Merge branch 'hex-reorder-2ndtry' into development

This commit is contained in:
Sharan Roongta 2019-10-17 14:58:43 +02:00
commit cebbfc906d
3 changed files with 58 additions and 58 deletions

@ -1 +1 @@
Subproject commit cdf79281330b2cf6e11426685b1d0c999efc24cf
Subproject commit 214c69be8b51adb39eb7ad25b139727c8b98afce

View File

@ -13,7 +13,7 @@
#define INTEL_MIN 1600
#define PETSC_MAJOR 3
#define PETSC_MINOR_MIN 10
#define PETSC_MINOR_MAX 11
#define PETSC_MINOR_MAX 12
module DAMASK_interface
use, intrinsic :: iso_fortran_env

View File

@ -228,86 +228,86 @@ module lattice
real(pReal), dimension(4+4,LATTICE_HEX_NSLIP), parameter :: &
LATTICE_HEX_SYSTEMSLIP = reshape(real([&
! Slip direction Plane normal
! Basal systems <11.0>{00.1} (independent of c/a-ratio, Bravais notation (4 coordinate base))
! Basal systems <-1-1.0>{00.1} (independent of c/a-ratio, Bravais notation (4 coordinate base))
2, -1, -1, 0, 0, 0, 0, 1, &
-1, 2, -1, 0, 0, 0, 0, 1, &
-1, -1, 2, 0, 0, 0, 0, 1, &
! 1st type prismatic systems <11.0>{10.0} (independent of c/a-ratio)
! 1st type prismatic systems <-1-1.0>{1-1.0} (independent of c/a-ratio)
2, -1, -1, 0, 0, 1, -1, 0, &
-1, 2, -1, 0, -1, 0, 1, 0, &
-1, -1, 2, 0, 1, -1, 0, 0, &
! 2nd type prismatic systems <10.0>{11.0} -- a slip; plane normals independent of c/a-ratio
0, 1, -1, 0, 2, -1, -1, 0, &
-1, 0, 1, 0, -1, 2, -1, 0, &
1, -1, 0, 0, -1, -1, 2, 0, &
! 1st type 1st order pyramidal systems <11.0>{-11.1} -- plane normals depend on the c/a-ratio
2, -1, -1, 0, 0, 1, -1, 1, &
-1, 2, -1, 0, -1, 0, 1, 1, &
-1, -1, 2, 0, 1, -1, 0, 1, &
1, 1, -2, 0, -1, 1, 0, 1, &
-2, 1, 1, 0, 0, -1, 1, 1, &
1, -2, 1, 0, 1, 0, -1, 1, &
! 2nd type prismatic systems <-11.0>{11.0} -- a slip; plane normals independent of c/a-ratio
-1, 1, 0, 0, 1, 1, -2, 0, &
0, -1, 1, 0, -2, 1, 1, 0, &
1, 0, -1, 0, 1, -2, 1, 0, &
! 1st type 1st order pyramidal systems <-1-1.0>{-11.1} -- plane normals depend on the c/a-ratio
-1, 2, -1, 0, 1, 0, -1, 1, &
-2, 1, 1, 0, 0, 1, -1, 1, &
-1, -1, 2, 0, -1, 1, 0, 1, &
1, -2, 1, 0, -1, 0, 1, 1, &
2, -1, -1, 0, 0, -1, 1, 1, &
1, 1, -2, 0, 1, -1, 0, 1, &
! pyramidal system: c+a slip <11.3>{-10.1} -- plane normals depend on the c/a-ratio
2, -1, -1, 3, -1, 1, 0, 1, &
1, -2, 1, 3, -1, 1, 0, 1, &
-1, -1, 2, 3, 1, 0, -1, 1, &
-2, 1, 1, 3, 1, 0, -1, 1, &
-1, 2, -1, 3, 0, -1, 1, 1, &
1, 1, -2, 3, 0, -1, 1, 1, &
-2, 1, 1, 3, 1, -1, 0, 1, &
-1, 2, -1, 3, 1, -1, 0, 1, &
1, 1, -2, 3, -1, 0, 1, 1, &
2, -1, -1, 3, -1, 0, 1, 1, &
1, -2, 1, 3, 0, 1, -1, 1, &
-1, -1, 2, 3, 1, 0, -1, 1, &
-1, -1, 2, 3, 0, 1, -1, 1, &
1, -2, 1, 3, 0, 1, -1, 1, &
1, -2, 1, 3, -1, 1, 0, 1, &
2, -1, -1, 3, -1, 1, 0, 1, &
2, -1, -1, 3, -1, 0, 1, 1, &
1, 1, -2, 3, -1, 0, 1, 1, &
1, 1, -2, 3, 0, -1, 1, 1, &
-1, 2, -1, 3, 0, -1, 1, 1, &
-1, 2, -1, 3, 1, -1, 0, 1, &
-2, 1, 1, 3, 1, -1, 0, 1, &
! pyramidal system: c+a slip <11.3>{-1-1.2} -- as for hexagonal ice (Castelnau et al. 1996, similar to twin system found below)
2, -1, -1, 3, -2, 1, 1, 2, & ! sorted according to similar twin system
