &
halton_ndim_set, & halton_ndim_set, &
halton_seed_set, & halton_seed_set
i_to_halton, &
prime
contains contains
@ -289,52 +285,53 @@ recursive subroutine math_qsort(a, istart, iend)
integer(pInt) :: ipivot integer(pInt) :: ipivot
if (istart < iend) then if (istart < iend) then
ipivot = math_partition(a,istart, iend) ipivot = qsort_partition(a,istart, iend)
call math_qsort(a, istart, ipivot-1_pInt) call math_qsort(a, istart, ipivot-1_pInt)
call math_qsort(a, ipivot+1_pInt, iend) call math_qsort(a, ipivot+1_pInt, iend)
endif endif
end subroutine math_qsort
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Partitioning required for quicksort contains
!--------------------------------------------------------------------------------------------------
integer(pInt) function math_partition(a, istart, iend) !-------------------------------------------------------------------------------------------------
!> @brief Partitioning required for quicksort
!-------------------------------------------------------------------------------------------------
integer(pInt) function qsort_partition(a, istart, iend)
implicit none implicit none
integer(pInt), dimension(:,:), intent(inout) :: a integer(pInt), dimension(:,:), intent(inout) :: a
integer(pInt), intent(in) :: istart,iend integer(pInt), intent(in) :: istart,iend
integer(pInt) :: i,j,k,tmp integer(pInt) :: i,j,k,tmp
do do
! find the first element on the right side less than or equal to the pivot point ! find the first element on the right side less than or equal to the pivot point
do j = iend, istart, -1_pInt do j = iend, istart, -1_pInt
if (a(1,j) <= a(1,istart)) exit if (a(1,j) <= a(1,istart)) exit
enddo enddo
! find the first element on the left side greater than the pivot point ! find the first element on the left side greater than the pivot point
do i = istart, iend do i = istart, iend
if (a(1,i) > a(1,istart)) exit if (a(1,i) > a(1,istart)) exit
enddo enddo
if (i < j) then ! if the indexes do not cross, exchange values if (i < j) then ! if the indexes do not cross, exchange values
do k = 1_pInt,d do k = 1_pInt, int(size(a,1_pInt), pInt)
tmp = a(k,i) tmp = a(k,i)
a(k,i) = a(k,j) a(k,i) = a(k,j)
a(k,j) = tmp a(k,j) = tmp
enddo enddo
else ! if they do cross, exchange left value with pivot and return with the partition index else ! if they do cross, exchange left value with pivot and return with the partition index
do k = 1_pInt, int(size(a,1_pInt), pInt) ! number of linked data do k = 1_pInt, int(size(a,1_pInt), pInt)
tmp = a(k,istart) tmp = a(k,istart)
a(k,istart) = a(k,j) a(k,istart) = a(k,j)
a(k,j) = tmp a(k,j) = tmp
enddo enddo
math_partition = j qsort_partition = j
return return
endif endif
enddo enddo
end function math_partition end function qsort_partition
end subroutine math_qsort
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -2183,6 +2180,53 @@ subroutine halton(ndim, r)
value_halton(1) = 1_pInt value_halton(1) = 1_pInt
call halton_memory ('INC', 'SEED', 1_pInt, value_halton) call halton_memory ('INC', 'SEED', 1_pInt, value_halton)
!--------------------------------------------------------------------------------------------------
contains
!-------------------------------------------------------------------------------------------------
!> @brief computes an element of a Halton sequence.
!> @details Only the absolute value of SEED is considered. SEED = 0 is allowed, and returns R = 0.
!> @details Halton Bases should be distinct prime numbers. This routine only checks that each base
!> @details is greater than 1.
!> @details Reference:
!> @details J.H. Halton: On the efficiency of certain quasi-random sequences of points in evaluating
!> @details multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
!> @author John Burkardt
!-------------------------------------------------------------------------------------------------
subroutine i_to_halton (seed, base, ndim, r)
use IO, only: &
IO_error
implicit none
integer(pInt), intent(in) :: &
ndim, & !< dimension of the sequence
seed !< index of the desired element
integer(pInt), intent(in), dimension(ndim) :: base !< Halton bases
real(pReal), intent(out), dimension(ndim) :: r !< the SEED-th element of the Halton sequence for the given bases
real(pReal), dimension(ndim) :: base_inv
integer(pInt), dimension(ndim) :: &
digit, &
seed2
seed2 = abs(seed)
r = 0.0_pReal
if (any (base(1:ndim) <= 1_pInt)) call IO_error(error_ID=405_pInt)
base_inv(1:ndim) = 1.0_pReal / real (base(1:ndim), pReal)
do while ( any ( seed2(1:ndim) /= 0_pInt) )
digit(1:ndim) = mod ( seed2(1:ndim), base(1:ndim))
r(1:ndim) = r(1:ndim) + real ( digit(1:ndim), pReal) * base_inv(1:ndim)
base_inv(1:ndim) = base_inv(1:ndim) / real ( base(1:ndim), pReal)
seed2(1:ndim) = seed2(1:ndim) / base(1:ndim)
enddo
end subroutine i_to_halton
end subroutine halton end subroutine halton
@ -2199,6 +2243,8 @@ end subroutine halton
!> @author John Burkardt !> @author John Burkardt
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine halton_memory (action_halton, name_halton, ndim, value_halton) subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
use IO, only: &
IO_lc
implicit none implicit none
character(len = *), intent(in) :: & character(len = *), intent(in) :: &
@ -2208,8 +2254,8 @@ subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
integer(pInt), allocatable, save, dimension(:) :: base integer(pInt), allocatable, save, dimension(:) :: base
logical, save :: first_call = .true. logical, save :: first_call = .true.
