using more precise coefficients also in test
changes in _rotation.py are just cosmetic
This commit is contained in:
parent
d10516e0b6
commit
cdd3b44519
|
@ -1581,19 +1581,13 @@ class Rotation:
|
|||
@staticmethod
|
||||
def _ho2ax(ho: np.ndarray) -> np.ndarray:
|
||||
"""Homochoric vector to axis–angle pair."""
|
||||
tfit = np.array([
|
||||
0.9999999999999968E0, -0.49999999999986866E0,
|
||||
-0.025000000000632055E0, -0.003928571496460683E0,
|
||||
-0.0008164666077062752E0, -0.00019411896443261646E0,
|
||||
-0.00004985822229871769E0, -0.000014164962366386031E0,
|
||||
-1.9000248160936107E-6, -5.72184549898506E-6,
|
||||
7.772149920658778E-6, -0.00001053483452909705E0,
|
||||
9.528014229335313E-6, -5.660288876265125E-6,
|
||||
1.2844901692764126E-6, 1.1255185726258763E-6,
|
||||
-1.3834391419956455E-6, 7.513691751164847E-7,
|
||||
-2.401996891720091E-7, 4.386887017466388E-8,
|
||||
-3.5917775353564864E-9,
|
||||
])
|
||||
tfit = np.array([+0.9999999999999968, -0.49999999999986866, -0.025000000000632055,
|
||||
-0.003928571496460683, -0.0008164666077062752, -0.00019411896443261646,
|
||||
-0.00004985822229871769, -0.000014164962366386031, -1.9000248160936107e-6,
|
||||
-5.72184549898506e-6, +7.772149920658778e-6, -0.00001053483452909705,
|
||||
+9.528014229335313e-6, -5.660288876265125e-6, +1.2844901692764126e-6,
|
||||
+1.1255185726258763e-6, -1.3834391419956455e-6, +7.513691751164847e-7,
|
||||
-2.401996891720091e-7, +4.386887017466388e-8, -3.5917775353564864e-9])
|
||||
hmag_squared = np.sum(ho**2.,axis=-1,keepdims=True)
|
||||
s = np.sum(tfit*hmag_squared**np.arange(len(tfit)),axis=-1,keepdims=True)
|
||||
with np.errstate(invalid='ignore'):
|
||||
|
|
|
@ -301,14 +301,13 @@ def ro2ho(ro):
|
|||
#---------- Homochoric vector----------
|
||||
def ho2ax(ho):
|
||||
"""Homochoric vector to axis angle pair."""
|
||||
tfit = np.array([+1.0000000000018852, -0.5000000002194847,
|
||||
-0.024999992127593126, -0.003928701544781374,
|
||||
-0.0008152701535450438, -0.0002009500426119712,
|
||||
-0.00002397986776071756, -0.00008202868926605841,
|
||||
+0.00012448715042090092, -0.0001749114214822577,
|
||||
+0.0001703481934140054, -0.00012062065004116828,
|
||||
+0.000059719705868660826, -0.00001980756723965647,
|
||||
+0.000003953714684212874, -0.00000036555001439719544])
|
||||
tfit = np.array([+0.9999999999999968, -0.49999999999986866, -0.025000000000632055,
|
||||
-0.003928571496460683, -0.0008164666077062752, -0.00019411896443261646,
|
||||
-0.00004985822229871769, -0.000014164962366386031, -1.9000248160936107e-6,
|
||||
-5.72184549898506e-6, +7.772149920658778e-6, -0.00001053483452909705,
|
||||
+9.528014229335313e-6, -5.660288876265125e-6, +1.2844901692764126e-6,
|
||||
+1.1255185726258763e-6, -1.3834391419956455e-6, +7.513691751164847e-7,
|
||||
-2.401996891720091e-7, +4.386887017466388e-8, -3.5917775353564864e-9])
|
||||
# normalize h and store the magnitude
|
||||
hmag_squared = np.sum(ho**2.)
|
||||
if iszero(hmag_squared):
|
||||
|
|
Loading…
Reference in New Issue