moved specific functions into the scope of the calling functions
This commit is contained in:
parent
9823f5f495
commit
cf6894442b
264
src/math.f90
264
src/math.f90
|
@ -6,7 +6,6 @@
|
||||||
!> @brief Mathematical library, including random number generation and tensor represenations
|
!> @brief Mathematical library, including random number generation and tensor represenations
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
module math
|
module math
|
||||||
use, intrinsic :: iso_c_binding
|
|
||||||
use prec, only: &
|
use prec, only: &
|
||||||
pReal, &
|
pReal, &
|
||||||
pInt
|
pInt
|
||||||
|
@ -161,13 +160,10 @@ module math
|
||||||
math_rotate_forward3333, &
|
math_rotate_forward3333, &
|
||||||
math_limit
|
math_limit
|
||||||
private :: &
|
private :: &
|
||||||
math_partition, &
|
|
||||||
halton, &
|
halton, &
|
||||||
halton_memory, &
|
halton_memory, &
|
||||||
halton_ndim_set, &
|
halton_ndim_set, &
|
||||||
halton_seed_set, &
|
halton_seed_set
|
||||||
i_to_halton, &
|
|
||||||
prime
|
|
||||||
|
|
||||||
contains
|
contains
|
||||||
|
|
||||||
|
@ -289,25 +285,24 @@ recursive subroutine math_qsort(a, istart, iend)
|
||||||
integer(pInt) :: ipivot
|
integer(pInt) :: ipivot
|
||||||
|
|
||||||
if (istart < iend) then
|
if (istart < iend) then
|
||||||
ipivot = math_partition(a,istart, iend)
|
ipivot = qsort_partition(a,istart, iend)
|
||||||
call math_qsort(a, istart, ipivot-1_pInt)
|
call math_qsort(a, istart, ipivot-1_pInt)
|
||||||
call math_qsort(a, ipivot+1_pInt, iend)
|
call math_qsort(a, ipivot+1_pInt, iend)
|
||||||
endif
|
endif
|
||||||
|
|
||||||
end subroutine math_qsort
|
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
contains
|
||||||
|
|
||||||
|
!-------------------------------------------------------------------------------------------------
|
||||||
!> @brief Partitioning required for quicksort
|
!> @brief Partitioning required for quicksort
|
||||||
!--------------------------------------------------------------------------------------------------
|
!-------------------------------------------------------------------------------------------------
|
||||||
integer(pInt) function math_partition(a, istart, iend)
|
integer(pInt) function qsort_partition(a, istart, iend)
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
integer(pInt), dimension(:,:), intent(inout) :: a
|
integer(pInt), dimension(:,:), intent(inout) :: a
|
||||||
integer(pInt), intent(in) :: istart,iend
|
integer(pInt), intent(in) :: istart,iend
|
||||||
integer(pInt) :: i,j,k,tmp
|
integer(pInt) :: i,j,k,tmp
|
||||||
|
|
||||||
|
|
||||||
do
|
do
|
||||||
! find the first element on the right side less than or equal to the pivot point
|
! find the first element on the right side less than or equal to the pivot point
|
||||||
do j = iend, istart, -1_pInt
|
do j = iend, istart, -1_pInt
|
||||||
|
@ -318,23 +313,25 @@ integer(pInt) function math_partition(a, istart, iend)
|
||||||
if (a(1,i) > a(1,istart)) exit
|
if (a(1,i) > a(1,istart)) exit
|
||||||
enddo
|
enddo
|
||||||
if (i < j) then ! if the indexes do not cross, exchange values
|
if (i < j) then ! if the indexes do not cross, exchange values
|
||||||
do k = 1_pInt,d
|
do k = 1_pInt, int(size(a,1_pInt), pInt)
|
||||||
tmp = a(k,i)
|
tmp = a(k,i)
|
||||||
a(k,i) = a(k,j)
|
a(k,i) = a(k,j)
|
||||||
a(k,j) = tmp
|
a(k,j) = tmp
|
||||||
enddo
|
enddo
|
||||||
else ! if they do cross, exchange left value with pivot and return with the partition index
|
else ! if they do cross, exchange left value with pivot and return with the partition index
|
||||||
do k = 1_pInt, int(size(a,1_pInt), pInt) ! number of linked data
|
do k = 1_pInt, int(size(a,1_pInt), pInt)
