moved specific functions into the scope of the calling functions
This commit is contained in:
parent
9823f5f495
commit
cf6894442b
326
src/math.f90
326
src/math.f90
|
@ -6,7 +6,6 @@
|
|||
!> @brief Mathematical library, including random number generation and tensor represenations
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
module math
|
||||
use, intrinsic :: iso_c_binding
|
||||
use prec, only: &
|
||||
pReal, &
|
||||
pInt
|
||||
|
@ -161,13 +160,10 @@ module math
|
|||
math_rotate_forward3333, &
|
||||
math_limit
|
||||
private :: &
|
||||
math_partition, &
|
||||
halton, &
|
||||
halton_memory, &
|
||||
halton_ndim_set, &
|
||||
halton_seed_set, &
|
||||
i_to_halton, &
|
||||
prime
|
||||
halton_seed_set
|
||||
|
||||
contains
|
||||
|
||||
|
@ -289,54 +285,55 @@ recursive subroutine math_qsort(a, istart, iend)
|
|||
integer(pInt) :: ipivot
|
||||
|
||||
if (istart < iend) then
|
||||
ipivot = math_partition(a,istart, iend)
|
||||
ipivot = qsort_partition(a,istart, iend)
|
||||
call math_qsort(a, istart, ipivot-1_pInt)
|
||||
call math_qsort(a, ipivot+1_pInt, iend)
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
contains
|
||||
|
||||
!-------------------------------------------------------------------------------------------------
|
||||
!> @brief Partitioning required for quicksort
|
||||
!-------------------------------------------------------------------------------------------------
|
||||
integer(pInt) function qsort_partition(a, istart, iend)
|
||||
|
||||
implicit none
|
||||
integer(pInt), dimension(:,:), intent(inout) :: a
|
||||
integer(pInt), intent(in) :: istart,iend
|
||||
integer(pInt) :: i,j,k,tmp
|
||||
|
||||
do
|
||||
! find the first element on the right side less than or equal to the pivot point
|
||||
do j = iend, istart, -1_pInt
|
||||
if (a(1,j) <= a(1,istart)) exit
|
||||
enddo
|
||||
! find the first element on the left side greater than the pivot point
|
||||
do i = istart, iend
|
||||
if (a(1,i) > a(1,istart)) exit
|
||||
enddo
|
||||
if (i < j) then ! if the indexes do not cross, exchange values
|
||||
do k = 1_pInt, int(size(a,1_pInt), pInt)
|
||||
tmp = a(k,i)
|
||||
a(k,i) = a(k,j)
|
||||
a(k,j) = tmp
|
||||
enddo
|
||||
else ! if they do cross, exchange left value with pivot and return with the partition index
|
||||
do k = 1_pInt, int(size(a,1_pInt), pInt)
|
||||
tmp = a(k,istart)
|
||||
a(k,istart) = a(k,j)
|
||||
a(k,j) = tmp
|
||||
enddo
|
||||
qsort_partition = j
|
||||
return
|
||||
endif
|
||||
enddo
|
||||
|
||||
end function qsort_partition
|
||||
|
||||
end subroutine math_qsort
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Partitioning required for quicksort
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
integer(pInt) function math_partition(a, istart, iend)
|
||||
|
||||
implicit none
|
||||
integer(pInt), dimension(:,:), intent(inout) :: a
|
||||
integer(pInt), intent(in) :: istart,iend
|
||||
integer(pInt) :: i,j,k,tmp
|
||||
|
||||
|
||||
do
|
||||
! find the first element on the right side less than or equal to the pivot point
|
||||
do j = iend, istart, -1_pInt
|
||||
if (a(1,j) <= a(1,istart)) exit
|
||||
enddo
|
||||
! find the first element on the left side greater than the pivot point
|
||||
do i = istart, iend
|
||||
if (a(1,i) > a(1,istart)) exit
|
||||
enddo
|
||||
if (i < j) then ! if the indexes do not cross, exchange values
|
||||
do k = 1_pInt,d
|
||||
tmp = a(k,i)
|
||||
a(k,i) = a(k,j)
|
||||
a(k,j) = tmp
|
||||
enddo
|
||||
else ! if they do cross, exchange left value with pivot and return with the partition index
|
||||
do k = 1_pInt, int(size(a,1_pInt), pInt) ! number of linked data
|
||||
tmp = a(k,istart)
|
||||
a(k,istart) = a(k,j)
|
||||
a(k,j) = tmp
|
||||
enddo
|
||||
math_partition = j
|
||||
return
|
||||
endif
|
||||
enddo
|
||||
|
||||
end function math_partition
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief range of integers starting at one
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -2183,6 +2180,53 @@ subroutine halton(ndim, r)
|
|||
value_halton(1) = 1_pInt
|
||||
call halton_memory ('INC', 'SEED', 1_pInt, value_halton)
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
contains
|
||||
|
||||
!-------------------------------------------------------------------------------------------------
|
||||
!> @brief computes an element of a Halton sequence.
