Merge branch 'development' into CCodeUse
This commit is contained in:
commit
ca5ed22d66
|
@ -3569,11 +3569,7 @@ logical function crystallite_integrateStress(&
|
|||
maxticks
|
||||
|
||||
external :: &
|
||||
#if(FLOAT==8)
|
||||
dgesv
|
||||
#elif(FLOAT==4)
|
||||
sgesv
|
||||
#endif
|
||||
|
||||
!* be pessimistic
|
||||
crystallite_integrateStress = .false.
|
||||
|
@ -3756,11 +3752,7 @@ logical function crystallite_integrateStress(&
|
|||
- math_Plain3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dT3333,dT_dFe3333),dFe_dLp3333))
|
||||
dRLp_dLp2 = dRLp_dLp ! will be overwritten in first call to LAPACK routine
|
||||
work = math_plain33to9(residuumLp)
|
||||
#if(FLOAT==8)
|
||||
call dgesv(9,1,dRLp_dLp2,9,ipiv,work,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp
|
||||
#elif(FLOAT==4)
|
||||
call sgesv(9,1,dRLp_dLp2,9,ipiv,work,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp
|
||||
#endif
|
||||
if (ierr /= 0_pInt) then
|
||||
#ifndef _OPENMP
|
||||
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
||||
|
@ -3849,11 +3841,7 @@ logical function crystallite_integrateStress(&
|
|||
math_mul3333xx3333(dT_dFi3333, dFi_dLi3333))) &
|
||||
- math_Plain3333to99(math_mul3333xx3333(dLi_dFi3333, dFi_dLi3333))
|
||||
work = math_plain33to9(residuumLi)
|
||||
#if(FLOAT==8)
|
||||
call dgesv(9,1,dRLi_dLi,9,ipiv,work,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
|
||||
#elif(FLOAT==4)
|
||||
call sgesv(9,1,dRLi_dLi,9,ipiv,work,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
|
||||
#endif
|
||||
if (ierr /= 0_pInt) then
|
||||
#ifndef _OPENMP
|
||||
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
||||
|
|
|
@ -186,10 +186,6 @@ module math
|
|||
halton_seed_set, &
|
||||
i_to_halton, &
|
||||
prime
|
||||
external :: &
|
||||
dsyev, &
|
||||
dgetrf, &
|
||||
dgetri
|
||||
|
||||
contains
|
||||
|
||||
|
@ -811,15 +807,13 @@ function math_invSym3333(A)
|
|||
integer(pInt), dimension(6) :: ipiv6
|
||||
real(pReal), dimension(6,6) :: temp66_Real
|
||||
real(pReal), dimension(6) :: work6
|
||||
external :: &
|
||||
dgetrf, &
|
||||
dgetri
|
||||
|
||||
temp66_real = math_Mandel3333to66(A)
|
||||
#if(FLOAT==8)
|
||||
call dgetrf(6,6,temp66_real,6,ipiv6,ierr)
|
||||
call dgetri(6,temp66_real,6,ipiv6,work6,6,ierr)
|
||||
#elif(FLOAT==4)
|
||||
call sgetrf(6,6,temp66_real,6,ipiv6,ierr)
|
||||
call sgetri(6,temp66_real,6,ipiv6,work6,6,ierr)
|
||||
#endif
|
||||
if (ierr == 0_pInt) then
|
||||
math_invSym3333 = math_Mandel66to3333(temp66_real)
|
||||
else
|
||||
|
@ -847,13 +841,8 @@ subroutine math_invert(myDim,A, InvA, error)
|
|||
logical, intent(out) :: error
|
||||
|
||||
invA = A
|
||||
#if(FLOAT==8)
|
||||
call dgetrf(myDim,myDim,invA,myDim,ipiv,ierr)
|
||||
call dgetri(myDim,InvA,myDim,ipiv,work,myDim,ierr)
|
||||
#elif(FLOAT==4)
|
||||
call sgetrf(myDim,myDim,invA,myDim,ipiv,ierr)
|
||||
call sgetri(myDim,InvA,myDim,ipiv,work,myDim,ierr)
|
||||
#endif
|
||||
error = merge(.true.,.false., ierr /= 0_pInt) ! http://fortraninacworld.blogspot.de/2012/12/ternary-operator.html
|
||||
|
||||
end subroutine math_invert
|
||||
|
@ -1937,16 +1926,13 @@ subroutine math_eigenValuesVectorsSym(m,values,vectors,error)
|
|||
real(pReal), dimension(size(m,1)), intent(out) :: values
|
||||
real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: vectors
|
||||
logical, intent(out) :: error
|
||||
|
||||
integer(pInt) :: info
|
||||
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
||||
external :: &
|
||||
dsyev
|
||||
|
||||
vectors = m ! copy matrix to input (doubles as output) array
|
||||
#if(FLOAT==8)
|
||||
call dsyev('V','U',size(m,1),vectors,size(m,1),values,work,(64+2)*size(m,1),info)
|
||||
#elif(FLOAT==4)
|
||||
call ssyev('V','U',size(m,1),vectors,size(m,1),values,work,(64+2)*size(m,1),info)
|
||||
#endif
|
||||
