more complex initialization will be used by FEM solvers only
This commit is contained in:
Martin Diehl 2019-05-14 00:13:43 +02:00
parent c8794af3bb
commit cac472c506
1 changed files with 23 additions and 272 deletions

View File

@ -35,8 +35,8 @@ module mesh
mesh_unitlength !< physical length of one unit in mesh mesh_unitlength !< physical length of one unit in mesh
real(pReal), dimension(:,:), allocatable, private :: & real(pReal), dimension(:,:), allocatable, private :: &
mesh_node, & !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!) mesh_node !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
mesh_cellnode !< cell node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
real(pReal), dimension(:,:), allocatable, public, protected :: & real(pReal), dimension(:,:), allocatable, public, protected :: &
mesh_ipVolume, & !< volume associated with IP (initially!) mesh_ipVolume, & !< volume associated with IP (initially!)
@ -53,53 +53,14 @@ module mesh
logical, dimension(3), public, parameter :: mesh_periodicSurface = .true. !< flag indicating periodic outer surfaces (used for fluxes) logical, dimension(3), public, parameter :: mesh_periodicSurface = .true. !< flag indicating periodic outer surfaces (used for fluxes)
integer(pInt), dimension(:,:), allocatable, private :: &
mesh_cellnodeParent !< cellnode's parent element ID, cellnode's intra-element ID
integer(pInt),dimension(:,:,:), allocatable, private :: & integer(pInt),dimension(:,:,:), allocatable, private :: &
mesh_cell !< cell connectivity for each element,ip/cell mesh_cell !< cell connectivity for each element,ip/cell
integer(pInt), dimension(:,:,:), allocatable, private :: &
FE_cellface !< list of intra-cell cell node IDs that constitute the cell faces of a specific type of cell
! These definitions should actually reside in the FE-solver specific part (different for MARC/ABAQUS)
! Hence, I suggest to prefix with "FE_"
integer(pInt), parameter, private :: & integer(pInt), parameter, private :: &
FE_Ngeomtypes = 10_pInt, & FE_Ngeomtypes = 10_pInt, &
FE_Ncelltypes = 4_pInt, & FE_Ncelltypes = 4_pInt, &
FE_maxNcellnodesPerCell = 8_pInt, & FE_maxNcellnodesPerCell = 8_pInt
FE_maxNcellfaces = 6_pInt, &
FE_maxNcellnodesPerCellface = 4_pInt
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCell = & !< number of cell nodes in a specific cell type
int([ &
3, & ! (2D 3node)
4, & ! (2D 4node)
4, & ! (3D 4node)
8 & ! (3D 8node)
],pInt)
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCellface = & !< number of cell nodes per cell face in a specific cell type
int([&
2, & ! (2D 3node)
2, & ! (2D 4node)
3, & ! (3D 4node)
4 & ! (3D 8node)
],pInt)
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NipNeighbors = & !< number of ip neighbors / cell faces in a specific cell type
int([&
3, & ! (2D 3node)
4, & ! (2D 4node)
4, & ! (3D 4node)
6 & ! (3D 8node)
],pInt)
integer(pInt), dimension(3), public, protected :: & integer(pInt), dimension(3), public, protected :: &
grid !< (global) grid grid !< (global) grid
@ -117,13 +78,10 @@ integer(pInt), dimension(:,:), allocatable, private :: &
mesh_init mesh_init
private :: & private :: &
mesh_build_cellconnectivity, &
mesh_build_ipAreas, & mesh_build_ipAreas, &
mesh_build_FEdata, &
mesh_spectral_build_nodes, & mesh_spectral_build_nodes, &
mesh_spectral_build_elements, & mesh_spectral_build_elements, &
mesh_spectral_build_ipNeighborhood, & mesh_spectral_build_ipNeighborhood, &
mesh_build_cellnodes, &
mesh_build_ipCoordinates mesh_build_ipCoordinates
type, public, extends(tMesh) :: tMesh_grid type, public, extends(tMesh) :: tMesh_grid
@ -234,16 +192,14 @@ subroutine mesh_init(ip,el)
if (myDebug) write(6,'(a)') ' Built elements'; flush(6) if (myDebug) write(6,'(a)') ' Built elements'; flush(6)
call mesh_build_FEdata ! get properties of the different types of elements
call mesh_build_cellconnectivity
if (myDebug) write(6,'(a)') ' Built cell connectivity'; flush(6)
mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes)
if (myDebug) write(6,'(a)') ' Built cell nodes'; flush(6) if (myDebug) write(6,'(a)') ' Built cell nodes'; flush(6)
