bugfix for Cubochoric

forward and backward mappings are different
This commit is contained in:
Martin Diehl 2020-04-08 11:32:18 +02:00
parent a86f00d827
commit ccf62ede52
2 changed files with 28 additions and 28 deletions

View File

@ -60,7 +60,7 @@ def cube_to_ball(cube):
else:
# get pyramide and scale by grid parameter ratio
p = _get_order(cube)
XYZ = cube[p] * sc
XYZ = cube[p[0]] * sc
# intercept all the points along the z-axis
if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-300):
@ -82,7 +82,7 @@ def cube_to_ball(cube):
ball = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ])
# reverse the coordinates back to the regular order according to the original pyramid number
ball = ball[p]
ball = ball[p[1]]
return ball
@ -110,7 +110,7 @@ def ball_to_cube(ball):
cube = np.zeros(3)
else:
p = _get_order(ball)
xyz3 = ball[p]
xyz3 = ball[p[0]]
# inverse M_3
xyz2 = xyz3[0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[2])) )
@ -132,7 +132,7 @@ def ball_to_cube(ball):
# inverse M_1
cube = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /sc
# reverse the coordinates back to the regular order according to the original pyramid number
cube = cube[p]
cube = cube[p[1]]
return cube
@ -157,10 +157,10 @@ def _get_order(xyz):
"""
if (abs(xyz[0])<= xyz[2]) and (abs(xyz[1])<= xyz[2]) or \
(abs(xyz[0])<=-xyz[2]) and (abs(xyz[1])<=-xyz[2]):
return [0,1,2]
return [[0,1,2],[0,1,2]]
elif (abs(xyz[2])<= xyz[0]) and (abs(xyz[1])<= xyz[0]) or \
(abs(xyz[2])<=-xyz[0]) and (abs(xyz[1])<=-xyz[0]):
return [1,2,0]
return [[1,2,0],[2,0,1]]
elif (abs(xyz[0])<= xyz[1]) and (abs(xyz[2])<= xyz[1]) or \
(abs(xyz[0])<=-xyz[1]) and (abs(xyz[2])<=-xyz[1]):
return [2,0,1]
return [[2,0,1],[1,2,0]]

View File

@ -70,13 +70,13 @@ contains
!--------------------------------------------------------------------------
pure function Lambert_CubeToBall(cube) result(ball)
real(pReal), intent(in), dimension(3) :: cube
real(pReal), dimension(3) :: ball, LamXYZ, XYZ
real(pReal), dimension(2) :: T
real(pReal) :: c, s, q
real(pReal), parameter :: eps = 1.0e-8_pReal
integer, dimension(3) :: p
integer, dimension(2) :: order
real(pReal), intent(in), dimension(3) :: cube
real(pReal), dimension(3) :: ball, LamXYZ, XYZ
real(pReal), dimension(2) :: T
real(pReal) :: c, s, q
real(pReal), parameter :: eps = 1.0e-8_pReal
integer, dimension(3,2) :: p
integer, dimension(2) :: order
if (maxval(abs(cube)) > AP/2.0+eps) then
ball = IEEE_value(cube,IEEE_positive_inf)
@ -89,7 +89,7 @@ pure function Lambert_CubeToBall(cube) result(ball)
else center
! get pyramide and scale by grid parameter ratio
p = GetPyramidOrder(cube)
XYZ = cube(p) * sc
XYZ = cube(p(:,1)) * sc
! intercept all the points along the z-axis
special: if (all(dEq0(XYZ(1:2)))) then
@ -112,7 +112,7 @@ pure function Lambert_CubeToBall(cube) result(ball)
endif special
! reverse the coordinates back to order according to the original pyramid number
ball = LamXYZ(p)
ball = LamXYZ(p(:,2))
endif center
@ -126,11 +126,11 @@ end function Lambert_CubeToBall
!--------------------------------------------------------------------------
pure function Lambert_BallToCube(xyz) result(cube)
real(pReal), intent(in), dimension(3) :: xyz
real(pReal), dimension(3) :: cube, xyz1, xyz3
real(pReal), dimension(2) :: Tinv, xyz2
real(pReal) :: rs, qxy, q2, sq2, q, tt
integer, dimension(3) :: p
real(pReal), intent(in), dimension(3) :: xyz
real(pReal), dimension(3) :: cube, xyz1, xyz3
real(pReal), dimension(2) :: Tinv, xyz2
real(pReal) :: rs, qxy, q2, sq2, q, tt
integer, dimension(3,2) :: p
rs = norm2(xyz)
if (rs > R1) then
@ -142,7 +142,7 @@ pure function Lambert_BallToCube(xyz) result(cube)
cube = 0.0_pReal
else center
p = GetPyramidOrder(xyz)
xyz3 = xyz(p)
xyz3 = xyz(p(:,1))
! inverse M_3
xyz2 = xyz3(1:2) * sqrt( 2.0*rs/(rs+abs(xyz3(3))) )
@ -166,7 +166,7 @@ pure function Lambert_BallToCube(xyz) result(cube)
xyz1 = [ Tinv(1), Tinv(2), sign(1.0_pReal,xyz3(3)) * rs / pref ] /sc
! reverse the coordinates back to order according to the original pyramid number
cube = xyz1(p)
cube = xyz1(p(:,2))
endif center
@ -180,18 +180,18 @@ end function Lambert_BallToCube
!--------------------------------------------------------------------------
pure function GetPyramidOrder(xyz)
real(pReal),intent(in),dimension(3) :: xyz
integer, dimension(3) :: GetPyramidOrder
real(pReal),intent(in),dimension(3) :: xyz
integer, dimension(3,2) :: GetPyramidOrder
if (((abs(xyz(1)) <= xyz(3)).and.(abs(xyz(2)) <= xyz(3))) .or. &
((abs(xyz(1)) <= -xyz(3)).and.(abs(xyz(2)) <= -xyz(3)))) then
GetPyramidOrder = [1,2,3]
GetPyramidOrder = reshape([[1,2,3],[1,2,3]],[3,2])
else if (((abs(xyz(3)) <= xyz(1)).and.(abs(xyz(2)) <= xyz(1))) .or. &
((abs(xyz(3)) <= -xyz(1)).and.(abs(xyz(2)) <= -xyz(1)))) then
GetPyramidOrder = [2,3,1]
GetPyramidOrder = reshape([[2,3,1],[3,1,2]],[3,2])
else if (((abs(xyz(1)) <= xyz(2)).and.(abs(xyz(3)) <= xyz(2))) .or. &
((abs(xyz(1)) <= -xyz(2)).and.(abs(xyz(3)) <= -xyz(2)))) then
GetPyramidOrder = [3,1,2]
GetPyramidOrder = reshape([[3,1,2],[2,3,1]],[3,2])
else
GetPyramidOrder = -1 ! should be impossible, but might simplify debugging
end if