common variable names

This commit is contained in:
Martin Diehl 2020-04-29 14:42:21 +02:00
parent 9671a632b5
commit ce9bdc50a4
2 changed files with 38 additions and 38 deletions

View File

@ -1057,15 +1057,15 @@ class Rotation:
""" """
if len(ho.shape) == 1: if len(ho.shape) == 1:
ball_ = ho/np.linalg.norm(ho)*_R1 if np.isclose(np.linalg.norm(ho),_R1,atol=1e-6) \ ho_ = ho/np.linalg.norm(ho)*_R1 if np.isclose(np.linalg.norm(ho),_R1,atol=1e-6) \
else ho else ho
rs = np.linalg.norm(ball_) rs = np.linalg.norm(ho_)
if np.allclose(ball_,0.0,rtol=0.0,atol=1.0e-16): if np.allclose(ho_,0.0,rtol=0.0,atol=1.0e-16):
cube = np.zeros(3) cu = np.zeros(3)
else: else:
p = _get_order(ball_) p = _get_order(ho_)
xyz3 = ball_[p[0]] xyz3 = ho_[p[0]]
# inverse M_3 # inverse M_3
xyz2 = xyz3[0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[2])) ) xyz2 = xyz3[0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[2])) )
@ -1085,11 +1085,11 @@ class Rotation:
Tinv = q * np.where(xyz2<0.0,-Tinv,Tinv) Tinv = q * np.where(xyz2<0.0,-Tinv,Tinv)
# inverse M_1 # inverse M_1
cube = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /_sc cu = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /_sc
# reverse the coordinates back to the regular order according to the original pyramid number # reverse the coordinates back to the regular order according to the original pyramid number
cube = cube[p[1]] cu = cu[p[1]]
return cube return cu
else: else:
raise NotImplementedError raise NotImplementedError
@ -1133,20 +1133,20 @@ class Rotation:
""" """
if len(cu.shape) == 1: if len(cu.shape) == 1:
cube_ = np.clip(cu,None,np.pi**(2./3.) * 0.5) if np.isclose(np.abs(np.max(cu)),np.pi**(2./3.) * 0.5,atol=1e-6) \ cu_ = np.clip(cu,None,np.pi**(2./3.) * 0.5) if np.isclose(np.abs(np.max(cu)),np.pi**(2./3.) * 0.5,atol=1e-6) \
else cu else cu
# transform to the sphere grid via the curved square, and intercept the zero point # transform to the sphere grid via the curved square, and intercept the zero point
if np.allclose(cube_,0.0,rtol=0.0,atol=1.0e-16): if np.allclose(cu_,0.0,rtol=0.0,atol=1.0e-16):
ball = np.zeros(3) ho = np.zeros(3)
else: else:
# get pyramide and scale by grid parameter ratio # get pyramide and scale by grid parameter ratio
p = _get_order(cube_) p = _get_order(cu_)
XYZ = cube_[p[0]] * _sc XYZ = cu_[p[0]] * _sc
# intercept all the points along the z-axis # intercept all the points along the z-axis
if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-16): if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-16):
ball = np.array([0.0, 0.0, np.sqrt(6.0/np.pi) * XYZ[2]]) ho = np.array([0.0, 0.0, np.sqrt(6.0/np.pi) * XYZ[2]])
else: else:
order = [1,0] if np.abs(XYZ[1]) <= np.abs(XYZ[0]) else [0,1] order = [1,0] if np.abs(XYZ[1]) <= np.abs(XYZ[0]) else [0,1]
q = np.pi/12.0 * XYZ[order[0]]/XYZ[order[1]] q = np.pi/12.0 * XYZ[order[0]]/XYZ[order[1]]
@ -1161,12 +1161,12 @@ class Rotation:
s = c * np.pi/24.0 /XYZ[2]**2 s = c * np.pi/24.0 /XYZ[2]**2
c = c * np.sqrt(np.pi/24.0)/XYZ[2] c = c * np.sqrt(np.pi/24.0)/XYZ[2]
q = np.sqrt( 1.0 - s ) q = np.sqrt( 1.0 - s )
ball = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ]) ho = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ])
# reverse the coordinates back to the regular order according to the original pyramid number # reverse the coordinates back to the regular order according to the original pyramid number
ball = ball[p[1]] ho = ho[p[1]]
return ball return ho
else: else:
raise NotImplementedError raise NotImplementedError