|
||||||
tmp = a(k,istart)
|
tmp = a(k,istart)
|
||||||
a(k,istart) = a(k,j)
|
a(k,istart) = a(k,j)
|
||||||
a(k,j) = tmp
|
a(k,j) = tmp
|
||||||
enddo
|
enddo
|
||||||
math_partition = j
|
qsort_partition = j
|
||||||
return
|
return
|
||||||
endif
|
endif
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
end function math_partition
|
end function qsort_partition
|
||||||
|
|
||||||
|
end subroutine math_qsort
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
@ -2183,6 +2180,53 @@ subroutine halton(ndim, r)
|
||||||
value_halton(1) = 1_pInt
|
value_halton(1) = 1_pInt
|
||||||
call halton_memory ('INC', 'SEED', 1_pInt, value_halton)
|
call halton_memory ('INC', 'SEED', 1_pInt, value_halton)
|
||||||
|
|
||||||
|
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
contains
|
||||||
|
|
||||||
|
!-------------------------------------------------------------------------------------------------
|
||||||
|
!> @brief computes an element of a Halton sequence.
|
||||||
|
!> @details Only the absolute value of SEED is considered. SEED = 0 is allowed, and returns R = 0.
|
||||||
|
!> @details Halton Bases should be distinct prime numbers. This routine only checks that each base
|
||||||
|
!> @details is greater than 1.
|
||||||
|
!> @details Reference:
|
||||||
|
!> @details J.H. Halton: On the efficiency of certain quasi-random sequences of points in evaluating
|
||||||
|
!> @details multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
|
||||||
|
!> @author John Burkardt
|
||||||
|
!-------------------------------------------------------------------------------------------------
|
||||||
|
subroutine i_to_halton (seed, base, ndim, r)
|
||||||
|
use IO, only: &
|
||||||
|
IO_error
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
integer(pInt), intent(in) :: &
|
||||||
|
ndim, & !< dimension of the sequence
|
||||||
|
seed !< index of the desired element
|
||||||
|
integer(pInt), intent(in), dimension(ndim) :: base !< Halton bases
|
||||||
|
real(pReal), intent(out), dimension(ndim) :: r !< the SEED-th element of the Halton sequence for the given bases
|
||||||
|
|
||||||
|
real(pReal), dimension(ndim) :: base_inv
|
||||||
|
integer(pInt), dimension(ndim) :: &
|
||||||
|
digit, &
|
||||||
|
seed2
|
||||||
|
|
||||||
|
seed2 = abs(seed)
|
||||||
|
r = 0.0_pReal
|
||||||
|
|
||||||
|
if (any (base(1:ndim) <= 1_pInt)) call IO_error(error_ID=405_pInt)
|
||||||
|
|
||||||
|
base_inv(1:ndim) = 1.0_pReal / real (base(1:ndim), pReal)
|
||||||
|
|
||||||
|
do while ( any ( seed2(1:ndim) /= 0_pInt) )
|
||||||
|
digit(1:ndim) = mod ( seed2(1:ndim), base(1:ndim))
|
||||||
|
r(1:ndim) = r(1:ndim) + real ( digit(1:ndim), pReal) * base_inv(1:ndim)
|
||||||
|
base_inv(1:ndim) = base_inv(1:ndim) / real ( base(1:ndim), pReal)
|
||||||
|
seed2(1:ndim) = seed2(1:ndim) / base(1:ndim)
|
||||||
|
enddo
|
||||||
|
|
||||||
|
end subroutine i_to_halton
|
||||||
|
|
||||||
|
|
||||||
end subroutine halton
|
end subroutine halton
|
||||||
|
|
||||||
|
|
||||||
|
@ -2199,6 +2243,8 @@ end subroutine halton
|
||||||
!> @author John Burkardt
|
!> @author John Burkardt
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
|
subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
|
||||||
|
use IO, only: &
|
||||||
|
IO_lc
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
character(len = *), intent(in) :: &
|
character(len = *), intent(in) :: &
|
||||||
|
@ -2208,8 +2254,8 @@ subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
|
||||||
integer(pInt), allocatable, save, dimension(:) :: base
|
integer(pInt), allocatable, save, dimension(:) :: base
|
||||||
logical, save :: first_call = .true.
