added options for laguerrre tessellation
This commit is contained in:
parent
58b3d017bd
commit
ce0675f359
|
@ -30,6 +30,45 @@ def meshgrid2(*arrs):
|
|||
ans.insert(0,arr2)
|
||||
return tuple(ans)
|
||||
|
||||
def laguerreTessellation(undeformed, coords):
|
||||
bestdist = np.ones(len(undeformed)) * np.finfo('d').max
|
||||
bestseed = np.zeros(len(undeformed))
|
||||
|
||||
for i,seed in enumerate(coords):
|
||||
for copy in np.array([[1, 0, 0, ],
|
||||
[0, 1, 0, ],
|
||||
[0, 0, 1, ],
|
||||
[-1, 0, 0, ],
|
||||
[0, -1, 0, ],
|
||||
[0, 0, -1, ],
|
||||
[1, 1, 0, ],
|
||||
[1, 0, 1, ],
|
||||
[0, 1, 1, ],
|
||||
[-1, 1, 0, ],
|
||||
[-1, 0, 1, ],
|
||||
[0, -1, 1, ],
|
||||
[-1, -1, 0, ],
|
||||
[-1, 0, -1, ],
|
||||
[0, -1, -1, ],
|
||||
[1, -1, 0, ],
|
||||
[1, 0, -1, ],
|
||||
[0, 1, -1, ],
|
||||
[1, 1, 1, ],
|
||||
[-1, 1, 1, ],
|
||||
[1, -1, 1, ],
|
||||
[1, 1, -1, ],
|
||||
[-1, -1, -1, ],
|
||||
[1, -1, -1, ],
|
||||
[-1, 1, -1, ],
|
||||
[-1, -1, 1, ]]).astype(float):
|
||||
|
||||
diff = undeformed - np.repeat((seed+info['size']*copy).reshape(3,1),len(undeformed),axis=1).T
|
||||
dist = np.sum(diff*diff,axis=1) - weights[i]
|
||||
|
||||
bestseed = np.where(dist < bestdist, np.ones(len(undeformed))*(i+1),bestseed)
|
||||
bestdist = np.where(dist < bestdist, dist,bestdist)
|
||||
return bestseed
|
||||
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
|
@ -68,6 +107,9 @@ parser.add_option('-c', '--configuration', dest='config', action='store_true',
|
|||
help='output material configuration [%default]')
|
||||
parser.add_option('--secondphase', type='float', dest='secondphase', metavar= 'float',
|
||||
help='volume fraction of randomly distribute second phase [%default]')
|
||||
parser.add_option('--laguerre', dest='laguerre', action='store_true',
|
||||
help='for weighted voronoi (Laguerre) tessellation [%default]')
|
||||
|
||||
|
||||
parser.set_defaults(grid = (0,0,0))
|
||||
parser.set_defaults(size = (0.0,0.0,0.0))
|
||||
|
@ -77,6 +119,7 @@ parser.set_defaults(phase = 1)
|
|||
parser.set_defaults(crystallite = 1)
|
||||
parser.set_defaults(secondphase = 0.0)
|
||||
parser.set_defaults(config = False)
|
||||
parser.set_defaults(laguerre = False)
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
|
@ -105,22 +148,29 @@ for file in files:
|
|||
table = damask.ASCIItable(file['input'],file['output'],buffered = False)
|
||||
table.head_read()
|
||||
|
||||
coordsCol = table.labels_index('1_coords')
|
||||
if coordsCol < 0:
|
||||
coordsCol = table.labels_index('x') # try if file is in legacy format
|
||||
if coordsCol < 0:
|
||||
file['croak'].write('column 1_coords/x not found...\n')
|
||||
continue
|
||||
labels = []
|
||||
if np.any(table.labels_index(['1_coords','2_coords','3_coords'])) == -1:
|
||||
parser.error("missing seed coordinate column")
|
||||
else:
|
||||
labels += ['1_coords','2_coords','3_coords']
|
||||
|
||||
eulerCol = table.labels_index('phi1')
|
||||
hasEulers = np.all(table.labels_index(['phi1','Phi','phi2'])) != -1
|
||||
grainCol = table.labels_index('microstructure')
|
||||
hasGrains = grainCol != -1
|
||||
|
||||
table.data_readArray()
|
||||
coords = table.data[:,coordsCol:coordsCol+3]
|
||||
eulers = table.data[:,eulerCol:eulerCol+3] if hasEulers else np.zeros(3*len(coords))
|
||||
grain = table.data[:,grainCol] if hasGrains else 1+np.arange(len(eulers))
|
||||
if hasEulers:
|
||||
labels += ['phi1','Phi','phi2']
|
||||
|
||||
hasGrains = table.labels_index('microstructure') != -1
|
||||
if hasGrains:
|
||||
labels += ['microstructure']
|
||||
|
||||
hasWeight = table.labels_index('weight') != -1
|
||||
if hasWeight:
|
||||
labels += ['weight']
|
||||
|
||||
table.data_readArray(labels)
|
||||
coords = table.data[:,table.labels_index(['1_coords','2_coords','3_coords'])]
|
||||
eulers = table.data[:,table.labels_index(['phi1','Phi','phi2'])] if hasEulers else np.zeros(3*len(coords))
|
||||
grain = table.data[:,table.labels_index('microstructure')] if hasGrains else 1+np.arange(len(coords))
|
||||
weights = table.data[:,table.labels_index('weight')] if hasWeight else np.zeros(len(coords))
|
||||
grainIDs = np.unique(grain).astype('i')
|
||||
|
||||
|
||||
|
@ -179,7 +229,6 @@ for file in files:
|
|||
continue
|
||||
|
||||
#--- prepare data ---------------------------------------------------------------------------------
|
||||
coords = (coords*info['size']).T
|
||||
