common variable names
This commit is contained in:
parent
9671a632b5
commit
ce9bdc50a4
|
@ -1057,15 +1057,15 @@ class Rotation:
|
|||
|
||||
"""
|
||||
if len(ho.shape) == 1:
|
||||
ball_ = ho/np.linalg.norm(ho)*_R1 if np.isclose(np.linalg.norm(ho),_R1,atol=1e-6) \
|
||||
ho_ = ho/np.linalg.norm(ho)*_R1 if np.isclose(np.linalg.norm(ho),_R1,atol=1e-6) \
|
||||
else ho
|
||||
rs = np.linalg.norm(ball_)
|
||||
rs = np.linalg.norm(ho_)
|
||||
|
||||
if np.allclose(ball_,0.0,rtol=0.0,atol=1.0e-16):
|
||||
cube = np.zeros(3)
|
||||
if np.allclose(ho_,0.0,rtol=0.0,atol=1.0e-16):
|
||||
cu = np.zeros(3)
|
||||
else:
|
||||
p = _get_order(ball_)
|
||||
xyz3 = ball_[p[0]]
|
||||
p = _get_order(ho_)
|
||||
xyz3 = ho_[p[0]]
|
||||
|
||||
# inverse M_3
|
||||
xyz2 = xyz3[0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[2])) )
|
||||
|
@ -1085,11 +1085,11 @@ class Rotation:
|
|||
Tinv = q * np.where(xyz2<0.0,-Tinv,Tinv)
|
||||
|
||||
# inverse M_1
|
||||
cube = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /_sc
|
||||
cu = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /_sc
|
||||
# reverse the coordinates back to the regular order according to the original pyramid number
|
||||
cube = cube[p[1]]
|
||||
cu = cu[p[1]]
|
||||
|
||||
return cube
|
||||
return cu
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
@ -1133,20 +1133,20 @@ class Rotation:
|
|||
"""
|
||||
if len(cu.shape) == 1:
|
||||
|
||||
cube_ = np.clip(cu,None,np.pi**(2./3.) * 0.5) if np.isclose(np.abs(np.max(cu)),np.pi**(2./3.) * 0.5,atol=1e-6) \
|
||||
cu_ = np.clip(cu,None,np.pi**(2./3.) * 0.5) if np.isclose(np.abs(np.max(cu)),np.pi**(2./3.) * 0.5,atol=1e-6) \
|
||||
else cu
|
||||
|
||||
# transform to the sphere grid via the curved square, and intercept the zero point
|
||||
if np.allclose(cube_,0.0,rtol=0.0,atol=1.0e-16):
|
||||
ball = np.zeros(3)
|
||||
if np.allclose(cu_,0.0,rtol=0.0,atol=1.0e-16):
|
||||
ho = np.zeros(3)
|
||||
else:
|
||||
# get pyramide and scale by grid parameter ratio
|
||||
p = _get_order(cube_)
|
||||
XYZ = cube_[p[0]] * _sc
|
||||
p = _get_order(cu_)
|
||||
XYZ = cu_[p[0]] * _sc
|
||||
|
||||
# intercept all the points along the z-axis
|
||||
if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-16):
|
||||
ball = np.array([0.0, 0.0, np.sqrt(6.0/np.pi) * XYZ[2]])
|
||||
ho = np.array([0.0, 0.0, np.sqrt(6.0/np.pi) * XYZ[2]])
|
||||
else:
|
||||
order = [1,0] if np.abs(XYZ[1]) <= np.abs(XYZ[0]) else [0,1]
|
||||
q = np.pi/12.0 * XYZ[order[0]]/XYZ[order[1]]
|
||||
|
@ -1161,12 +1161,12 @@ class Rotation:
|
|||
s = c * np.pi/24.0 /XYZ[2]**2
|
||||
c = c * np.sqrt(np.pi/24.0)/XYZ[2]
|
||||
q = np.sqrt( 1.0 - s )
|
||||
ball = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ])
|
||||
ho = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ])
|
||||
|
||||
# reverse the coordinates back to the regular order according to the original pyramid number
|
||||
ball = ball[p[1]]
|
||||
ho = ho[p[1]]
|
||||
|
||||
return ball
|
||||
return ho
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
|
|
@ -1233,28 +1233,28 @@ end function cu2ho
|
|||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief map from 3D cubic grid to 3D ball
|
||||
!--------------------------------------------------------------------------