|
logical, save :: first_call = .true.
|
||||||
integer(pInt), intent(in) :: ndim !< dimension of the quantity
|
integer(pInt), intent(in) :: ndim !< dimension of the quantity
|
||||||
integer(pInt):: i
|
|
||||||
integer(pInt), save :: ndim_save = 0_pInt, seed = 1_pInt
|
integer(pInt), save :: ndim_save = 0_pInt, seed = 1_pInt
|
||||||
|
integer(pInt) :: i
|
||||||
|
|
||||||
if (first_call) then
|
if (first_call) then
|
||||||
ndim_save = 1_pInt
|
ndim_save = 1_pInt
|
||||||
|
@ -2220,146 +2266,43 @@ subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
! Set
|
! Set
|
||||||
if(action_halton(1:1) == 'S' .or. action_halton(1:1) == 's') then
|
actionHalton: if(IO_lc(action_halton(1:1)) == 's') then
|
||||||
|
|
||||||
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
|
|
||||||
|
|
||||||
if(ndim_save /= ndim) then
|
|
||||||
deallocate(base)
|
|
||||||
ndim_save = ndim
|
|
||||||
allocate(base(ndim_save))
|
|
||||||
endif
|
|
||||||
|
|
||||||
base(1:ndim) = value_halton(1:ndim)
|
|
||||||
|
|
||||||
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then
|
|
||||||
|
|
||||||
|
nameSet: if(IO_lc(name_halton(1:1)) == 'b') then
|
||||||
|
if(ndim_save /= ndim) ndim_save = ndim
|
||||||
|
base = value_halton(1:ndim)
|
||||||
|
elseif(IO_lc(name_halton(1:1)) == 'n') then nameSet
|
||||||
if(ndim_save /= value_halton(1)) then
|
if(ndim_save /= value_halton(1)) then
|
||||||
deallocate(base)
|
|
||||||
ndim_save = value_halton(1)
|
ndim_save = value_halton(1)
|
||||||
allocate(base(ndim_save))
|
base = [(prime(i),i=1_pInt,ndim_save)]
|
||||||
do i = 1_pInt, ndim_save
|
|
||||||
base(i) = prime (i)
|
|
||||||
enddo
|
|
||||||
else
|
else
|
||||||
ndim_save = value_halton(1)
|
ndim_save = value_halton(1)
|
||||||
endif
|
endif
|
||||||
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
elseif(IO_lc(name_halton(1:1)) == 's') then nameSet
|
||||||
seed = value_halton(1)
|
seed = value_halton(1)
|
||||||
endif
|
endif nameSet
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
! Get
|
! Get
|
||||||
elseif(action_halton(1:1) == 'G' .or. action_halton(1:1) == 'g') then
|
elseif(IO_lc(action_halton(1:1)) == 'g') then actionHalton
|
||||||
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
|
nameGet: if(IO_lc(name_halton(1:1)) == 'b') then
|
||||||
if(ndim /= ndim_save) then
|
if(ndim /= ndim_save) then
|
||||||
deallocate(base)
|
|
||||||
ndim_save = ndim
|
ndim_save = ndim
|
||||||
allocate(base(ndim_save))
|
base = [(prime(i),i=1_pInt,ndim_save)]
|
||||||
do i = 1_pInt, ndim_save
|
|
||||||
base(i) = prime(i)
|
|
||||||
enddo
|
|
||||||
endif
|
endif
|
||||||
value_halton(1:ndim_save) = base(1:ndim_save)
|
value_halton(1:ndim_save) = base(1:ndim_save)
|
||||||
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then
|
elseif(IO_lc(name_halton(1:1)) == 'n') then nameGet
|
||||||
value_halton(1) = ndim_save
|
value_halton(1) = ndim_save
|
||||||
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