integer(pInt), intent(in) :: ndim !< dimension of the quantity integer(pInt), intent(in) :: ndim !< dimension of the quantity
integer(pInt):: i
integer(pInt), save :: ndim_save = 0_pInt, seed = 1_pInt integer(pInt), save :: ndim_save = 0_pInt, seed = 1_pInt
integer(pInt) :: i
if (first_call) then if (first_call) then
ndim_save = 1_pInt ndim_save = 1_pInt
@ -2220,146 +2266,43 @@ subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! Set ! Set
if(action_halton(1:1) == 'S' .or. action_halton(1:1) == 's') then actionHalton: if(IO_lc(action_halton(1:1)) == 's') then
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
if(ndim_save /= ndim) then
deallocate(base)
ndim_save = ndim
allocate(base(ndim_save))
endif
base(1:ndim) = value_halton(1:ndim)
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then
nameSet: if(IO_lc(name_halton(1:1)) == 'b') then
if(ndim_save /= ndim) ndim_save = ndim
base = value_halton(1:ndim)
elseif(IO_lc(name_halton(1:1)) == 'n') then nameSet
if(ndim_save /= value_halton(1)) then if(ndim_save /= value_halton(1)) then
deallocate(base)
ndim_save = value_halton(1) ndim_save = value_halton(1)
allocate(base(ndim_save)) base = [(prime(i),i=1_pInt,ndim_save)]
do i = 1_pInt, ndim_save
base(i) = prime (i)
enddo
else else
ndim_save = value_halton(1) ndim_save = value_halton(1)
endif endif
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then elseif(IO_lc(name_halton(1:1)) == 's') then nameSet
seed = value_halton(1) seed = value_halton(1)
endif endif nameSet
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! Get ! Get
elseif(action_halton(1:1) == 'G' .or. action_halton(1:1) == 'g') then elseif(IO_lc(action_halton(1:1)) == 'g') then actionHalton
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then nameGet: if(IO_lc(name_halton(1:1)) == 'b') then
if(ndim /= ndim_save) then if(ndim /= ndim_save) then
deallocate(base)
ndim_save = ndim ndim_save = ndim
allocate(base(ndim_save)) base = [(prime(i),i=1_pInt,ndim_save)]
do i = 1_pInt, ndim_save
base(i) = prime(i)
enddo
endif endif
value_halton(1:ndim_save) = base(1:ndim_save) value_halton(1:ndim_save) = base(1:ndim_save)
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then elseif(IO_lc(name_halton(1:1)) == 'n') then nameGet
value_halton(1) = ndim_save value_halton(1) = ndim_save
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then elseif(IO_lc(name_halton(1:1)) == 's') then nameGet
value_halton(1) = seed value_halton(1) = seed
endif endif nameGet
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! Increment ! Increment
elseif(action_halton(1:1) == 'I' .or. action_halton(1:1) == 'i') then elseif(IO_lc(action_halton(1:1)) == 'i') then actionHalton
if(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then if(IO_lc(name_halton(1:1)) == 's') seed = seed + value_halton(1)
seed = seed + value_halton(1) endif actionHalton
end if contains
endif
end subroutine halton_memory
!--------------------------------------------------------------------------------------------------
!> @brief sets the dimension for a Halton sequence
!> @author John Burkardt
!--------------------------------------------------------------------------------------------------
subroutine halton_ndim_set (ndim)
implicit none
integer(pInt), intent(in) :: ndim !< dimension of the Halton vectors
integer(pInt) :: value_halton(1)
value_halton(1) = ndim
call halton_memory ('SET', 'NDIM', 1_pInt, value_halton)
end subroutine halton_ndim_set
!--------------------------------------------------------------------------------------------------
!> @brief sets the seed for the Halton sequence.
