Subdivide vertex data with geometry when converting Marc input to VTK
This commit is contained in:
parent
f0511e1ecb
commit
ceb0ff09e6
|
@ -1,7 +1,7 @@
|
|||
#!/usr/bin/env python2.7
|
||||
# -*- coding: UTF-8 no BOM -*-
|
||||
|
||||
import os,re
|
||||
import os,sys,re
|
||||
import argparse
|
||||
import damask
|
||||
import vtk, numpy as np
|
||||
|
@ -9,159 +9,191 @@ import vtk, numpy as np
|
|||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||
scriptID = ' '.join([scriptName, damask.version])
|
||||
|
||||
parser = argparse.ArgumentParser(description='Convert from Marc input file format to VTK', version = scriptID)
|
||||
parser.add_argument('filename', type=str, nargs='+', help='files to convert')
|
||||
parser = argparse.ArgumentParser(description='Convert from Marc input file format (.dat) to VTK format (.vtu)', version = scriptID)
|
||||
parser.add_argument('filename', type=str, help='file to convert')
|
||||
parser.add_argument('-t', '--table', type=str, help='ASCIItable file containing nodal data to subdivide and interpolate')
|
||||
|
||||
args = parser.parse_args()
|
||||
files = args.filename
|
||||
if type(files) is str:
|
||||
files = [files]
|
||||
|
||||
with open(args.filename, 'r') as marcfile:
|
||||
marctext = marcfile.read();
|
||||
|
||||
# Load table (if any)
|
||||
if args.table is not None:
|
||||
try:
|
||||
table = damask.ASCIItable(
|
||||
name=args.table,
|
||||
outname='subdivided_{}'.format(args.table),
|
||||
buffered=True
|
||||
)
|
||||
|
||||
table.head_read()
|
||||
table.data_readArray()
|
||||
|
||||
# Python list is faster for appending
|
||||
nodal_data = list(table.data)
|
||||
except: args.table = None
|
||||
|
||||
# Extract connectivity chunk from file...
|
||||
connectivity_text = re.findall(r'connectivity[\n\r]+(.*?)[\n\r]+[a-zA-Z]', marctext, flags=(re.MULTILINE | re.DOTALL))[0]
|
||||
connectivity_lines = re.split(r'[\n\r]+', connectivity_text, flags=(re.MULTILINE | re.DOTALL))
|
||||
connectivity_header = connectivity_lines[0]
|
||||
connectivity_lines = connectivity_lines[1:]
|
||||
|
||||
# Construct element map
|
||||
elements = dict(map(lambda line:
|
||||
(
|
||||
int(line[0:10]), # index
|
||||
{
|
||||
'type': int(line[10:20]),
|
||||
'verts': list(map(int, re.split(r' +', line[20:].strip())))
|
||||
}
|
||||
), connectivity_lines))
|
||||
|
||||
# Extract coordinate chunk from file
|
||||
coordinates_text = re.findall(r'coordinates[\n\r]+(.*?)[\n\r]+[a-zA-Z]', marctext, flags=(re.MULTILINE | re.DOTALL))[0]
|
||||
coordinates_lines = re.split(r'[\n\r]+', coordinates_text, flags=(re.MULTILINE | re.DOTALL))
|
||||
coordinates_header = coordinates_lines[0]
|
||||
coordinates_lines = coordinates_lines[1:]
|
||||
|
||||
# marc input file does not use "e" in scientific notation, this adds it and converts
|
||||
fl_format = lambda string: float(re.sub(r'(\d)([\+\-])', r'\1e\2', string))
|
||||
