1. Change yieldStress from 'list' to 'numpy.arrary', thanks to Martin's suggestion (3907);

2. Change '3*3' Cauchy stress tensor to '1*6', now the number of input 'xdata' for fitting is 6*Points, which is less than the former 9*Points.
This commit is contained in:
Haiming Zhang 2015-02-06 13:48:14 +00:00
parent 0b3205a24b
commit ce09e992cc
1 changed files with 31 additions and 27 deletions

View File

@ -33,7 +33,7 @@ def principalStresses(sigmas):
''' '''
lambdas=np.zeros(0,'d') lambdas=np.zeros(0,'d')
for i in xrange(np.shape(sigmas)[1]): for i in xrange(np.shape(sigmas)[1]):
eigenvalues = np.linalg.eigvalsh(np.array(sigmas[:,i]).reshape(3,3)) eigenvalues = np.linalg.eigvalsh(sym6to33(sigmas[:,i]))
lambdas = np.append(lambdas,np.sort(eigenvalues)[::-1]) #append eigenvalues in descending order lambdas = np.append(lambdas,np.sort(eigenvalues)[::-1]) #append eigenvalues in descending order
lambdas = np.transpose(lambdas.reshape(np.shape(sigmas)[1],3)) lambdas = np.transpose(lambdas.reshape(np.shape(sigmas)[1],3))
return lambdas return lambdas
@ -54,6 +54,15 @@ def stressInvariants(lambdas):
def formatOutput(n, type='%-14.6f'): def formatOutput(n, type='%-14.6f'):
return ''.join([type for i in xrange(n)]) return ''.join([type for i in xrange(n)])
def sym6to33(sigma6):
''' Shape the symmetric stress tensor(6,1) into (3,3) '''
sigma33 = np.empty((3,3))
sigma33[0,0] = sigma6[0]; sigma33[1,1] = sigma6[1]; sigma33[2,2] = sigma6[2];
sigma33[0,1] = sigma6[3]; sigma33[1,0] = sigma6[3]
sigma33[1,2] = sigma6[4]; sigma33[2,1] = sigma6[4]
sigma33[2,0] = sigma6[5]; sigma33[0,2] = sigma6[5]
return sigma33
def array2tuple(array): def array2tuple(array):
'''transform numpy.array into tuple''' '''transform numpy.array into tuple'''
try: try:
@ -125,12 +134,12 @@ def Hill1948(sigmas, F,G,H,L,M,N):
''' '''
residuum of Hill 1948 quadratic yield criterion (eq. 2.48) residuum of Hill 1948 quadratic yield criterion (eq. 2.48)
''' '''
r = F*(sigmas[4]-sigmas[8])**2.0\ r = F*(sigmas[1]-sigmas[2])**2.0\
+ G*(sigmas[8]-sigmas[0])**2.0\ + G*(sigmas[2]-sigmas[0])**2.0\
+ H*(sigmas[0]-sigmas[4])**2.0\ + H*(sigmas[0]-sigmas[1])**2.0\
+ 2.0*L* sigmas[5]**2.0\ + 2.0*L* sigmas[4]**2.0\
+ 2.0*M* sigmas[2]**2.0\ + 2.0*M* sigmas[5]**2.0\
+ 2.0*N* sigmas[1]**2.0\ + 2.0*N* sigmas[3]**2.0\
- 1.0 - 1.0
return r.ravel()/2.0 return r.ravel()/2.0
@ -156,12 +165,13 @@ def Barlat1991(sigmas, sigma0, order, \
residuum of Barlat 1997 yield criterion residuum of Barlat 1997 yield criterion
''' '''
cos = np.cos; pi = np.pi; abs = np.abs cos = np.cos; pi = np.pi; abs = np.abs
A = a*(sigmas[4] - sigmas[8]) A = a*(sigmas[1] - sigmas[2])
B = b*(sigmas[8] - sigmas[0]) B = b*(sigmas[2] - sigmas[0])
C = c*(sigmas[0] - sigmas[4]) C = c*(sigmas[0] - sigmas[1])
F = f*sigmas[5] F = f*sigmas[4]
G = g*sigmas[2] G = g*sigmas[5]
H = h*sigmas[1] H = h*sigmas[3]