!> @details Calling HALTON repeatedly returns the elements of the Halton sequence in order,
!> @details starting with element number 1.
!> @details An internal counter, called SEED, keeps track of the next element to return. Each time
!> @details is computed, and then SEED is incremented by 1.
!> @details To restart the Halton sequence, it is only necessary to reset SEED to 1. It might also
!> @details be desirable to reset SEED to some other value. This routine allows the user to specify
!> @details any value of SEED.
!> @details The default value of SEED is 1, which restarts the Halton sequence.
!> @author John Burkardt
!--------------------------------------------------------------------------------------------------
subroutine halton_seed_set(seed)
implicit none
integer(pInt), parameter :: NDIM = 1_pInt
integer(pInt), intent(in) :: seed !< seed for the Halton sequence.
integer(pInt) :: value_halton(ndim)
value_halton(1) = seed
call halton_memory ('SET', 'SEED', NDIM, value_halton)
end subroutine halton_seed_set
!--------------------------------------------------------------------------------------------------
!> @brief computes an element of a Halton sequence.
!> @details Only the absolute value of SEED is considered. SEED = 0 is allowed, and returns R = 0.
!> @details Halton Bases should be distinct prime numbers. This routine only checks that each base
!> @details is greater than 1.
!> @details Reference:
!> @details J.H. Halton: On the efficiency of certain quasi-random sequences of points in evaluating
!> @details multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
!> @author John Burkardt
!--------------------------------------------------------------------------------------------------
subroutine i_to_halton (seed, base, ndim, r)
use IO, only: &
IO_error
implicit none
integer(pInt), intent(in) :: ndim !< dimension of the sequence
integer(pInt), intent(in), dimension(ndim) :: base !< Halton bases
real(pReal), dimension(ndim) :: base_inv
integer(pInt), dimension(ndim) :: digit
real(pReal), dimension(ndim), intent(out) ::r !< the SEED-th element of the Halton sequence for the given bases
integer(pInt) , intent(in):: seed !< index of the desired element
integer(pInt), dimension(ndim) :: seed2
seed2(1:ndim) = abs(seed)
r(1:ndim) = 0.0_pReal
if (any (base(1:ndim) <= 1_pInt)) call IO_error(error_ID=405_pInt)
base_inv(1:ndim) = 1.0_pReal / real (base(1:ndim), pReal)
do while ( any ( seed2(1:ndim) /= 0_pInt) )
digit(1:ndim) = mod ( seed2(1:ndim), base(1:ndim))
r(1:ndim) = r(1:ndim) + real ( digit(1:ndim), pReal) * base_inv(1:ndim)
base_inv(1:ndim) = base_inv(1:ndim) / real ( base(1:ndim), pReal)
seed2(1:ndim) = seed2(1:ndim) / base(1:ndim)
enddo
end subroutine i_to_halton
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief returns any of the first 1500 prime numbers. !> @brief returns any of the first 1500 prime numbers.
!> @details n <= 0 returns 1500, the index of the largest prime (12553) available. !> @details n <= 0 returns 1500, the index of the largest prime (12553) available.
@ -2565,6 +2508,51 @@ integer(pInt) function prime(n)
end function prime end function prime
end subroutine halton_memory
!--------------------------------------------------------------------------------------------------
!> @brief sets the dimension for a Halton sequence
!> @author John Burkardt
!--------------------------------------------------------------------------------------------------
subroutine halton_ndim_set (ndim)
implicit none
integer(pInt), intent(in) :: ndim !< dimension of the Halton vectors
integer(pInt) :: value_halton(1)
value_halton(1) = ndim
call halton_memory ('SET', 'NDIM', 1_pInt, value_halton)
end subroutine halton_ndim_set
!--------------------------------------------------------------------------------------------------
!> @brief sets the seed for the Halton sequence.
!> @details Calling HALTON repeatedly returns the elements of the Halton sequence in order,
!> @details starting with element number 1.
!> @details An internal counter, called SEED, keeps track of the next element to return. Each time
!> @details is computed, and then SEED is incremented by 1.
!> @details To restart the Halton sequence, it is only necessary to reset SEED to 1. It might also
!> @details be desirable to reset SEED to some other value. This routine allows the user to specify
!> @details any value of SEED.
!> @details The default value of SEED is 1, which restarts the Halton sequence.
!> @author John Burkardt
!--------------------------------------------------------------------------------------------------
subroutine halton_seed_set(seed)
implicit none
integer(pInt), parameter :: NDIM = 1_pInt
integer(pInt), intent(in) :: seed !< seed for the Halton sequence.
integer(pInt) :: value_halton(ndim)
value_halton(1) = seed
call halton_memory ('SET', 'SEED', NDIM, value_halton)
end subroutine halton_seed_set
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief factorial !> @brief factorial
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------