-1, 2, -1, 3, 1, -2, 1, 2, & ! <11.3>{-1-1.2} shear = 2((c/a)^2-2)/(3 c/a)
-1, -1, 2, 3, 1, 1, -2, 2, &
-2, 1, 1, 3, 2, -1, -1, 2, &
-1, -1, 2, 3, 1, 1, -2, 2, & ! <11.3>{-1-1.2} shear = 2((c/a)^2-2)/(3 c/a)
1, -2, 1, 3, -1, 2, -1, 2, &
1, 1, -2, 3, -1, -1, 2, 2 &
],pReal),shape(LATTICE_HEX_SYSTEMSLIP)) !< slip systems for hex sorted by A. Alankar & P. Eisenlohr
2, -1, -1, 3, -2, 1, 1, 2, &
1, 1, -2, 3, -1, -1, 2, 2, &
-1, 2, -1, 3, 1, -2, 1, 2, &
-2, 1, 1, 3, 2, -1, -1, 2 &
],pReal),shape(LATTICE_HEX_SYSTEMSLIP)) !< slip systems for hex, sorted by P. Eisenlohr CCW around <c> starting next to a_1 axis
character(len=*), dimension(6), parameter :: LATTICE_HEX_SLIPFAMILY_NAME = &
['<1 1 . 1>{0 0 . 1} ', &
'<1 1 . 1>{1 0 . 0} ', &
'<1 0 . 0>{1 1 . 0} ', &
'<1 1 . 0>{-1 1 . 1} ', &
['< 1 1 . 0>{ 0 0 . 1}', &
'< 1 1 . 0>{ 1 0 . 0}', &
'<-1 1 . 0>{ 1 1 . 0}', &
'< 1 1 . 0>{ 1 -1 . 1}', &
'< 1 1 . 3>{-1 0 . 1}', &
'< 1 1 . 3>{-1 -1 . 2}']
real(pReal), dimension(4+4,LATTICE_HEX_NTWIN), parameter :: &
LATTICE_HEX_SYSTEMTWIN = reshape(real([&
! Compression or Tension = f(twinning shear=f(c/a)) for each metal ! (according to Yoo 1981)
1, -1, 0, 1, -1, 1, 0, 2, & ! <-10.1>{10.2} shear = (3-(c/a)^2)/(sqrt(3) c/a)
-1, 0, 1, 1, 1, 0, -1, 2, &
-1, 0, 1, 1, 1, 0, -1, 2, & ! <-10.1>{10.2} shear = (3-(c/a)^2)/(sqrt(3) c/a)
0, -1, 1, 1, 0, 1, -1, 2, &
1, -1, 0, 1, -1, 1, 0, 2, &
1, 0, -1, 1, -1, 0, 1, 2, &
0, 1, -1, 1, 0, -1, 1, 2, &
-1, 1, 0, 1, 1, -1, 0, 2, &
1, 0, -1, 1, -1, 0, 1, 2, &
0, -1, 1, 1, 0, 1, -1, 2, &
!
2, -1, -1, 6, -2, 1, 1, 1, & ! <11.6>{-1-1.1} shear = 1/(c/a)
-1, 2, -1, 6, 1, -2, 1, 1, &
-1, -1, 2, 6, 1, 1, -2, 1, &
-2, 1, 1, 6, 2, -1, -1, 1, &
-1, -1, 2, 6, 1, 1, -2, 1, & ! <11.6>{-1-1.1} shear = 1/(c/a)
1, -2, 1, 6, -1, 2, -1, 1, &
2, -1, -1, 6, -2, 1, 1, 1, &
1, 1, -2, 6, -1, -1, 2, 1, &
-1, 2, -1, 6, 1, -2, 1, 1, &
-2, 1, 1, 6, 2, -1, -1, 1, &
!
-1, 1, 0, -2, -1, 1, 0, 1, & !! <10.-2>{10.1} shear = (4(c/a)^2-9)/(4 sqrt(3) c/a)
1, 0, -1, -2, 1, 0, -1, 1, &
1, 0, -1, -2, 1, 0, -1, 1, & ! <10.-2>{10.1} shear = (4(c/a)^2-9)/(4 sqrt(3) c/a)
0, 1, -1, -2, 0, 1, -1, 1, &
-1, 1, 0, -2, -1, 1, 0, 1, &
-1, 0, 1, -2, -1, 0, 1, 1, &
0, -1, 1, -2, 0, -1, 1, 1, &
1, -1, 0, -2, 1, -1, 0, 1, &
-1, 0, 1, -2, -1, 0, 1, 1, &
0, 1, -1, -2, 0, 1, -1, 1, &
!
2, -1, -1, -3, 2, -1, -1, 2, & ! <11.-3>{11.2} shear = 2((c/a)^2-2)/(3 c/a)
1, 1, -2, -3, 1, 1, -2, 2, & ! <11.-3>{11.2} shear = 2((c/a)^2-2)/(3 c/a)
-1, 2, -1, -3, -1, 2, -1, 2, &
-1, -1, 2, -3, -1, -1, 2, 2, &
-2, 1, 1, -3, -2, 1, 1, 2, &
-1, -1, 2, -3, -1, -1, 2, 2, &
1, -2, 1, -3, 1, -2, 1, 2, &
1, 1, -2, -3, 1, 1, -2, 2 &
],pReal),shape(LATTICE_HEX_SYSTEMTWIN)) !< twin systems for hex, order follows Prof. Tom Bieler's scheme
2, -1, -1, -3, 2, -1, -1, 2 &
],pReal),shape(LATTICE_HEX_SYSTEMTWIN)) !< twin systems for hex, sorted by P. Eisenlohr CCW around <c> starting next to a_1 axis
character(len=*), dimension(4), parameter :: LATTICE_HEX_TWINFAMILY_NAME = &
['<-1 0 . 1>{ 1 0 . 2}', &