# Construct coordinate map
|
||||
coordinates = dict(map(lambda line:
|
||||
(
|
||||
int(line[0:10]),
|
||||
np.array([
|
||||
fl_format(line[10:30]),
|
||||
fl_format(line[30:50]),
|
||||
fl_format(line[50:70])
|
||||
])
|
||||
), coordinates_lines))
|
||||
|
||||
# Subdivide volumes
|
||||
grid = vtk.vtkUnstructuredGrid()
|
||||
vertex_count = len(coordinates)
|
||||
edge_to_vert = dict() # when edges are subdivided, a new vertex in the middle is produced and placed in here
|
||||
ordered_pair = lambda a, b: (a, b) if a < b else (b, a) # edges are bidirectional
|
||||
|
||||
def subdivide_edge(vert1, vert2):
|
||||
edge = ordered_pair(vert1, vert2)
|
||||
|
||||
if edge in edge_to_vert:
|
||||
return edge_to_vert[edge]
|
||||
|
||||
# Vertex does not exist, create it
|
||||
newvert = len(coordinates) + 1
|
||||
coordinates[newvert] = 0.5 * (coordinates[vert1] + coordinates[vert2]) # Average
|
||||
edge_to_vert[edge] = newvert;
|
||||
|
||||
# Interpolate nodal data
|
||||
if args.table is not None:
|
||||
nodal_data.append(0.5 * (nodal_data[vert1 - 1] + nodal_data[vert2 - 1]))
|
||||
return newvert;
|
||||
|
||||
for el_id in range(1, len(elements) + 1): # Marc starts counting at 1
|
||||
el = elements[el_id]
|
||||
if el['type'] == 7:
|
||||
# Hexahedron, subdivided
|
||||
|
||||
# There may be a better way to iterate over these, but this is consistent
|
||||
# with the ordering scheme provided at https://damask.mpie.de/pub/Documentation/ElementType
|
||||
|
||||
subverts = np.zeros((3,3,3), dtype=int)
|
||||
# Get corners
|
||||
subverts[0, 0, 0] = el['verts'][0]
|
||||
subverts[2, 0, 0] = el['verts'][1]
|
||||
subverts[2, 2, 0] = el['verts'][2]
|
||||
subverts[0, 2, 0] = el['verts'][3]
|
||||
subverts[0, 0, 2] = el['verts'][4]
|
||||
subverts[2, 0, 2] = el['verts'][5]
|
||||
subverts[2, 2, 2] = el['verts'][6]
|
||||
subverts[0, 2, 2] = el['verts'][7]
|
||||
|
||||
# lower edges
|
||||
subverts[1, 0, 0] = subdivide_edge(subverts[0, 0, 0], subverts[2, 0, 0])
|
||||
subverts[2, 1, 0] = subdivide_edge(subverts[2, 0, 0], subverts[2, 2, 0])
|
||||
subverts[1, 2, 0] = subdivide_edge(subverts[2, 2, 0], subverts[0, 2, 0])
|
||||
subverts[0, 1, 0] = subdivide_edge(subverts[0, 2, 0], subverts[0, 0, 0])
|
||||
|
||||
# middle edges
|
||||
subverts[0, 0, 1] = subdivide_edge(subverts[0, 0, 0], subverts[0, 0, 2])
|
||||
subverts[2, 0, 1] = subdivide_edge(subverts[2, 0, 0], subverts[2, 0, 2])
|
||||
subverts[2, 2, 1] = subdivide_edge(subverts[2, 2, 0], subverts[2, 2, 2])
|
||||
subverts[0, 2, 1] = subdivide_edge(subverts[0, 2, 0], subverts[0, 2, 2])
|
||||
|
||||
# top edges
|
||||
subverts[1, 0, 2] = subdivide_edge(subverts[0, 0, 2], subverts[2, 0, 2])
|
||||
subverts[2, 1, 2] = subdivide_edge(subverts[2, 0, 2], subverts[2, 2, 2])
|
||||
subverts[1, 2, 2] = subdivide_edge(subverts[2, 2, 2], subverts[0, 2, 2])
|
||||
subverts[0, 1, 2] = subdivide_edge(subverts[0, 2, 2], subverts[0, 0, 2])