|
||||
!> @details Only the absolute value of SEED is considered. SEED = 0 is allowed, and returns R = 0.
|
||||
!> @details Halton Bases should be distinct prime numbers. This routine only checks that each base
|
||||
!> @details is greater than 1.
|
||||
!> @details Reference:
|
||||
!> @details J.H. Halton: On the efficiency of certain quasi-random sequences of points in evaluating
|
||||
!> @details multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
|
||||
!> @author John Burkardt
|
||||
!-------------------------------------------------------------------------------------------------
|
||||
subroutine i_to_halton (seed, base, ndim, r)
|
||||
use IO, only: &
|
||||
IO_error
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: &
|
||||
ndim, & !< dimension of the sequence
|
||||
seed !< index of the desired element
|
||||
integer(pInt), intent(in), dimension(ndim) :: base !< Halton bases
|
||||
real(pReal), intent(out), dimension(ndim) :: r !< the SEED-th element of the Halton sequence for the given bases
|
||||
|
||||
real(pReal), dimension(ndim) :: base_inv
|
||||
integer(pInt), dimension(ndim) :: &
|
||||
digit, &
|
||||
seed2
|
||||
|
||||
seed2 = abs(seed)
|
||||
r = 0.0_pReal
|
||||
|
||||
if (any (base(1:ndim) <= 1_pInt)) call IO_error(error_ID=405_pInt)
|
||||
|
||||
base_inv(1:ndim) = 1.0_pReal / real (base(1:ndim), pReal)
|
||||
|
||||
do while ( any ( seed2(1:ndim) /= 0_pInt) )
|
||||
digit(1:ndim) = mod ( seed2(1:ndim), base(1:ndim))
|
||||
r(1:ndim) = r(1:ndim) + real ( digit(1:ndim), pReal) * base_inv(1:ndim)
|
||||
base_inv(1:ndim) = base_inv(1:ndim) / real ( base(1:ndim), pReal)
|
||||
seed2(1:ndim) = seed2(1:ndim) / base(1:ndim)
|
||||
enddo
|
||||
|
||||
end subroutine i_to_halton
|
||||
|
||||
|
||||
end subroutine halton
|
||||
|
||||
|
||||
|
@ -2199,6 +2243,8 @@ end subroutine halton
|
|||
!> @author John Burkardt
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
|
||||
use IO, only: &
|
||||
IO_lc
|
||||
|
||||
implicit none
|
||||
character(len = *), intent(in) :: &
|
||||
|
@ -2208,8 +2254,8 @@ subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
|
|||
integer(pInt), allocatable, save, dimension(:) :: base
|
||||
logical, save :: first_call = .true.