error = (info == 0_pInt)
|
||||
|
||||
end subroutine math_eigenValuesVectorsSym
|
||||
|
@ -2135,16 +2121,13 @@ function math_eigenvaluesSym(m)
|
|||
real(pReal), dimension(:,:), intent(in) :: m
|
||||
real(pReal), dimension(size(m,1)) :: math_eigenvaluesSym
|
||||
real(pReal), dimension(size(m,1),size(m,1)) :: vectors
|
||||
|
||||
integer(pInt) :: info
|
||||
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
||||
external :: &
|
||||
dsyev
|
||||
|
||||
vectors = m ! copy matrix to input (doubles as output) array
|
||||
#if(FLOAT==8)
|
||||
call dsyev('N','U',size(m,1),vectors,size(m,1),math_eigenvaluesSym,work,(64+2)*size(m,1),info)
|
||||
#elif(FLOAT==4)
|
||||
call ssyev('N','U',size(m,1),vectors,size(m,1),math_eigenvaluesSym,work,(64+2)*size(m,1),info)
|
||||
#endif
|
||||
if (info /= 0_pInt) math_eigenvaluesSym = DAMASK_NaN
|
||||
|
||||
end function math_eigenvaluesSym
|
||||
|
|
|
@ -4,9 +4,9 @@
|
|||
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @author Luv Sharma, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief setting precision for real and int type depending on makros "FLOAT" and "INT"
|
||||
!> @brief setting precision for real and int type
|
||||
!> @details setting precision for real and int type and for DAMASK_NaN. Definition is made
|
||||
!! depending on makros "FLOAT" and "INT" defined during compilation
|
||||
!! depending on makro "INT" defined during compilation
|
||||
!! for details on NaN see https://software.intel.com/en-us/forums/topic/294680
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
module prec
|
||||
|
@ -18,18 +18,7 @@ module prec
|
|||
|
||||
implicit none
|
||||
private
|
||||
#if (FLOAT==4)
|
||||
#if defined(Spectral) || defined(FEM)
|
||||
SPECTRAL SOLVER AND OWN FEM DO NOT SUPPORT SINGLE PRECISION, STOPPING COMPILATION
|
||||
#endif
|
||||
integer, parameter, public :: pReal = 4 !< floating point single precition (was selected_real_kind(6,37), number with 6 significant digits, up to 1e+-37)
|
||||
#ifdef __INTEL_COMPILER
|
||||
real(pReal), parameter, public :: DAMASK_NaN = Z'7F800001' !< quiet NaN for single precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran)
|
||||
#endif
|
||||
#ifdef __GFORTRAN__
|
||||
real(pReal), parameter, public :: DAMASK_NaN = real(Z'7F800001', pReal) !< quiet NaN for single precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran)
|
||||
#endif
|
||||
#elif (FLOAT==8)
|
||||
#if (FLOAT==8)
|
||||
integer, parameter, public :: pReal = 8 !< floating point double precision (was selected_real_kind(15,300), number with 15 significant digits, up to 1e+-300)
|
||||
#ifdef __INTEL_COMPILER
|
||||
real(pReal), parameter, public :: DAMASK_NaN = Z'7FF8000000000000' !< quiet NaN for double precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran)
|
||||
|
@ -172,9 +161,9 @@ end subroutine prec_init
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief figures out if a floating point number is NaN
|
||||
! basically just a small wrapper, because gfortran < 4.9 does not have the IEEE module
|
||||
! basically just a small wrapper, because gfortran < 5.0 does not have the IEEE module
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
logical elemental function prec_isNaN(a)
|
||||
logical elemental pure function prec_isNaN(a)
|
||||
|
||||
implicit none
|
||||
real(pReal), intent(in) :: a
|
||||
|
@ -187,4 +176,30 @@ logical elemental function prec_isNaN(a)
|
|||
#endif
|
||||
end function prec_isNaN
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief equality comparison for double precision
|
||||
! replaces "==" but for certain (relative) tolerance. Counterpart to dNeq
|
||||
! http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
logical elemental pure function dEq(a,b,tol)
|
||||
real(pReal), intent(in) :: a,b
|
||||
real(pReal), intent(in), optional :: tol