|
||||
|
||||
# then faces... The edge_to_vert addition is due to there being two ways
|
||||
# to calculate a face vertex, depending on which opposite vertices are used to subdivide.
|
||||
# This way, we avoid creating duplicate vertices.
|
||||
subverts[1, 1, 0] = subdivide_edge(subverts[1, 0, 0], subverts[1, 2, 0])
|
||||
edge_to_vert[ordered_pair(subverts[0, 1, 0], subverts[2, 1, 0])] = subverts[1, 1, 0]
|
||||
|
||||
subverts[1, 0, 1] = subdivide_edge(subverts[1, 0, 0], subverts[1, 0, 2])
|
||||
edge_to_vert[ordered_pair(subverts[0, 0, 1], subverts[2, 0, 1])] = subverts[1, 0, 1]
|
||||
|
||||
subverts[2, 1, 1] = subdivide_edge(subverts[2, 1, 0], subverts[2, 1, 2])
|
||||
edge_to_vert[ordered_pair(subverts[2, 0, 1], subverts[2, 2, 1])] = subverts[2, 1, 1]
|
||||
|
||||
subverts[1, 2, 1] = subdivide_edge(subverts[1, 2, 0], subverts[1, 2, 2])
|
||||
edge_to_vert[ordered_pair(subverts[0, 2, 1], subverts[2, 2, 1])] = subverts[1, 2, 1]
|
||||
|
||||
subverts[0, 1, 1] = subdivide_edge(subverts[0, 1, 0], subverts[0, 1, 2])
|
||||
edge_to_vert[ordered_pair(subverts[0, 0, 1], subverts[0, 2, 1])] = subverts[0, 1, 1]
|
||||
|
||||
subverts[1, 1, 2] = subdivide_edge(subverts[1, 0, 2], subverts[1, 2, 2])
|
||||
edge_to_vert[ordered_pair(subverts[0, 1, 2], subverts[2, 1, 2])] = subverts[1, 1, 2]
|
||||
|
||||
# and finally the center. There are three ways to calculate, but elements should
|
||||
# not intersect, so the edge_to_vert part isn't needed here.
|
||||
subverts[1, 1, 1] = subdivide_edge(subverts[1, 1, 0], subverts[1, 1, 2])
|
||||
|
||||
|
||||
for f in files:
|
||||
with open(f, 'r') as marcfile:
|
||||
marctext = marcfile.read();
|
||||
# Extract connectivity chunk from file...
|
||||
connectivity_text = re.findall(r'connectivity[\n\r]+(.*?)[\n\r]+[a-zA-Z]', marctext, flags=(re.MULTILINE | re.DOTALL))[0]
|
||||
connectivity_lines = re.split(r'[\n\r]+', connectivity_text, flags=(re.MULTILINE | re.DOTALL))
|
||||
connectivity_header = connectivity_lines[0]
|
||||
connectivity_lines = connectivity_lines[1:]
|
||||
# Construct element map
|
||||
elements = dict(map(lambda line:
|
||||
(
|
||||
int(line[0:10]), # index
|
||||
{
|
||||
'type': int(line[10:20]),
|
||||
'verts': list(map(int, re.split(r' +', line[20:].strip())))
|
||||
}
|
||||
), connectivity_lines))
|
||||
# Extract coordinate chunk from file
|
||||
coordinates_text = re.findall(r'coordinates[\n\r]+(.*?)[\n\r]+[a-zA-Z]', marctext, flags=(re.MULTILINE | re.DOTALL))[0]
|
||||
coordinates_lines = re.split(r'[\n\r]+', coordinates_text, flags=(re.MULTILINE | re.DOTALL))
|
||||
coordinates_header = coordinates_lines[0]
|
||||
coordinates_lines = coordinates_lines[1:]
|
||||
# marc input file does not use "e" in scientific notation, this adds it and converts
|
||||
fl_format = lambda string: float(re.sub(r'(\d)([\+\-])', r'\1e\2', string))
|
||||
# Construct coordinate map
|
||||
coordinates = dict(map(lambda line:
|
||||
(
|
||||
int(line[0:10]),
|
||||
np.array([
|
||||
fl_format(line[10:30]),
|
||||
fl_format(line[30:50]),
|
||||
fl_format(line[50:70])
|
||||
])
|
||||
), coordinates_lines))
|
||||
# Now make the hexahedron subelements
|
||||
# order in which vtk expects vertices for a hexahedron
|
||||
order = np.array([(0,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,1),(1,0,1),(1,1,1),(0,1,1)])
|
||||
for z in range(2):