|
||||
integer(pInt), intent(in) :: ndim !< dimension of the quantity
|
||||
integer(pInt):: i
|
||||
integer(pInt), save :: ndim_save = 0_pInt, seed = 1_pInt
|
||||
integer(pInt) :: i
|
||||
|
||||
if (first_call) then
|
||||
ndim_save = 1_pInt
|
||||
|
@ -2220,146 +2266,43 @@ subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Set
|
||||
if(action_halton(1:1) == 'S' .or. action_halton(1:1) == 's') then
|
||||
|
||||
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
|
||||
|
||||
if(ndim_save /= ndim) then
|
||||
deallocate(base)
|
||||
ndim_save = ndim
|
||||
allocate(base(ndim_save))
|
||||
endif
|
||||
|
||||
base(1:ndim) = value_halton(1:ndim)
|
||||
|
||||
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then
|
||||
actionHalton: if(IO_lc(action_halton(1:1)) == 's') then
|
||||
|
||||
nameSet: if(IO_lc(name_halton(1:1)) == 'b') then
|
||||
if(ndim_save /= ndim) ndim_save = ndim
|
||||
base = value_halton(1:ndim)
|
||||
elseif(IO_lc(name_halton(1:1)) == 'n') then nameSet
|
||||
if(ndim_save /= value_halton(1)) then
|
||||
deallocate(base)
|
||||
ndim_save = value_halton(1)
|
||||
allocate(base(ndim_save))
|
||||
do i = 1_pInt, ndim_save
|
||||
base(i) = prime (i)
|
||||
enddo
|
||||
base = [(prime(i),i=1_pInt,ndim_save)]
|
||||
else
|
||||
ndim_save = value_halton(1)
|
||||
endif
|
||||
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
||||
elseif(IO_lc(name_halton(1:1)) == 's') then nameSet
|
||||
seed = value_halton(1)
|
||||
endif
|
||||
endif nameSet
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Get
|
||||
elseif(action_halton(1:1) == 'G' .or. action_halton(1:1) == 'g') then
|
||||
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
|
||||
elseif(IO_lc(action_halton(1:1)) == 'g') then actionHalton
|
||||
nameGet: if(IO_lc(name_halton(1:1)) == 'b') then
|
||||
if(ndim /= ndim_save) then
|
||||
deallocate(base)
|
||||
ndim_save = ndim
|
||||
allocate(base(ndim_save))
|
||||
do i = 1_pInt, ndim_save
|
||||
base(i) = prime(i)
|
||||
enddo
|
||||
ndim_save = ndim
|
||||
base = [(prime(i),i=1_pInt,ndim_save)]
|
||||
endif
|
||||
value_halton(1:ndim_save) = base(1:ndim_save)
|
||||
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then
|
||||
elseif(IO_lc(name_halton(1:1)) == 'n') then nameGet
|
||||
value_halton(1) = ndim_save
|
||||
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
||||
elseif(IO_lc(name_halton(1:1)) == 's') then nameGet
|
||||
value_halton(1) = seed
|
||||
endif
|
||||
endif nameGet
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Increment
|
||||
elseif(action_halton(1:1) == 'I' .or. action_halton(1:1) == 'i') then
|
||||
if(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
||||
seed = seed + value_halton(1)
|
||||
end if
|
||||
endif
|
||||
|
||||
end subroutine halton_memory
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief sets the dimension for a Halton sequence
|
||||
!> @author John Burkardt
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine halton_ndim_set (ndim)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: ndim !< dimension of the Halton vectors
|
||||
integer(pInt) :: value_halton(1)
|
||||
|
||||
value_halton(1) = ndim
|
||||
call halton_memory ('SET', 'NDIM', 1_pInt, value_halton)
|
||||
|
||||
end subroutine halton_ndim_set
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief sets the seed for the Halton sequence.
|
||||
!> @details Calling HALTON repeatedly returns the elements of the Halton sequence in order,
|
||||
!> @details starting with element number 1.
|
||||
!> @details An internal counter, called SEED, keeps track of the next element to return. Each time
|
||||
!> @details is computed, and then SEED is incremented by 1.
|
||||
!> @details To restart the Halton sequence, it is only necessary to reset SEED to 1. It might also
|
||||
!> @details be desirable to reset SEED to some other value. This routine allows the user to specify
|
||||
!> @details any value of SEED.
|
||||
!> @details The default value of SEED is 1, which restarts the Halton sequence.
|
||||
!> @author John Burkardt
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine halton_seed_set(seed)
|
||||
implicit none
|
||||
|
||||
integer(pInt), parameter :: NDIM = 1_pInt
|
||||
integer(pInt), intent(in) :: seed !< seed for the Halton sequence.
|
||||
integer(pInt) :: value_halton(ndim)
|
||||
|
||||
value_halton(1) = seed
|
||||
call halton_memory ('SET', 'SEED', NDIM, value_halton)
|
||||
|
||||
end subroutine halton_seed_set
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief computes an element of a Halton sequence.
|
||||
!> @details Only the absolute value of SEED is considered. SEED = 0 is allowed, and returns R = 0.