mesh_ipCoordinates = mesh_build_ipCoordinates() mesh_ipCoordinates = mesh_build_ipCoordinates()
if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6) if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6)
allocate(mesh_ipVolume(1,theMesh%nElems),source=product([geomSize(1:2),size3]/real([grid(1:2),grid3]))) allocate(mesh_ipVolume(1,theMesh%nElems),source=product([geomSize(1:2),size3]/real([grid(1:2),grid3])))
if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6) if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6)
call mesh_build_ipAreas mesh_ipArea = mesh_build_ipAreas()
call mesh_build_ipAreas2
if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6) if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6)
call mesh_spectral_build_ipNeighborhood call mesh_spectral_build_ipNeighborhood
@ -261,9 +217,6 @@ subroutine mesh_init(ip,el)
!!!! COMPATIBILITY HACK !!!! !!!! COMPATIBILITY HACK !!!!
! for a homogeneous mesh, all elements have the same number of IPs and and cell nodes.
! hence, xxPerElem instead of maxXX
! better name
theMesh%homogenizationAt = mesh_element(3,:) theMesh%homogenizationAt = mesh_element(3,:)
theMesh%microstructureAt = mesh_element(4,:) theMesh%microstructureAt = mesh_element(4,:)
!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!
@ -643,236 +596,34 @@ end function mesh_nodesAroundCentres
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Split CP elements into cells. !> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal'
!> @details Build a mapping between cells and the corresponding cell nodes ('mesh_cell').
!> Cell nodes that are also matching nodes are unique in the list of cell nodes,
!> all others (currently) might be stored more than once.
!> Also allocates the 'mesh_node' array.
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine mesh_build_cellconnectivity pure function mesh_build_ipAreas()
implicit none real(pReal), dimension(6,1,theMesh%nElems) :: mesh_build_ipAreas
integer(pInt), dimension(:), allocatable :: &
matchingNode2cellnode
integer(pInt), dimension(:,:), allocatable :: &
cellnodeParent
integer(pInt), dimension(theMesh%elem%Ncellnodes) :: &
localCellnode2globalCellnode
integer(pInt) :: &
e,n,i, &
matchingNodeID, &
localCellnodeID
integer(pInt), dimension(FE_Ngeomtypes), parameter :: FE_NmatchingNodes = & !< number of nodes that are needed for face matching in a specific type of element geometry mesh_build_ipAreas(1:2,1,:) = geomSize(2)/real(grid(2)) * geomSize(3)/real(grid(3))
int([ & mesh_build_ipAreas(3:4,1,:) = geomSize(3)/real(grid(3)) * geomSize(1)/real(grid(1))
3, & ! element 6 (2D 3node 1ip) mesh_build_ipAreas(5:6,1,:) = geomSize(1)/real(grid(1)) * geomSize(2)/real(grid(2))
3, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
4, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
4, & ! element 127 (3D 10node 4ip)
6, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
8, & ! element 7 (3D 8node 8ip)
8 & ! element 21 (3D 20node 27ip)
],pInt)
allocate(mesh_cell(FE_maxNcellnodesPerCell,theMesh%elem%nIPs,theMesh%nElems), source=0_pInt) end function mesh_build_ipAreas
allocate(matchingNode2cellnode(theMesh%nNodes), source=0_pInt)
allocate(cellnodeParent(2_pInt,theMesh%elem%Ncellnodes*theMesh%nElems), source=0_pInt)
mesh_Ncells = theMesh%nElems*theMesh%elem%nIPs
!--------------------------------------------------------------------------------------------------
! Count cell nodes (including duplicates) and generate cell connectivity list
mesh_Ncellnodes = 0_pInt
do e = 1_pInt,theMesh%nElems
localCellnode2globalCellnode = 0_pInt
do i = 1_pInt,theMesh%elem%nIPs
do n = 1_pInt,theMesh%elem%NcellnodesPerCell
localCellnodeID = theMesh%elem%cell(n,i)
if (localCellnodeID <= FE_NmatchingNodes(theMesh%elem%geomType)) then ! this cell node is a matching node
matchingNodeID = mesh_element(4_pInt+localCellnodeID,e)
if (matchingNode2cellnode(matchingNodeID) == 0_pInt) then ! if this matching node does not yet exist in the glbal cell node list ...
mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ...
matchingNode2cellnode(matchingNodeID) = mesh_Ncellnodes ! ... and remember its global ID
cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and where it belongs to
cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID
endif
mesh_cell(n,i,e) = matchingNode2cellnode(matchingNodeID)
else ! this cell node is no matching node
if (localCellnode2globalCellnode(localCellnodeID) == 0_pInt) then ! if this local cell node does not yet exist in the global cell node list ...
mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ...
localCellnode2globalCellnode(localCellnodeID) = mesh_Ncellnodes ! ... and remember its global ID ...
cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and it belongs to
cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID
endif
mesh_cell(n,i,e) = localCellnode2globalCellnode(localCellnodeID)
endif
enddo
enddo
enddo
allocate(mesh_cellnodeParent(2_pInt,mesh_Ncellnodes))
allocate(mesh_cellnode(3_pInt,mesh_Ncellnodes))
forall(n = 1_pInt:mesh_Ncellnodes)
mesh_cellnodeParent(1,n) = cellnodeParent(1,n)
mesh_cellnodeParent(2,n) = cellnodeParent(2,n)
endforall
end subroutine mesh_build_cellconnectivity
!--------------------------------------------------------------------------------------------------
!> @brief Calculate position of cellnodes from the given position of nodes
!> Build list of cellnodes' coordinates.
!> Cellnode coordinates are calculated from a weighted sum of node coordinates.
!--------------------------------------------------------------------------------------------------
function mesh_build_cellnodes(nodes,Ncellnodes)
implicit none
integer(pInt), intent(in) :: Ncellnodes !< requested number of cellnodes
real(pReal), dimension(3,mesh_Nnodes), intent(in) :: nodes
real(pReal), dimension(3,Ncellnodes) :: mesh_build_cellnodes
integer(pInt) :: &
e,n,m, &
localCellnodeID
real(pReal), dimension(3) :: &
myCoords
mesh_build_cellnodes = 0.0_pReal
!$OMP PARALLEL DO PRIVATE(e,localCellnodeID,myCoords)
do n = 1_pInt,Ncellnodes ! loop over cell nodes
e = mesh_cellnodeParent(1,n)
localCellnodeID = mesh_cellnodeParent(2,n)
myCoords = 0.0_pReal
do m = 1_pInt,theMesh%elem%nNodes
myCoords = myCoords + nodes(1:3,mesh_element(4_pInt+m,e)) &
* theMesh%elem%cellNodeParentNodeWeights(m,localCellnodeID)
enddo
mesh_build_cellnodes(1:3,n) = myCoords / sum(theMesh%elem%cellNodeParentNodeWeights(:,localCellnodeID))
enddo
!$OMP END PARALLEL DO
end function mesh_build_cellnodes
!--------------------------------------------------------------------------------------------------
!> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCoordinates'
! Called by all solvers in mesh_init in order to initialize the ip coordinates.
! Later on the current ip coordinates are directly prvided by the spectral solver and by Abaqus,
! so no need to use this subroutine anymore; Marc however only provides nodal displacements,
! so in this case the ip coordinates are always calculated on the basis of this subroutine.
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! FOR THE MOMENT THIS SUBROUTINE ACTUALLY CALCULATES THE CELL CENTER AND NOT THE IP COORDINATES,
! AS THE IP IS NOT (ALWAYS) LOCATED IN THE CENTER OF THE IP VOLUME.