|
||||
for y in range(2):
|
||||
for x in range(2):
|
||||
hex_ = vtk.vtkHexahedron()
|
||||
for vert_id in range(8):
|
||||
coord = order[vert_id] + (x, y, z)
|
||||
# minus one, since vtk starts at zero but marc starts at one
|
||||
hex_.GetPointIds().SetId(vert_id, subverts[coord[0], coord[1], coord[2]] - 1)
|
||||
grid.InsertNextCell(hex_.GetCellType(), hex_.GetPointIds())
|
||||
|
||||
# Subdivide volumes
|
||||
grid = vtk.vtkUnstructuredGrid()
|
||||
vertex_count = len(coordinates)
|
||||
edge_to_vert = dict() # when edges are subdivided, a new vertex in the middle is produced and placed in here
|
||||
ordered_pair = lambda a, b: (a, b) if a < b else (b, a) # edges are bidirectional
|
||||
else:
|
||||
damask.util.croak('Unsupported Marc element type: {} (skipping)'.format(el['type']))
|
||||
|
||||
def subdivide_edge(vert1, vert2):
|
||||
edge = ordered_pair(vert1, vert2)
|
||||
# Load all points
|
||||
points = vtk.vtkPoints()
|
||||
for point in range(1, len(coordinates) + 1): # marc indices start at 1
|
||||
points.InsertNextPoint(coordinates[point].tolist())
|
||||
|
||||
if edge in edge_to_vert:
|
||||
return edge_to_vert[edge]
|
||||
grid.SetPoints(points)
|
||||
|
||||
newvert = len(coordinates) + 1
|
||||
coordinates[newvert] = 0.5 * (coordinates[vert1] + coordinates[vert2]) # Average
|
||||
edge_to_vert[edge] = newvert;
|
||||
return newvert;
|
||||
# grid now contains the elements from the given marc file
|
||||
writer = vtk.vtkXMLUnstructuredGridWriter()
|
||||
writer.SetFileName(re.sub(r'\..+', ".vtu", args.filename)) # *.vtk extension does not work in paraview
|
||||
|
||||
if vtk.VTK_MAJOR_VERSION <= 5: writer.SetInput(grid)
|
||||
else: writer.SetInputData(grid)
|
||||
writer.Write()
|
||||
|
||||
if args.table is not None:
|
||||
table.info_append([
|
||||
scriptID + ' ' + ' '.join(sys.argv[1:]),
|
||||
])
|
||||
table.head_write()
|
||||
table.output_flush()
|
||||
|
||||
for el_id in range(1, len(elements) + 1):
|
||||
el = elements[el_id]
|
||||
if el['type'] == 7:
|
||||
# Hexahedron, subdivided
|
||||
table.data = np.array(nodal_data)
|
||||
|
||||
# There may be a better way to iterate over these, but this is consistent
|
||||
# with the ordering scheme provided at https://damask.mpie.de/pub/Documentation/ElementType
|
||||
table.data_writeArray()
|
||||
|
||||
subverts = np.zeros((3,3,3), dtype=int)
|
||||
# Get corners
|
||||
subverts[0, 0, 0] = el['verts'][0]
|
||||
subverts[2, 0, 0] = el['verts'][1]
|
||||
subverts[2, 2, 0] = el['verts'][2]
|
||||
subverts[0, 2, 0] = el['verts'][3]
|
||||
subverts[0, 0, 2] = el['verts'][4]
|
||||
subverts[2, 0, 2] = el['verts'][5]
|
||||
subverts[2, 2, 2] = el['verts'][6]
|
||||
subverts[0, 2, 2] = el['verts'][7]
|
||||
|
||||
# lower edges
|
||||
subverts[1, 0, 0] = subdivide_edge(subverts[0, 0, 0], subverts[2, 0, 0])
|
||||
subverts[2, 1, 0] = subdivide_edge(subverts[2, 0, 0], subverts[2, 2, 0])
|
||||
subverts[1, 2, 0] = subdivide_edge(subverts[2, 2, 0], subverts[0, 2, 0])
|
||||
subverts[0, 1, 0] = subdivide_edge(subverts[0, 2, 0], subverts[0, 0, 0])
|
||||
|
||||
# middle edges
|
||||
subverts[0, 0, 1] = subdivide_edge(subverts[0, 0, 0], subverts[0, 0, 2])
|
||||
subverts[2, 0, 1] = subdivide_edge(subverts[2, 0, 0], subverts[2, 0, 2])
|
||||
subverts[2, 2, 1] = subdivide_edge(subverts[2, 2, 0], subverts[2, 2, 2])