I2 = (F*F + G*G + H*H)/3.0 + ((A-C)*(A-C)+(C-B)*(C-B)+(B-A)*(B-A))/54.0 I2 = (F*F + G*G + H*H)/3.0 + ((A-C)*(A-C)+(C-B)*(C-B)+(B-A)*(B-A))/54.0
I3 = (C-B)*(A-C)*(B-A)/54.0 + F*G*H - \ I3 = (C-B)*(A-C)*(B-A)/54.0 + F*G*H - \
((C-B)*F*F+(A-C)*G*G+(B-A)*H*H)/6 ((C-B)*F*F+(A-C)*G*G+(B-A)*H*H)/6
@ -398,23 +408,17 @@ def doSim(delay,thread):
line = 0 line = 0
lines = np.shape(table.data)[0] lines = np.shape(table.data)[0]
yieldStress=[None for i in xrange(int(options.yieldValue[2]))] yieldStress = np.empty((int(options.yieldValue[2]),6),'d')
#yieldStress=np.array([int(options.yieldValue[2],3,3),'d']
for i,threshold in enumerate(np.linspace(options.yieldValue[0],options.yieldValue[1],options.yieldValue[2])): for i,threshold in enumerate(np.linspace(options.yieldValue[0],options.yieldValue[1],options.yieldValue[2])):
while line < lines: while line < lines:
if table.data[line,9]>= threshold: if table.data[line,9]>= threshold:
upper,lower = table.data[line,9],table.data[line-1,9] # values for linear interpolation upper,lower = table.data[line,9],table.data[line-1,9] # values for linear interpolation
yieldStress[i] = table.data[line-1,0:9] * (upper-threshold)/(upper-lower) \ stress = np.array(table.data[line-1,0:9] * (upper-threshold)/(upper-lower) + \
+ table.data[line ,0:9] * (threshold-lower)/(upper-lower) # linear interpolation of stress values table.data[line ,0:9] * (threshold-lower)/(upper-lower)).reshape(3,3) # linear interpolation of stress values
#yieldStress[i,:,:] = np.array(data[line-1,0:9] * (upper-threshold)/(upper-lower) \ yieldStress[i,0]= stress[0,0]; yieldStress[i,1]=stress[1,1]; yieldStress[i,2]=stress[2,2]
# + table.data[line ,0:9] * (threshold-lower)/(upper-lower)).reshape(3,3) # linear interpolation of stress values yieldStress[i,3]=(stress[0,1] + stress[1,0])/2.0 # 0 3 5
# yieldStress[i,:,:]=0.5*(yieldStress[i,:,:]+np.transpose(yieldStress[i,:,:]) #symmetrize yieldStress[i,4]=(stress[1,2] + stress[2,1])/2.0 # * 1 4 yieldStress
yieldStress[i][1] = (yieldStress[i][1] + yieldStress[i][3])/2.0 yieldStress[i,5]=(stress[2,0] + stress[0,2])/2.0 # * * 2
yieldStress[i][2] = (yieldStress[i][2] + yieldStress[i][6])/2.0
yieldStress[i][5] = (yieldStress[i][5] + yieldStress[i][7])/2.0
yieldStress[i][3] = yieldStress[i][1]
yieldStress[i][6] = yieldStress[i][2]
yieldStress[i][7] = yieldStress[i][5]
break break
else: else:
line+=1 line+=1
@ -426,7 +430,7 @@ def doSim(delay,thread):
try: try:
for i in xrange(int(options.yieldValue[2])): for i in xrange(int(options.yieldValue[2])):
stressAll[i]=np.append(yieldStress[i]/unitGPa,stressAll[i]) stressAll[i]=np.append(yieldStress[i]/unitGPa,stressAll[i])
myFit.fit(stressAll[i].reshape(len(stressAll[i])//9,9).transpose()) myFit.fit(stressAll[i].reshape(len(stressAll[i])//6,6).transpose())
except Exception as detail: except Exception as detail:
print('could not fit for sim %i from %s'%(me,thread)) print('could not fit for sim %i from %s'%(me,thread))
print detail print detail