|
||||
pure function Lambert_CubeToBall(cube) result(ball)
|
||||
pure function Lambert_CubeToBall(cu) result(ho)
|
||||
|
||||
real(pReal), intent(in), dimension(3) :: cube
|
||||
real(pReal), dimension(3) :: ball, LamXYZ, XYZ
|
||||
real(pReal), intent(in), dimension(3) :: cu
|
||||
real(pReal), dimension(3) :: ho, LamXYZ, XYZ
|
||||
real(pReal), dimension(2) :: T
|
||||
real(pReal) :: c, s, q
|
||||
real(pReal), parameter :: eps = 1.0e-8_pReal
|
||||
integer, dimension(3,2) :: p
|
||||
integer, dimension(2) :: order
|
||||
|
||||
if (maxval(abs(cube)) > AP/2.0+eps) then
|
||||
ball = IEEE_value(cube,IEEE_positive_inf)
|
||||
if (maxval(abs(cu)) > AP/2.0+eps) then
|
||||
ho = IEEE_value(cu,IEEE_positive_inf)
|
||||
return
|
||||
end if
|
||||
|
||||
! transform to the sphere grid via the curved square, and intercept the zero point
|
||||
center: if (all(dEq0(cube))) then
|
||||
ball = 0.0_pReal
|
||||
center: if (all(dEq0(cu))) then
|
||||
ho = 0.0_pReal
|
||||
else center
|
||||
! get pyramide and scale by grid parameter ratio
|
||||
p = GetPyramidOrder(cube)
|
||||
XYZ = cube(p(:,1)) * sc
|
||||
p = GetPyramidOrder(cu)
|
||||
XYZ = cu(p(:,1)) * sc
|
||||
|
||||
! intercept all the points along the z-axis
|
||||
special: if (all(dEq0(XYZ(1:2)))) then
|
||||
|
@ -1277,7 +1277,7 @@ pure function Lambert_CubeToBall(cube) result(ball)
|
|||
endif special
|
||||
|
||||
! reverse the coordinates back to order according to the original pyramid number
|
||||
ball = LamXYZ(p(:,2))
|
||||
ho = LamXYZ(p(:,2))
|
||||
|
||||
endif center
|
||||
|
||||
|
@ -1289,25 +1289,25 @@ end function Lambert_CubeToBall
|
|||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief map from 3D ball to 3D cubic grid
|
||||
!--------------------------------------------------------------------------
|
||||
pure function Lambert_BallToCube(xyz) result(cube)
|
||||
pure function Lambert_BallToCube(ho) result(cu)
|
||||
|
||||
real(pReal), intent(in), dimension(3) :: xyz
|
||||
real(pReal), dimension(3) :: cube, xyz1, xyz3
|
||||
real(pReal), intent(in), dimension(3) :: ho
|
||||
real(pReal), dimension(3) :: cu, xyz1, xyz3
|
||||
real(pReal), dimension(2) :: Tinv, xyz2
|
||||
real(pReal) :: rs, qxy, q2, sq2, q, tt
|
||||
integer, dimension(3,2) :: p
|
||||
|
||||
rs = norm2(xyz)
|
||||
rs = norm2(ho)
|
||||
if (rs > R1+1.e-6_pReal) then
|
||||
cube = IEEE_value(cube,IEEE_positive_inf)
|
||||
cu = IEEE_value(cu,IEEE_positive_inf)
|
||||
return
|
||||
endif
|
||||
|
||||
center: if (all(dEq0(xyz))) then
|
||||
cube = 0.0_pReal
|
||||
center: if (all(dEq0(ho))) then
|
||||
cu = 0.0_pReal
|
||||
else center
|
||||
p = GetPyramidOrder(xyz)
|
||||
xyz3 = xyz(p(:,1))
|
||||
p = GetPyramidOrder(ho)
|
||||
xyz3 = ho(p(:,1))
|
||||
|
||||
! inverse M_3
|
||||
xyz2 = xyz3(1:2) * sqrt( 2.0*rs/(rs+abs(xyz3(3))) )
|
||||
|
@ -1331,7 +1331,7 @@ pure function Lambert_BallToCube(xyz) result(cube)
|
|||
xyz1 = [ Tinv(1), Tinv(2), sign(1.0_pReal,xyz3(3)) * rs / pref ] /sc
|
||||
|
||||
! reverse the coordinates back to order according to the original pyramid number
|
||||
cube = xyz1(p(:,2))
|
||||
cu = xyz1(p(:,2))
|
||||
|
||||
endif center
|
||||
|
||||
|
|
Loading…
Reference in New Issue