Subdivide vertex data with geometry when converting Marc input to VTK

This commit is contained in:
Brendan Vande Kieft 2018-01-15 17:06:55 -05:00
parent f0511e1ecb
commit ceb0ff09e6
1 changed files with 181 additions and 149 deletions

View File

@ -1,7 +1,7 @@
#!/usr/bin/env python2.7 #!/usr/bin/env python2.7
# -*- coding: UTF-8 no BOM -*- # -*- coding: UTF-8 no BOM -*-
import os,re import os,sys,re
import argparse import argparse
import damask import damask
import vtk, numpy as np import vtk, numpy as np
@ -9,23 +9,37 @@ import vtk, numpy as np
scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName, damask.version]) scriptID = ' '.join([scriptName, damask.version])
parser = argparse.ArgumentParser(description='Convert from Marc input file format to VTK', version = scriptID) parser = argparse.ArgumentParser(description='Convert from Marc input file format (.dat) to VTK format (.vtu)', version = scriptID)
parser.add_argument('filename', type=str, nargs='+', help='files to convert') parser.add_argument('filename', type=str, help='file to convert')
parser.add_argument('-t', '--table', type=str, help='ASCIItable file containing nodal data to subdivide and interpolate')
args = parser.parse_args() args = parser.parse_args()
files = args.filename
if type(files) is str:
files = [files]
with open(args.filename, 'r') as marcfile:
for f in files:
with open(f, 'r') as marcfile:
marctext = marcfile.read(); marctext = marcfile.read();
# Load table (if any)
if args.table is not None:
try:
table = damask.ASCIItable(
name=args.table,
outname='subdivided_{}'.format(args.table),
buffered=True
)
table.head_read()
table.data_readArray()
# Python list is faster for appending
nodal_data = list(table.data)
except: args.table = None
# Extract connectivity chunk from file... # Extract connectivity chunk from file...
connectivity_text = re.findall(r'connectivity[\n\r]+(.*?)[\n\r]+[a-zA-Z]', marctext, flags=(re.MULTILINE | re.DOTALL))[0] connectivity_text = re.findall(r'connectivity[\n\r]+(.*?)[\n\r]+[a-zA-Z]', marctext, flags=(re.MULTILINE | re.DOTALL))[0]
connectivity_lines = re.split(r'[\n\r]+', connectivity_text, flags=(re.MULTILINE | re.DOTALL)) connectivity_lines = re.split(r'[\n\r]+', connectivity_text, flags=(re.MULTILINE | re.DOTALL))
connectivity_header = connectivity_lines[0] connectivity_header = connectivity_lines[0]
connectivity_lines = connectivity_lines[1:] connectivity_lines = connectivity_lines[1:]
# Construct element map # Construct element map
elements = dict(map(lambda line: elements = dict(map(lambda line:
( (
@ -35,11 +49,13 @@ for f in files:
'verts': list(map(int, re.split(r' +', line[20:].strip()))) 'verts': list(map(int, re.split(r' +', line[20:].strip())))
} }
), connectivity_lines)) ), connectivity_lines))
# Extract coordinate chunk from file # Extract coordinate chunk from file
coordinates_text = re.findall(r'coordinates[\n\r]+(.*?)[\n\r]+[a-zA-Z]', marctext, flags=(re.MULTILINE | re.DOTALL))[0] coordinates_text = re.findall(r'coordinates[\n\r]+(.*?)[\n\r]+[a-zA-Z]', marctext, flags=(re.MULTILINE | re.DOTALL))[0]
coordinates_lines = re.split(r'[\n\r]+', coordinates_text, flags=(re.MULTILINE | re.DOTALL)) coordinates_lines = re.split(r'[\n\r]+', coordinates_text, flags=(re.MULTILINE | re.DOTALL))
coordinates_header = coordinates_lines[0] coordinates_header = coordinates_lines[0]
coordinates_lines = coordinates_lines[1:] coordinates_lines = coordinates_lines[1:]
# marc input file does not use "e" in scientific notation, this adds it and converts # marc input file does not use "e" in scientific notation, this adds it and converts
fl_format = lambda string: float(re.sub(r'(\d)([\+\-])', r'\1e\2', string)) fl_format = lambda string: float(re.sub(r'(\d)([\+\-])', r'\1e\2', string))
