improved superclass handling and compare_Tables

This commit is contained in:
Philip Eisenlohr 2016-09-04 18:46:53 -04:00
parent 32c4a20a46
commit cde7de4e9f
1 changed files with 81 additions and 86 deletions

View File

@ -17,7 +17,15 @@ class Test():
variants = []
def __init__(self,description = ''):
def __init__(self, **kwargs):
defaults = {'description': '',
'keep': False,
'accept': False,
'update': False,
}
for arg in defaults.keys():
setattr(self,arg,kwargs.get(arg) if kwargs.get(arg) else defaults[arg])
fh = logging.FileHandler('test.log') # create file handler which logs even debug messages
fh.setLevel(logging.DEBUG)
@ -34,60 +42,51 @@ class Test():
logging.info('\n'.join(['+'*40,
'-'*40,
'| '+description,
'| '+self.description,
'-'*40,
]))
self.dirBase = os.path.dirname(os.path.realpath(sys.modules[self.__class__.__module__].__file__))
self.parser = OptionParser(description = '{} (using class: {})'.format(description,damask.version),
self.parser = OptionParser(description = '{} (Test class version: {})'.format(self.description,damask.version),
usage = './test.py [options]')
self.parser.add_option("-d", "--debug",
self.parser.add_option("-k", "--keep",
action = "store_true",
dest = "debug",
help = "debug run, don't calculate but use existing results")
self.parser.add_option("-p", "--pass",
dest = "keep",
help = "keep current results, just run postprocessing")
self.parser.add_option("--ok", "--accept",
action = "store_true",
dest = "accept",
help = "calculate results but always consider test as successfull")
self.parser.add_option("-u", "--update",
action = "store_true",
dest = "update",
help = "use current test results as new reference"
)
self.parser.set_defaults(debug = False,
accept = False,
update = False,
self.parser.set_defaults(keep = self.keep,
accept = self.accept,
update = self.update,
)
def execute(self):
"""Run all variants and report first failure."""
if self.options.debug:
for variant in xrange(len(self.variants)):
try:
self.postprocess(variant)
if not self.compare(variant):
return variant+1 # return culprit
except Exception as e :
logging.critical('\nWARNING:\n {}\n'.format(e))
return variant+1 # return culprit
return 0
else:
if not self.options.keep:
if not self.feasible(): return -1
self.clean()
self.prepareAll()
for variant,name in enumerate(self.variants):
try:
if not self.options.keep:
self.prepare(variant)
self.run(variant)
self.postprocess(variant)
if self.options.update: # update requested
self.update(variant)
if self.options.update and not self.update(variant):
logging.critical('update for "{}" failed.'.format(name))
elif not (self.options.accept or self.compare(variant)): # no update, do comparison
return variant+1 # return culprit
except Exception as e :
logging.critical('\nWARNING:\n {}\n'.format(e))
logging.critical('exception during variant execution: {}'.format(e))
return variant+1 # return culprit
return 0
@ -97,21 +96,18 @@ class Test():
def clean(self):
"""Delete directory tree containing current results."""
status = True
try:
shutil.rmtree(self.dirCurrent())
except:
logging.warning('removal of directory "{}" not possible...'.format(self.dirCurrent()))
status = status and False
try:
os.mkdir(self.dirCurrent())
return True
except:
logging.critical('creation of directory "{}" failed...'.format(self.dirCurrent()))
status = status and False
return status
logging.critical('creation of directory "{}" failed.'.format(self.dirCurrent()))
return False
def prepareAll(self):
"""Do all necessary preparations for the whole test"""
@ -139,8 +135,8 @@ class Test():
def update(self,variant):
"""Update reference with current results."""
logging.debug('Update not necessary')
return True
logging.critical('update not supported.')
return False