elseif(IO_lc(name_halton(1:1)) == 's') then nameGet
|
||||||
value_halton(1) = seed
|
value_halton(1) = seed
|
||||||
endif
|
endif nameGet
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
! Increment
|
! Increment
|
||||||
elseif(action_halton(1:1) == 'I' .or. action_halton(1:1) == 'i') then
|
elseif(IO_lc(action_halton(1:1)) == 'i') then actionHalton
|
||||||
if(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
if(IO_lc(name_halton(1:1)) == 's') seed = seed + value_halton(1)
|
||||||
seed = seed + value_halton(1)
|
endif actionHalton
|
||||||
end if
|
contains
|
||||||
endif
|
|
||||||
|
|
||||||
end subroutine halton_memory
|
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
|
||||||
!> @brief sets the dimension for a Halton sequence
|
|
||||||
!> @author John Burkardt
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
|
||||||
subroutine halton_ndim_set (ndim)
|
|
||||||
|
|
||||||
implicit none
|
|
||||||
integer(pInt), intent(in) :: ndim !< dimension of the Halton vectors
|
|
||||||
integer(pInt) :: value_halton(1)
|
|
||||||
|
|
||||||
value_halton(1) = ndim
|
|
||||||
call halton_memory ('SET', 'NDIM', 1_pInt, value_halton)
|
|
||||||
|
|
||||||
end subroutine halton_ndim_set
|
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
|
||||||
!> @brief sets the seed for the Halton sequence.
|
|
||||||
!> @details Calling HALTON repeatedly returns the elements of the Halton sequence in order,
|
|
||||||
!> @details starting with element number 1.
|
|
||||||
!> @details An internal counter, called SEED, keeps track of the next element to return. Each time
|
|
||||||
!> @details is computed, and then SEED is incremented by 1.
|
|
||||||
!> @details To restart the Halton sequence, it is only necessary to reset SEED to 1. It might also
|
|
||||||
!> @details be desirable to reset SEED to some other value. This routine allows the user to specify
|
|
||||||
!> @details any value of SEED.
|
|
||||||
!> @details The default value of SEED is 1, which restarts the Halton sequence.
|
|
||||||
!> @author John Burkardt
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
|
||||||
subroutine halton_seed_set(seed)
|
|
||||||
implicit none
|
|
||||||
|
|
||||||
integer(pInt), parameter :: NDIM = 1_pInt
|
|
||||||
integer(pInt), intent(in) :: seed !< seed for the Halton sequence.
|
|
||||||
integer(pInt) :: value_halton(ndim)
|
|
||||||
|
|
||||||
value_halton(1) = seed
|
|
||||||
call halton_memory ('SET', 'SEED', NDIM, value_halton)
|
|
||||||
|
|
||||||
end subroutine halton_seed_set
|
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
|
||||||
!> @brief computes an element of a Halton sequence.
|
|
||||||
!> @details Only the absolute value of SEED is considered. SEED = 0 is allowed, and returns R = 0.
|
|
||||||
!> @details Halton Bases should be distinct prime numbers. This routine only checks that each base
|
|
||||||
!> @details is greater than 1.
