parent
a8016d64bb
commit
ca92400c2f
|
@ -6,7 +6,7 @@ import numpy as np
|
||||||
class Table():
|
class Table():
|
||||||
"""Store spreadsheet-like data."""
|
"""Store spreadsheet-like data."""
|
||||||
|
|
||||||
def __init__(self,array,headings,comments=None):
|
def __init__(self,array,columns,comments=None):
|
||||||
"""
|
"""
|
||||||
New spreadsheet data.
|
New spreadsheet data.
|
||||||
|
|
||||||
|
@ -14,8 +14,8 @@ class Table():
|
||||||
----------
|
----------
|
||||||
array : numpy.ndarray
|
array : numpy.ndarray
|
||||||
Data.
|
Data.
|
||||||
headings : dict
|
columns : dict
|
||||||
Column headings. Labels as keys and shape as tuple. Example 'F':(3,3) for a deformation gradient.
|
Column labels and shape. Example 'F':(3,3) for a deformation gradient.
|
||||||
comments : iterable of str, optional
|
comments : iterable of str, optional
|
||||||
Additional, human-readable information
|
Additional, human-readable information
|
||||||
|
|
||||||
|
@ -24,8 +24,8 @@ class Table():
|
||||||
|
|
||||||
d = {}
|
d = {}
|
||||||
i = 0
|
i = 0
|
||||||
for label in headings:
|
for label in columns:
|
||||||
for components in range(np.prod(headings[label])):
|
for components in range(np.prod(columns[label])):
|
||||||
d[i] = label
|
d[i] = label
|
||||||
i+=1
|
i+=1
|
||||||
|
|
||||||
|
@ -36,7 +36,7 @@ class Table():
|
||||||
else:
|
else:
|
||||||
self.comments = [c for c in comments]
|
self.comments = [c for c in comments]
|
||||||
|
|
||||||
self.headings = headings
|
self.columns = columns
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def from_ASCII(fname):
|
def from_ASCII(fname):
|
||||||
|
@ -46,6 +46,12 @@ class Table():
|
||||||
The first line needs to indicate the number of subsequent header lines as 'n header'.
|
The first line needs to indicate the number of subsequent header lines as 'n header'.
|
||||||
Vector data labels are indicated by '1_x, 2_x, ..., n_x'.
|
Vector data labels are indicated by '1_x, 2_x, ..., n_x'.
|
||||||
Tensor data labels are indicated by '3x3:1_x, 3x3:2_x, ..., 3x3:9_x'.
|
Tensor data labels are indicated by '3x3:1_x, 3x3:2_x, ..., 3x3:9_x'.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
fname : file, str, or pathlib.Path
|
||||||
|
Filename or file for reading.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
f = open(fname)
|
f = open(fname)
|
||||||
|
@ -60,20 +66,20 @@ class Table():
|
||||||
comments = [f.readline()[:-1] for i in range(header-1)]
|
comments = [f.readline()[:-1] for i in range(header-1)]
|
||||||
labels = f.readline().split()
|
labels = f.readline().split()
|
||||||
|
|
||||||
headings = {}
|
columns = {}
|
||||||
for label in labels:
|
for label in labels:
|
||||||
tensor_column = re.search(r'[0-9,x]*?:[0-9]*?_',label)
|
tensor_column = re.search(r'[0-9,x]*?:[0-9]*?_',label)
|
||||||
if tensor_column:
|
if tensor_column:
|
||||||
my_shape = tensor_column.group().split(':',1)[0].split('x')
|
my_shape = tensor_column.group().split(':',1)[0].split('x')
|
||||||
headings[label.split('_',1)[1]] = tuple([int(d) for d in my_shape])
|
columns[label.split('_',1)[1]] = tuple([int(d) for d in my_shape])
|
||||||
else:
|
else:
|
||||||
vector_column = re.match(r'[0-9]*?_',label)
|
vector_column = re.match(r'[0-9]*?_',label)
|
||||||
if vector_column:
|
if vector_column:
|
||||||
headings[label.split('_',1)[1]] = (int(label.split('_',1)[0]),)
|
columns[label.split('_',1)[1]] = (int(label.split('_',1)[0]),)
|
||||||
else:
|
else:
|
||||||
headings[label]=(1,)
|
columns[label]=(1,)
|
||||||
|
|
||||||
return Table(np.loadtxt(f),headings,comments)
|
return Table(np.loadtxt(f),columns,comments)
|
||||||
|
|
||||||
def get_array(self,label):
|
def get_array(self,label):
|
||||||
"""Return data as array."""
|
"""Return data as array."""
