homochoric representation vectorized

This commit is contained in:
Martin Diehl 2020-04-11 16:14:40 +02:00
parent 99655c9f61
commit cb9daccdd7
2 changed files with 34 additions and 8 deletions

View File

@ -968,19 +968,31 @@ class Rotation:
+0.0001703481934140054, -0.00012062065004116828, +0.0001703481934140054, -0.00012062065004116828,
+0.000059719705868660826, -0.00001980756723965647, +0.000059719705868660826, -0.00001980756723965647,
+0.000003953714684212874, -0.00000036555001439719544]) +0.000003953714684212874, -0.00000036555001439719544])
# normalize h and store the magnitude if len(ho.shape) == 1:
hmag_squared = np.sum(ho**2.) # normalize h and store the magnitude
if iszero(hmag_squared): hmag_squared = np.sum(ho**2.)
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ]) if iszero(hmag_squared):
else: ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
hm = hmag_squared else:
hm = hmag_squared
# convert the magnitude to the rotation angle # convert the magnitude to the rotation angle
s = tfit[0] + tfit[1] * hmag_squared
for i in range(2,16):
hm *= hmag_squared
s += tfit[i] * hm
ax = np.append(ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0)))
else:
hmag_squared = np.sum(ho**2.,axis=-1,keepdims=True)
hm = hmag_squared.copy()
s = tfit[0] + tfit[1] * hmag_squared s = tfit[0] + tfit[1] * hmag_squared
for i in range(2,16): for i in range(2,16):
hm *= hmag_squared hm *= hmag_squared
s += tfit[i] * hm s += tfit[i] * hm
ax = np.append(ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0))) with np.errstate(invalid='ignore',divide='ignore'):
ax = np.where(np.broadcast_to(np.abs(hmag_squared)<1.e-6,ho.shape[:-1]+(4,)),
np.array([ 0.0, 0.0, 1.0, 0.0 ]),
np.block([ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0))]))
return ax return ax
@staticmethod @staticmethod

View File

@ -226,3 +226,17 @@ class TestRotation:
for r,c in zip(ro,co): for r,c in zip(ro,co):
print(r,c) print(r,c)
assert np.allclose(conversion(r),c) assert np.allclose(conversion(r),c)
@pytest.mark.parametrize('conversion',[Rotation.ho2qu,
Rotation.ho2om,
Rotation.ho2eu,
Rotation.ho2ax,
Rotation.ho2ro,
])
def test_homochoric_vectorization(self,default,conversion):
ho = np.array([rot.asHomochoric() for rot in default])
conversion(ho.reshape(ho.shape[0]//2,-1,3))
co = conversion(ho)
for h,c in zip(ho,co):
print(h,c)
assert np.allclose(conversion(h),c)