eulers = eulers.T
|
||||
|
||||
#--- switch according to task ---------------------------------------------------------------------
|
||||
|
@ -208,14 +257,20 @@ for file in files:
|
|||
x = (np.arange(info['grid'][0])+0.5)*info['size'][0]/info['grid'][0]
|
||||
y = (np.arange(info['grid'][1])+0.5)*info['size'][1]/info['grid'][1]
|
||||
z = (np.arange(info['grid'][2])+0.5)*info['size'][2]/info['grid'][2]
|
||||
undeformed = np.vstack(map(np.ravel, meshgrid2(x, y, z)))
|
||||
|
||||
file['croak'].write('tessellating...\n')
|
||||
indices = damask.core.math.periodicNearestNeighbor(\
|
||||
info['size'],\
|
||||
np.eye(3),\
|
||||
undeformed,coords)//3**3 + 1 # floor division to kill periodic images
|
||||
indices = grain[indices-1]
|
||||
|
||||
if options.laguerre == False :
|
||||
coords = (coords*info['size']).T
|
||||
undeformed = np.vstack(map(np.ravel, meshgrid2(x, y, z)))
|
||||
|
||||
file['croak'].write('tessellating...\n')
|
||||
indices = damask.core.math.periodicNearestNeighbor(\
|
||||
info['size'],\
|
||||
np.eye(3),\
|
||||
undeformed,coords)//3**3 + 1 # floor division to kill periodic images
|
||||
indices = grain[indices-1]
|
||||
else :
|
||||
undeformed = np.vstack(np.meshgrid(x, y, z)).reshape(3,-1).T
|
||||
indices = laguerreTessellation(undeformed, coords)
|
||||
|
||||
newInfo['microstructures'] = info['microstructures']
|
||||
for i in grainIDs:
|
||||
|
|
|
@ -25,14 +25,28 @@ parser.add_option('-g','--grid', dest='grid', type='int', nargs=3, metavar='int
|
|||
help='min a,b,c grid of hexahedral box %default')
|
||||
parser.add_option('-r', '--rnd', dest='randomSeed', type='int', metavar='int', \
|
||||
help='seed of random number generator [%default]')
|
||||
parser.add_option('-w', '--weights', dest='weights', action='store_true',
|
||||
help = 'assign random weigts (Gaussian Distribution) to seed points for laguerre tessellation [%default]')
|
||||
parser.add_option('--mean', dest='mean', type='float', metavar='float', \
|
||||
help='mean of Gaussian Distribution for weights [%default]')
|
||||
parser.add_option('--sigma', dest='sigma', type='float', metavar='float', \
|
||||
help='standard deviation of Gaussian Distribution for weights [%default]')
|
||||
|
||||
|
||||
|
||||
parser.set_defaults(randomSeed = None)
|
||||
parser.set_defaults(grid = (16,16,16))
|
||||
parser.set_defaults(N = 20)
|
||||
parser.set_defaults(weights=False)
|
||||
parser.set_defaults(mean = 0.0)
|
||||
parser.set_defaults(sigma = 1.0)
|
||||
|
||||
|
||||
(options,filename) = parser.parse_args()
|
||||
options.grid = np.array(options.grid)
|
||||
|
||||
labels = "1_coords\t2_coords\t3_coords\tphi1\tPhi\tphi2"
|
||||
|
||||
# ------------------------------------------ setup file handle -------------------------------------
|
||||
if filename == []:
|
||||
file = {'output':sys.stdout, 'croak':sys.stderr}
|
||||
|
@ -48,6 +62,8 @@ if options.N > gridSize:
|
|||
options.N = gridSize
|
||||
if options.randomSeed == None:
|
||||
options.randomSeed = int(os.urandom(4).encode('hex'), 16)
|
||||
|
||||
|
||||
np.random.seed(options.randomSeed) # init random generators
|
||||
random.seed(options.randomSeed)
|
||||
|
||||
|
@ -76,14 +92,24 @@ seeds[1,:] = (np.mod(seedpoints// options.grid[0] ,options.grid[
|
|||
seeds[2,:] = (np.mod(seedpoints//(options.grid[1]*options.grid[0]),options.grid[2])\
|
||||
+np.random.random())/options.grid[2]
|
||||
|
||||
table = np.transpose(np.concatenate((seeds,grainEuler),axis = 0))
|
||||
|
||||
if options.weights :
|
||||
weight = np.random.normal(loc=options.mean, scale=options.sigma, size=options.N)
|
||||
weight /= np.sum(weight)
|
||||
table = np.append(table, weight.reshape(options.N,1), axis=1)
|
||||
labels += "\tweight"
|
||||
|
||||
|
||||
|
||||
header = ["5\theader",
|
||||
scriptID + " " + " ".join(sys.argv[1:]),
|
||||
"grid\ta {}\tb {}\tc {}".format(options.grid[0],options.grid[1],options.grid[2]),
|
||||
"microstructures\t{}".format(options.N),
|
||||
"randomSeed\t{}".format(options.randomSeed),
|
||||
"1_coords\t2_coords\t3_coords\tphi1\tPhi\tphi2",
|
||||
"%s"%labels,
|
||||
]
|
||||
|
||||
for line in header:
|
||||
file['output'].write(line+"\n")
|
||||
np.savetxt(file['output'],np.transpose(np.concatenate((seeds,grainEuler),axis = 0)),fmt='%10.6f',delimiter='\t')
|
||||
np.savetxt(file['output'], table, fmt='%10.6f', delimiter='\t')
|
||||
|
|
Loading…
Reference in New Issue