# Construct coordinate map # Construct coordinate map
@ -65,14 +81,17 @@ for f in files:
if edge in edge_to_vert: if edge in edge_to_vert:
return edge_to_vert[edge] return edge_to_vert[edge]
# Vertex does not exist, create it
newvert = len(coordinates) + 1 newvert = len(coordinates) + 1
coordinates[newvert] = 0.5 * (coordinates[vert1] + coordinates[vert2]) # Average coordinates[newvert] = 0.5 * (coordinates[vert1] + coordinates[vert2]) # Average
edge_to_vert[edge] = newvert; edge_to_vert[edge] = newvert;
# Interpolate nodal data
if args.table is not None:
nodal_data.append(0.5 * (nodal_data[vert1 - 1] + nodal_data[vert2 - 1]))
return newvert; return newvert;
for el_id in range(1, len(elements) + 1): # Marc starts counting at 1
for el_id in range(1, len(elements) + 1):
el = elements[el_id] el = elements[el_id]
if el['type'] == 7: if el['type'] == 7:
# Hexahedron, subdivided # Hexahedron, subdivided
@ -110,7 +129,8 @@ for f in files:
subverts[0, 1, 2] = subdivide_edge(subverts[0, 2, 2], subverts[0, 0, 2]) subverts[0, 1, 2] = subdivide_edge(subverts[0, 2, 2], subverts[0, 0, 2])
# then faces... The edge_to_vert addition is due to there being two ways # then faces... The edge_to_vert addition is due to there being two ways
# to calculate a face, depending which opposite vertices are used to subdivide # to calculate a face vertex, depending on which opposite vertices are used to subdivide.
# This way, we avoid creating duplicate vertices.
subverts[1, 1, 0] = subdivide_edge(subverts[1, 0, 0], subverts[1, 2, 0]) subverts[1, 1, 0] = subdivide_edge(subverts[1, 0, 0], subverts[1, 2, 0])
edge_to_vert[ordered_pair(subverts[0, 1, 0], subverts[2, 1, 0])] = subverts[1, 1, 0] edge_to_vert[ordered_pair(subverts[0, 1, 0], subverts[2, 1, 0])] = subverts[1, 1, 0]
@ -143,10 +163,10 @@ for f in files:
hex_ = vtk.vtkHexahedron() hex_ = vtk.vtkHexahedron()
for vert_id in range(8): for vert_id in range(8):
coord = order[vert_id] + (x, y, z) coord = order[vert_id] + (x, y, z)
hex_.GetPointIds().SetId(vert_id, subverts[coord[0], coord[1], coord[2]] - 1) # minus one, since vtk starts at zero but marc starts at one # minus one, since vtk starts at zero but marc starts at one
hex_.GetPointIds().SetId(vert_id, subverts[coord[0], coord[1], coord[2]] - 1)
grid.InsertNextCell(hex_.GetCellType(), hex_.GetPointIds()) grid.InsertNextCell(hex_.GetCellType(), hex_.GetPointIds())
else: else:
damask.util.croak('Unsupported Marc element type: {} (skipping)'.format(el['type'])) damask.util.croak('Unsupported Marc element type: {} (skipping)'.format(el['type']))
@ -159,9 +179,21 @@ for f in files:
# grid now contains the elements from the given marc file # grid now contains the elements from the given marc file
writer = vtk.vtkXMLUnstructuredGridWriter() writer = vtk.vtkXMLUnstructuredGridWriter()
writer.SetFileName(re.sub(r'\..+', ".vtu", f)) # *.vtk extension does not work in paraview writer.SetFileName(re.sub(r'\..+', ".vtu", args.filename)) # *.vtk extension does not work in paraview
#writer.SetCompressorTypeToZLib()
if vtk.VTK_MAJOR_VERSION <= 5: writer.SetInput(grid) if vtk.VTK_MAJOR_VERSION <= 5: writer.SetInput(grid)
else: writer.SetInputData(grid) else: writer.SetInputData(grid)
writer.Write() writer.Write()
if args.table is not None:
table.info_append([
scriptID + ' ' + ' '.join(sys.argv[1:]),
])
table.head_write()
table.output_flush()
table.data = np.array(nodal_data)
table.data_writeArray()
table.close()