! HAS TO BE CHANGED IN A LATER VERSION.
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!--------------------------------------------------------------------------------------------------
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal' !> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal'
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipAreas subroutine mesh_build_ipAreas2
use math, only: &
math_crossproduct
implicit none allocate(mesh_ipAreaNormal(3,6,1,theMesh%nElems), source=0.0_pReal)
integer(pInt) :: e,t,g,c,i,f,n,m
real(pReal), dimension (3,FE_maxNcellnodesPerCellface) :: nodePos, normals
real(pReal), dimension(3) :: normal
allocate(mesh_ipArea(theMesh%elem%nIPneighbors,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal) mesh_ipAreaNormal(1:3,1,1,:) = spread([+1.0_pReal, 0.0_pReal, 0.0_pReal],2,theMesh%nElems)
allocate(mesh_ipAreaNormal(3_pInt,theMesh%elem%nIPneighbors,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal) mesh_ipAreaNormal(1:3,2,1,:) = spread([-1.0_pReal, 0.0_pReal, 0.0_pReal],2,theMesh%nElems)
mesh_ipAreaNormal(1:3,3,1,:) = spread([ 0.0_pReal,+1.0_pReal, 0.0_pReal],2,theMesh%nElems)
mesh_ipAreaNormal(1:3,4,1,:) = spread([ 0.0_pReal,-1.0_pReal, 0.0_pReal],2,theMesh%nElems)
mesh_ipAreaNormal(1:3,5,1,:) = spread([ 0.0_pReal, 0.0_pReal,+1.0_pReal],2,theMesh%nElems)
mesh_ipAreaNormal(1:3,6,1,:) = spread([ 0.0_pReal, 0.0_pReal,-1.0_pReal],2,theMesh%nElems)
!$OMP PARALLEL DO PRIVATE(t,g,c,nodePos,normal,normals) end subroutine mesh_build_ipAreas2
do e = 1_pInt,theMesh%nElems ! loop over cpElems
c = theMesh%elem%cellType
select case (c)
case (4_pInt)
! for this cell type we get the normal of the quadrilateral face as an average of
! four normals of triangular subfaces; since the face consists only of two triangles,
! the sum has to be divided by two; this whole prcedure tries to compensate for
! probable non-planar cell surfaces
m = FE_NcellnodesPerCellface(c)
do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
normals(1:3,n) = 0.5_pReal &
* math_crossproduct(nodePos(1:3,1+mod(n ,m)) - nodePos(1:3,n), &
nodePos(1:3,1+mod(n+1,m)) - nodePos(1:3,n))
normal = 0.5_pReal * sum(normals,2)
mesh_ipArea(f,i,e) = norm2(normal)
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal)
enddo
enddo
end select
enddo
!$OMP END PARALLEL DO
end subroutine mesh_build_ipAreas
!--------------------------------------------------------------------------------------------------
!> @brief get properties of different types of finite elements
!> @details assign globals: FE_nodesAtIP, FE_ipNeighbor, FE_subNodeOnIPFace
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_FEdata
implicit none
integer(pInt) :: me
allocate(FE_cellface(FE_maxNcellnodesPerCellface,FE_maxNcellfaces,FE_Ncelltypes), source=0_pInt)
! *** FE_cellface ***
me = 0_pInt
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 3node, VTK_TRIANGLE (5)
reshape(int([&
2,3, &
3,1, &
1,2 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 4node, VTK_QUAD (9)
reshape(int([&
2,3, &
4,1, &
3,4, &
1,2 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 4node, VTK_TETRA (10)
reshape(int([&
1,3,2, &
1,2,4, &
2,3,4, &
1,4,3 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 8node, VTK_HEXAHEDRON (12)
reshape(int([&
2,3,7,6, &
4,1,5,8, &
3,4,8,7, &
1,2,6,5, &
5,6,7,8, &
1,4,3,2 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
end subroutine mesh_build_FEdata
end module mesh end module mesh