small improvements

- hack for reporting multiple rotation
- bugfix for vectorized Rodrigues vector
- more general broadcasting (even more powerfull then np.broadcast_to)
This commit is contained in:
Martin Diehl 2020-06-18 22:30:22 +02:00
parent fe5e5babfe
commit cdda556e18
1 changed files with 8 additions and 9 deletions

View File

@ -70,7 +70,7 @@ class Rotation:
def __repr__(self): def __repr__(self):
"""Orientation displayed as unit quaternion, rotation matrix, and Bunge-Euler angles.""" """Orientation displayed as unit quaternion, rotation matrix, and Bunge-Euler angles."""
if self.quaternion.shape != (4,): if self.quaternion.shape != (4,):
raise NotImplementedError('Support for multiple rotations missing') return str(self.quaternion) # ToDo: could be nicer ...
return '\n'.join([ return '\n'.join([
'Quaternion: (real={:.3f}, imag=<{:+.3f}, {:+.3f}, {:+.3f}>)'.format(*(self.quaternion)), 'Quaternion: (real={:.3f}, imag=<{:+.3f}, {:+.3f}, {:+.3f}>)'.format(*(self.quaternion)),
'Matrix:\n{}'.format(self.as_matrix()), 'Matrix:\n{}'.format(self.as_matrix()),
@ -159,13 +159,12 @@ class Rotation:
def broadcast_to(self,shape): def broadcast_to(self,shape):
if isinstance(shape,int): shape = (shape,) if isinstance(shape,int): shape = (shape,)
if self.shape == (): N = np.prod(shape)//np.prod(self.shape,dtype=int)
q = np.broadcast_to(self.quaternion,shape+(4,))
else: q = np.block([np.repeat(self.quaternion[...,0:1],N).reshape(shape+(1,)),
q = np.block([np.broadcast_to(self.quaternion[...,0:1],shape).reshape(shape+(1,)), np.repeat(self.quaternion[...,1:2],N).reshape(shape+(1,)),
np.broadcast_to(self.quaternion[...,1:2],shape).reshape(shape+(1,)), np.repeat(self.quaternion[...,2:3],N).reshape(shape+(1,)),
np.broadcast_to(self.quaternion[...,2:3],shape).reshape(shape+(1,)), np.repeat(self.quaternion[...,3:4],N).reshape(shape+(1,))])
np.broadcast_to(self.quaternion[...,3:4],shape).reshape(shape+(1,))])
return self.__class__(q) return self.__class__(q)
@ -248,7 +247,7 @@ class Rotation:
""" """
ro = Rotation._qu2ro(self.quaternion) ro = Rotation._qu2ro(self.quaternion)
return ro[...,:3]*ro[...,3] if vector else ro return ro[...,:3]*ro[...,3:] if vector else ro
def as_homochoric(self): def as_homochoric(self):
"""Homochoric vector: (h_1, h_2, h_3).""" """Homochoric vector: (h_1, h_2, h_3)."""