|
|
||||||
!> @details Reference:
|
|
||||||
!> @details J.H. Halton: On the efficiency of certain quasi-random sequences of points in evaluating
|
|
||||||
!> @details multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
|
|
||||||
!> @author John Burkardt
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
|
||||||
subroutine i_to_halton (seed, base, ndim, r)
|
|
||||||
use IO, only: &
|
|
||||||
IO_error
|
|
||||||
|
|
||||||
implicit none
|
|
||||||
integer(pInt), intent(in) :: ndim !< dimension of the sequence
|
|
||||||
integer(pInt), intent(in), dimension(ndim) :: base !< Halton bases
|
|
||||||
real(pReal), dimension(ndim) :: base_inv
|
|
||||||
integer(pInt), dimension(ndim) :: digit
|
|
||||||
real(pReal), dimension(ndim), intent(out) ::r !< the SEED-th element of the Halton sequence for the given bases
|
|
||||||
integer(pInt) , intent(in):: seed !< index of the desired element
|
|
||||||
integer(pInt), dimension(ndim) :: seed2
|
|
||||||
|
|
||||||
seed2(1:ndim) = abs(seed)
|
|
||||||
|
|
||||||
r(1:ndim) = 0.0_pReal
|
|
||||||
|
|
||||||
if (any (base(1:ndim) <= 1_pInt)) call IO_error(error_ID=405_pInt)
|
|
||||||
|
|
||||||
base_inv(1:ndim) = 1.0_pReal / real (base(1:ndim), pReal)
|
|
||||||
|
|
||||||
do while ( any ( seed2(1:ndim) /= 0_pInt) )
|
|
||||||
digit(1:ndim) = mod ( seed2(1:ndim), base(1:ndim))
|
|
||||||
r(1:ndim) = r(1:ndim) + real ( digit(1:ndim), pReal) * base_inv(1:ndim)
|
|
||||||
base_inv(1:ndim) = base_inv(1:ndim) / real ( base(1:ndim), pReal)
|
|
||||||
seed2(1:ndim) = seed2(1:ndim) / base(1:ndim)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
end subroutine i_to_halton
|
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief returns any of the first 1500 prime numbers.
|
!> @brief returns any of the first 1500 prime numbers.
|
||||||
!> @details n <= 0 returns 1500, the index of the largest prime (12553) available.
|
!> @details n <= 0 returns 1500, the index of the largest prime (12553) available.
|
||||||
|
@ -2565,6 +2508,51 @@ integer(pInt) function prime(n)
|
||||||
end function prime
|
end function prime
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
end subroutine halton_memory
|
||||||
|
|
||||||
|
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
!> @brief sets the dimension for a Halton sequence
|
||||||
|
!> @author John Burkardt
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
subroutine halton_ndim_set (ndim)
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
integer(pInt), intent(in) :: ndim !< dimension of the Halton vectors
|
||||||
|
integer(pInt) :: value_halton(1)
|
||||||
|
|
||||||
|
value_halton(1) = ndim
|
||||||
|
call halton_memory ('SET', 'NDIM', 1_pInt, value_halton)
|
||||||
|
|
||||||
|
end subroutine halton_ndim_set
|
||||||
|
|
||||||
|
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
!> @brief sets the seed for the Halton sequence.
|
||||||
|
!> @details Calling HALTON repeatedly returns the elements of the Halton sequence in order,
|
||||||
|
!> @details starting with element number 1.
|
||||||
|
!> @details An internal counter, called SEED, keeps track of the next element to return. Each time
|
||||||
|
!> @details is computed, and then SEED is incremented by 1.
|
||||||
|
!> @details To restart the Halton sequence, it is only necessary to reset SEED to 1. It might also
|
||||||
|
!> @details be desirable to reset SEED to some other value. This routine allows the user to specify
|
||||||
|
!> @details any value of SEED.
|
||||||
|
!> @details The default value of SEED is 1, which restarts the Halton sequence.
|
||||||
|
!> @author John Burkardt
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
subroutine halton_seed_set(seed)
|
||||||
|
implicit none
|
||||||
|
|
||||||
|
integer(pInt), parameter :: NDIM = 1_pInt
|
||||||
|
integer(pInt), intent(in) :: seed !< seed for the Halton sequence.
|
||||||
|
integer(pInt) :: value_halton(ndim)
|
||||||
|
|
||||||
|
value_halton(1) = seed
|
||||||
|
call halton_memory ('SET', 'SEED', NDIM, value_halton)
|
||||||
|
|
||||||
|
end subroutine halton_seed_set
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief factorial
|
!> @brief factorial
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
|
Loading…
Reference in New Issue