|
||||
!> @details Halton Bases should be distinct prime numbers. This routine only checks that each base
|
||||
!> @details is greater than 1.
|
||||
!> @details Reference:
|
||||
!> @details J.H. Halton: On the efficiency of certain quasi-random sequences of points in evaluating
|
||||
!> @details multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
|
||||
!> @author John Burkardt
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine i_to_halton (seed, base, ndim, r)
|
||||
use IO, only: &
|
||||
IO_error
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: ndim !< dimension of the sequence
|
||||
integer(pInt), intent(in), dimension(ndim) :: base !< Halton bases
|
||||
real(pReal), dimension(ndim) :: base_inv
|
||||
integer(pInt), dimension(ndim) :: digit
|
||||
real(pReal), dimension(ndim), intent(out) ::r !< the SEED-th element of the Halton sequence for the given bases
|
||||
integer(pInt) , intent(in):: seed !< index of the desired element
|
||||
integer(pInt), dimension(ndim) :: seed2
|
||||
|
||||
seed2(1:ndim) = abs(seed)
|
||||
|
||||
r(1:ndim) = 0.0_pReal
|
||||
|
||||
if (any (base(1:ndim) <= 1_pInt)) call IO_error(error_ID=405_pInt)
|
||||
|
||||
base_inv(1:ndim) = 1.0_pReal / real (base(1:ndim), pReal)
|
||||
|
||||
do while ( any ( seed2(1:ndim) /= 0_pInt) )
|
||||
digit(1:ndim) = mod ( seed2(1:ndim), base(1:ndim))
|
||||
r(1:ndim) = r(1:ndim) + real ( digit(1:ndim), pReal) * base_inv(1:ndim)
|
||||
base_inv(1:ndim) = base_inv(1:ndim) / real ( base(1:ndim), pReal)
|
||||
seed2(1:ndim) = seed2(1:ndim) / base(1:ndim)
|
||||
enddo
|
||||
|
||||
end subroutine i_to_halton
|
||||
|
||||
|
||||
elseif(IO_lc(action_halton(1:1)) == 'i') then actionHalton
|
||||
if(IO_lc(name_halton(1:1)) == 's') seed = seed + value_halton(1)
|
||||
endif actionHalton
|
||||
contains
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief returns any of the first 1500 prime numbers.
|
||||
!> @details n <= 0 returns 1500, the index of the largest prime (12553) available.
|
||||
|
@ -2565,6 +2508,51 @@ integer(pInt) function prime(n)
|
|||
end function prime
|
||||
|
||||
|
||||
|
||||
end subroutine halton_memory
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief sets the dimension for a Halton sequence
|
||||
!> @author John Burkardt
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine halton_ndim_set (ndim)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: ndim !< dimension of the Halton vectors
|
||||
integer(pInt) :: value_halton(1)
|
||||
|
||||
value_halton(1) = ndim
|
||||
call halton_memory ('SET', 'NDIM', 1_pInt, value_halton)
|
||||
|
||||
end subroutine halton_ndim_set
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief sets the seed for the Halton sequence.
|
||||
!> @details Calling HALTON repeatedly returns the elements of the Halton sequence in order,
|
||||
!> @details starting with element number 1.
|
||||
!> @details An internal counter, called SEED, keeps track of the next element to return. Each time
|
||||
!> @details is computed, and then SEED is incremented by 1.
|
||||
!> @details To restart the Halton sequence, it is only necessary to reset SEED to 1. It might also
|
||||
!> @details be desirable to reset SEED to some other value. This routine allows the user to specify
|
||||
!> @details any value of SEED.
|
||||
!> @details The default value of SEED is 1, which restarts the Halton sequence.
|
||||
!> @author John Burkardt
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine halton_seed_set(seed)
|
||||
implicit none
|
||||
|
||||
integer(pInt), parameter :: NDIM = 1_pInt
|
||||
integer(pInt), intent(in) :: seed !< seed for the Halton sequence.
|
||||
integer(pInt) :: value_halton(ndim)
|
||||
|
||||
value_halton(1) = seed
|
||||
call halton_memory ('SET', 'SEED', NDIM, value_halton)
|
||||
|
||||
end subroutine halton_seed_set
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief factorial
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
|
Loading…
Reference in New Issue