|
||||
subverts[0, 2, 1] = subdivide_edge(subverts[0, 2, 0], subverts[0, 2, 2])
|
||||
|
||||
# top edges
|
||||
subverts[1, 0, 2] = subdivide_edge(subverts[0, 0, 2], subverts[2, 0, 2])
|
||||
subverts[2, 1, 2] = subdivide_edge(subverts[2, 0, 2], subverts[2, 2, 2])
|
||||
subverts[1, 2, 2] = subdivide_edge(subverts[2, 2, 2], subverts[0, 2, 2])
|
||||
subverts[0, 1, 2] = subdivide_edge(subverts[0, 2, 2], subverts[0, 0, 2])
|
||||
|
||||
# then faces... The edge_to_vert addition is due to there being two ways
|
||||
# to calculate a face, depending which opposite vertices are used to subdivide
|
||||
subverts[1, 1, 0] = subdivide_edge(subverts[1, 0, 0], subverts[1, 2, 0])
|
||||
edge_to_vert[ordered_pair(subverts[0, 1, 0], subverts[2, 1, 0])] = subverts[1, 1, 0]
|
||||
|
||||
subverts[1, 0, 1] = subdivide_edge(subverts[1, 0, 0], subverts[1, 0, 2])
|
||||
edge_to_vert[ordered_pair(subverts[0, 0, 1], subverts[2, 0, 1])] = subverts[1, 0, 1]
|
||||
|
||||
subverts[2, 1, 1] = subdivide_edge(subverts[2, 1, 0], subverts[2, 1, 2])
|
||||
edge_to_vert[ordered_pair(subverts[2, 0, 1], subverts[2, 2, 1])] = subverts[2, 1, 1]
|
||||
|
||||
subverts[1, 2, 1] = subdivide_edge(subverts[1, 2, 0], subverts[1, 2, 2])
|
||||
edge_to_vert[ordered_pair(subverts[0, 2, 1], subverts[2, 2, 1])] = subverts[1, 2, 1]
|
||||
|
||||
subverts[0, 1, 1] = subdivide_edge(subverts[0, 1, 0], subverts[0, 1, 2])
|
||||
edge_to_vert[ordered_pair(subverts[0, 0, 1], subverts[0, 2, 1])] = subverts[0, 1, 1]
|
||||
|
||||
subverts[1, 1, 2] = subdivide_edge(subverts[1, 0, 2], subverts[1, 2, 2])
|
||||
edge_to_vert[ordered_pair(subverts[0, 1, 2], subverts[2, 1, 2])] = subverts[1, 1, 2]
|
||||
|
||||
# and finally the center. There are three ways to calculate, but elements should
|
||||
# not intersect, so the edge_to_vert part isn't needed here.
|
||||
subverts[1, 1, 1] = subdivide_edge(subverts[1, 1, 0], subverts[1, 1, 2])
|
||||
|
||||
|
||||
# Now make the hexahedron subelements
|
||||
# order in which vtk expects vertices for a hexahedron
|
||||
order = np.array([(0,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,1),(1,0,1),(1,1,1),(0,1,1)])
|
||||
for z in range(2):
|
||||
for y in range(2):
|
||||
for x in range(2):
|
||||
hex_ = vtk.vtkHexahedron()
|
||||
for vert_id in range(8):
|
||||
coord = order[vert_id] + (x, y, z)
|
||||
hex_.GetPointIds().SetId(vert_id, subverts[coord[0], coord[1], coord[2]] - 1) # minus one, since vtk starts at zero but marc starts at one
|
||||
grid.InsertNextCell(hex_.GetCellType(), hex_.GetPointIds())
|
||||
|
||||
|
||||
else:
|
||||
damask.util.croak('Unsupported Marc element type: {} (skipping)'.format(el['type']))
|
||||
|
||||
# Load all points
|
||||
points = vtk.vtkPoints()
|
||||
for point in range(1, len(coordinates) + 1): # marc indices start at 1
|
||||
points.InsertNextPoint(coordinates[point].tolist())
|
||||
|
||||
grid.SetPoints(points)
|
||||
|
||||
# grid now contains the elements from the given marc file
|
||||
writer = vtk.vtkXMLUnstructuredGridWriter()
|
||||
writer.SetFileName(re.sub(r'\..+', ".vtu", f)) # *.vtk extension does not work in paraview
|
||||
#writer.SetCompressorTypeToZLib()
|
||||
|
||||
if vtk.VTK_MAJOR_VERSION <= 5: writer.SetInput(grid)
|
||||
else: writer.SetInputData(grid)
|
||||
writer.Write()
|
||||
table.close()
|
||||
|
|
Loading…
Reference in New Issue