|
||||||
|
@ -81,10 +87,22 @@ class Table():
|
||||||
idx,key = label.split('_',1)
|
idx,key = label.split('_',1)
|
||||||
return self.data[key].to_numpy()[:,int(idx)-1]
|
return self.data[key].to_numpy()[:,int(idx)-1]
|
||||||
else:
|
else:
|
||||||
return self.data[label].to_numpy().reshape((-1,)+self.headings[label])
|
return self.data[label].to_numpy().reshape((-1,)+self.columns[label])
|
||||||
|
|
||||||
def set_array(self,label,array,info):
|
def set_array(self,label,array,info):
|
||||||
"""Set data."""
|
"""
|
||||||
|
Modify data in the spreadsheet.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
label : str
|
||||||
|
Label for the new data
|
||||||
|
array : np.ndarray
|
||||||
|
New data
|
||||||
|
info : str
|
||||||
|
Human-readable information about the new data
|
||||||
|
|
||||||
|
"""
|
||||||
if np.prod(array.shape[1:],dtype=int) == 1:
|
if np.prod(array.shape[1:],dtype=int) == 1:
|
||||||
self.comments.append('{}: {}'.format(label,info))
|
self.comments.append('{}: {}'.format(label,info))
|
||||||
else:
|
else:
|
||||||
|
@ -97,34 +115,56 @@ class Table():
|
||||||
else:
|
else:
|
||||||
self.data[label] = array.reshape(self.data[label].shape)
|
self.data[label] = array.reshape(self.data[label].shape)
|
||||||
|
|
||||||
|
|
||||||
def get_labels(self):
|
def get_labels(self):
|
||||||
"""Return the labels of all columns."""
|
"""Return the labels of all columns."""
|
||||||
return [label for label in self.headings]
|
return [label for label in self.columns]
|
||||||
|
|
||||||
def add_array(self,label,array,info):
|
def add_array(self,label,array,info):
|
||||||
|
"""
|
||||||
|
Add data to the spreadsheet.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
label : str
|
||||||
|
Label for the new data
|
||||||
|
array : np.ndarray
|
||||||
|
New data
|
||||||
|
info : str
|
||||||
|
Human-readable information about the new data
|
||||||
|
|
||||||
|
"""
|
||||||
if np.prod(array.shape[1:],dtype=int) == 1:
|
if np.prod(array.shape[1:],dtype=int) == 1:
|
||||||
self.comments.append('{}: {}'.format(label,info))
|
self.comments.append('{}: {}'.format(label,info))
|
||||||
else:
|
else:
|
||||||
self.comments.append('{} {}: {}'.format(label,array.shape[1:],info))
|
self.comments.append('{} {}: {}'.format(label,array.shape[1:],info))
|
||||||
|
|
||||||
self.headings[label] = array.shape[1:] if len(array.shape) > 1 else (1,)
|
self.columns[label] = array.shape[1:] if len(array.shape) > 1 else (1,)
|
||||||
size = np.prod(array.shape[1:],dtype=int)
|
size = np.prod(array.shape[1:],dtype=int)
|
||||||
new_data = pd.DataFrame(data=array.reshape(-1,size),
|
new_data = pd.DataFrame(data=array.reshape(-1,size),
|
||||||
columns=[label for l in range(size)])
|
columns=[label for l in range(size)])
|
||||||
self.data = pd.concat([self.data,new_data],axis=1)
|
self.data = pd.concat([self.data,new_data],axis=1)
|
||||||
|
|
||||||
def to_ASCII(self,fname):
|
def to_ASCII(self,fname):
|
||||||
|
"""
|
||||||
|
Store as plain text file.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
fname : file, str, or pathlib.Path
|
||||||
|
Filename or file for reading.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
labels = []
|
labels = []
|
||||||
for l in self.headings:
|
for l in self.columns:
|
||||||
if(self.headings[l] == (1,)):
|
if(self.columns[l] == (1,)):
|
||||||
labels.append('{}'.format(l))
|
labels.append('{}'.format(l))
|
||||||
elif(len(self.headings[l]) == 1):
|
elif(len(self.columns[l]) == 1):
|
||||||
labels+=['{}_{}'.format(i+1,l)\
|
labels+=['{}_{}'.format(i+1,l)\
|
||||||
for i in range(self.headings[l][0])]
|
for i in range(self.columns[l][0])]
|
||||||
else:
|
else:
|
||||||
labels+=['{}:{}_{}'.format(i+1,'x'.join([str(d) for d in self.headings[l]]),l)\
|
labels+=['{}:{}_{}'.format(i+1,'x'.join([str(d) for d in self.columns[l]]),l)\
|
||||||
for i in range(np.prod(self.headings[l],dtype=int))]
|
for i in range(np.prod(self.columns[l],dtype=int))]
|
||||||
|
|
||||||
header = ['{} header'.format(len(self.comments)+1)]\
|
header = ['{} header'.format(len(self.comments)+1)]\
|
||||||
+ self.comments\
|
+ self.comments\
|
||||||
|
|
Loading…
Reference in New Issue