View File

@ -1233,28 +1233,28 @@ end function cu2ho
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief map from 3D cubic grid to 3D ball !> @brief map from 3D cubic grid to 3D ball
!-------------------------------------------------------------------------- !--------------------------------------------------------------------------
pure function Lambert_CubeToBall(cube) result(ball) pure function Lambert_CubeToBall(cu) result(ho)
real(pReal), intent(in), dimension(3) :: cube real(pReal), intent(in), dimension(3) :: cu
real(pReal), dimension(3) :: ball, LamXYZ, XYZ real(pReal), dimension(3) :: ho, LamXYZ, XYZ
real(pReal), dimension(2) :: T real(pReal), dimension(2) :: T
real(pReal) :: c, s, q real(pReal) :: c, s, q
real(pReal), parameter :: eps = 1.0e-8_pReal real(pReal), parameter :: eps = 1.0e-8_pReal
integer, dimension(3,2) :: p integer, dimension(3,2) :: p
integer, dimension(2) :: order integer, dimension(2) :: order
if (maxval(abs(cube)) > AP/2.0+eps) then if (maxval(abs(cu)) > AP/2.0+eps) then
ball = IEEE_value(cube,IEEE_positive_inf) ho = IEEE_value(cu,IEEE_positive_inf)
return return
end if end if
! transform to the sphere grid via the curved square, and intercept the zero point ! transform to the sphere grid via the curved square, and intercept the zero point
center: if (all(dEq0(cube))) then center: if (all(dEq0(cu))) then
ball = 0.0_pReal ho = 0.0_pReal
else center else center
! get pyramide and scale by grid parameter ratio ! get pyramide and scale by grid parameter ratio
p = GetPyramidOrder(cube) p = GetPyramidOrder(cu)
XYZ = cube(p(:,1)) * sc XYZ = cu(p(:,1)) * sc
! intercept all the points along the z-axis ! intercept all the points along the z-axis
special: if (all(dEq0(XYZ(1:2)))) then special: if (all(dEq0(XYZ(1:2)))) then
@ -1277,7 +1277,7 @@ pure function Lambert_CubeToBall(cube) result(ball)
endif special endif special
! reverse the coordinates back to order according to the original pyramid number ! reverse the coordinates back to order according to the original pyramid number
ball = LamXYZ(p(:,2)) ho = LamXYZ(p(:,2))
endif center endif center
@ -1289,25 +1289,25 @@ end function Lambert_CubeToBall
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief map from 3D ball to 3D cubic grid !> @brief map from 3D ball to 3D cubic grid
!-------------------------------------------------------------------------- !--------------------------------------------------------------------------
pure function Lambert_BallToCube(xyz) result(cube) pure function Lambert_BallToCube(ho) result(cu)
real(pReal), intent(in), dimension(3) :: xyz real(pReal), intent(in), dimension(3) :: ho
real(pReal), dimension(3) :: cube, xyz1, xyz3 real(pReal), dimension(3) :: cu, xyz1, xyz3
real(pReal), dimension(2) :: Tinv, xyz2 real(pReal), dimension(2) :: Tinv, xyz2
real(pReal) :: rs, qxy, q2, sq2, q, tt real(pReal) :: rs, qxy, q2, sq2, q, tt
integer, dimension(3,2) :: p integer, dimension(3,2) :: p
rs = norm2(xyz) rs = norm2(ho)
if (rs > R1+1.e-6_pReal) then if (rs > R1+1.e-6_pReal) then
cube = IEEE_value(cube,IEEE_positive_inf) cu = IEEE_value(cu,IEEE_positive_inf)
return return
endif endif
center: if (all(dEq0(xyz))) then center: if (all(dEq0(ho))) then
cube = 0.0_pReal cu = 0.0_pReal
else center else center
p = GetPyramidOrder(xyz) p = GetPyramidOrder(ho)
xyz3 = xyz(p(:,1)) xyz3 = ho(p(:,1))
! inverse M_3 ! inverse M_3
xyz2 = xyz3(1:2) * sqrt( 2.0*rs/(rs+abs(xyz3(3))) ) xyz2 = xyz3(1:2) * sqrt( 2.0*rs/(rs+abs(xyz3(3))) )
@ -1331,7 +1331,7 @@ pure function Lambert_BallToCube(xyz) result(cube)
xyz1 = [ Tinv(1), Tinv(2), sign(1.0_pReal,xyz3(3)) * rs / pref ] /sc xyz1 = [ Tinv(1), Tinv(2), sign(1.0_pReal,xyz3(3)) * rs / pref ] /sc
! reverse the coordinates back to order according to the original pyramid number ! reverse the coordinates back to order according to the original pyramid number
cube = xyz1(p(:,2)) cu = xyz1(p(:,2))
endif center endif center