def dirReference(self):
@ -467,17 +463,13 @@ class Test():
columns = [None], # list of list of column labels (per file)
rtol = 1e-5,
atol = 1e-8,
preFilter = -1.0,
postFilter = -1.0,
debug = False):
"""
compare tables with np.allclose
threshold can be used to ignore small values (a negative number disables this feature)
"""
"""compare multiple tables with np.allclose"""
if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested
files = [str(files)]
if len(files) < 2: return True # single table is always close to itself...
tables = [damask.ASCIItable(name = filename,readonly = True) for filename in files]
for table in tables:
table.head_read()
@ -486,7 +478,7 @@ class Test():
columns = columns[:len(files)] # truncate to same length as files
for i,column in enumerate(columns):
if column is None: columns[i] = tables[i].labels(raw = True) # if no column is given, read all
if column is None: columns[i] = tables[i].labels(raw = False) # if no column is given, use all
logging.info('comparing ASCIItables')
for i in xrange(len(columns)):
@ -494,39 +486,42 @@ class Test():
([columns[i]] if not (isinstance(columns[i], Iterable) and not isinstance(columns[i], str)) else \
columns[i]
)
logging.info(files[i]+':'+','.join(columns[i]))
logging.info(files[i]+': '+','.join(columns[i]))
if len(files) < 2: return True # single table is always close to itself...
dimensions = tables[0].label_dimension(columns[0]) # width of each requested column
maximum = np.zeros_like(columns[0],dtype=float) # one magnitude per column entry
data = [] # list of feature table extracted from each file (ASCII table)
maximum = np.zeros(len(columns[0]),dtype='f')
data = []
for table,labels in zip(tables,columns):
table.data_readArray(labels)
data.append(np.where(np.abs(table.data)<preFilter,np.zeros_like(table.data),table.data))
maximum += np.abs(table.data).max(axis=0)
table.close()
for i,(table,labels) in enumerate(zip(tables,columns)):
if np.any(dimensions != table.label_dimension(labels)): # check data object consistency
logging.critical('Table {} differs in data layout.'.format(files[i]))
return False
table.data_readArray(labels) # read data, ...
data.append(table.data) # ... store, ...
table.close() # ... close
for j,label in enumerate(labels): # iterate over object labels
maximum[j] = np.maximum(\
maximum[j],
np.amax(np.linalg.norm(table.data[:,table.label_indexrange(label)],
axis=1))
) # find maximum Euclidean norm across rows
maximum = np.where(maximum > 0.0, maximum, 1.0) # avoid div by zero for zero columns
maximum = np.repeat(maximum,dimensions) # spread maximum over columns of each object
maximum /= len(tables)
maximum = np.where(maximum >0.0, maximum, 1) # avoid div by zero for empty columns
for i in xrange(len(data)):
data[i] /= maximum
mask = np.zeros_like(table.data,dtype='bool')
for table in data:
mask |= np.where(np.abs(table)<postFilter,True,False) # mask out (all) tiny values
data[i] /= maximum # normalize each table
if debug:
logging.debug(str(maximum))
allclose = np.absolute(data[0]-data[1]) <= (atol + rtol*np.absolute(data[1]))
for ok,valA,valB in zip(allclose,data[0],data[1]):
logging.debug('{}:\n{}\n{}'.format(ok,valA,valB))
allclose = True # start optimistic
for i in xrange(1,len(data)):
if debug:
t0 = np.where(mask,0.0,data[i-1])
t1 = np.where(mask,0.0,data[i ])
j = np.argmin(np.abs(t1)*rtol+atol-np.abs(t0-t1))
logging.info('{:f}'.format(np.amax(np.abs(t0-t1)/(np.abs(t1)*rtol+atol))))
logging.info('{:f} {:f}'.format((t0*maximum).flatten()[j],(t1*maximum).flatten()[j]))
allclose &= np.allclose(np.where(mask,0.0,data[i-1]),
np.where(mask,0.0,data[i ]),rtol,atol) # accumulate "pessimism"
allclose &= np.allclose(data[i-1],data[i],rtol,atol) # accumulate "pessimism"
return allclose