|
||||
real(pReal), parameter :: eps = 2.2204460492503131E-16 ! DBL_EPSILON in C
|
||||
dEq = merge(.True., .False.,abs(a-b) <= merge(tol,eps,present(tol))*maxval(abs([a,b])))
|
||||
end function dEq
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief inequality comparison for double precision
|
||||
! replaces "!=" but for certain (relative) tolerance. Counterpart to dEq
|
||||
! http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
logical elemental pure function dNeq(a,b,tol)
|
||||
real(pReal), intent(in) :: a,b
|
||||
real(pReal), intent(in), optional :: tol
|
||||
real(pReal), parameter :: eps = 2.2204460492503131E-16 ! DBL_EPSILON in C
|
||||
dNeq = merge(.False., .True.,abs(a-b) <= merge(tol,eps,present(tol))*maxval(abs([a,b])))
|
||||
end function dNeq
|
||||
|
||||
end module prec
|
||||
|
|
|
@ -517,22 +517,27 @@ class ASCIItable():
|
|||
|
||||
# ------------------------------------------------------------------
|
||||
def microstructure_read(self,
|
||||
grid):
|
||||
grid,
|
||||
type = 'i',
|
||||
strict = False):
|
||||
"""read microstructure data (from .geom format)"""
|
||||
def datatype(item):
|
||||
return int(item) if type.lower() == 'i' else float(item)
|
||||
|
||||
N = grid.prod() # expected number of microstructure indices in data
|
||||
microstructure = np.zeros(N,'i') # initialize as flat array
|
||||
microstructure = np.zeros(N,type) # initialize as flat array
|
||||
|
||||
i = 0
|
||||
while i < N and self.data_read():
|
||||
items = self.data
|
||||
if len(items) > 2:
|
||||
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
|
||||
elif items[1].lower() == 'to': items = range(int(items[0]),1+int(items[2]))
|
||||
else: items = map(int,items)
|
||||
else: items = map(int,items)
|
||||
if items[1].lower() == 'of': items = np.ones(datatype(items[0]))*datatype(items[2])
|
||||
elif items[1].lower() == 'to': items = np.arange(datatype(items[0]),1+datatype(items[2]))
|
||||
else: items = map(datatype,items)
|
||||
else: items = map(datatype,items)
|
||||
|
||||
s = min(len(items), N-i) # prevent overflow of microstructure array
|
||||
microstructure[i:i+s] = items[:s]
|
||||
i += s
|
||||
i += len(items)
|
||||
|
||||
return microstructure
|
||||
return (microstructure, i == N and not self.data_read()) if strict else microstructure # check for proper point count and end of file
|
||||
|
|
|
@ -62,7 +62,7 @@ class Test():
|
|||
if not self.compare(variant):
|
||||
return variant+1 # return culprit
|
||||
except Exception as e :
|
||||
logging.critical('\nWARNING:\n %s\n'%e)
|
||||
logging.critical('\nWARNING:\n {}\n'.format(e))
|
||||
return variant+1 # return culprit
|
||||
return 0
|
||||
else:
|
||||
|
@ -79,7 +79,7 @@ class Test():
|
|||
elif not (self.options.accept or self.compare(variant)): # no update, do comparison
|
||||
return variant+1 # return culprit
|
||||
except Exception as e :
|
||||
logging.critical('\nWARNING:\n %s\n'%e)
|
||||
logging.critical('\nWARNING:\n {}\n'.format(e))
|
||||
return variant+1 # return culprit
|
||||
return 0
|
||||
|
||||
|
@ -94,13 +94,13 @@ class Test():
|
|||
try:
|
||||
shutil.rmtree(self.dirCurrent())
|
||||
except:
|
||||
logging.warning('removal of directory "%s" not possible...'%(self.dirCurrent()))
|
||||
logging.warning('removal of directory "{}" not possible...'.format(self.dirCurrent()))
|
||||
status = status and False
|
||||
|
||||
try:
|
||||
os.mkdir(self.dirCurrent())
|
||||
except:
|
||||
logging.critical('creation of directory "%s" failed...'%(self.dirCurrent()))
|
||||
logging.critical('creation of directory "{}" failed...'.format(self.dirCurrent()))
|
||||
status = status and False
|
||||
|
||||
return status
|
||||
|
@ -193,19 +193,19 @@ class Test():
|
|||
try:
|
||||
shutil.copy2(self.fileInReference(file),self.fileInCurrent(targetfiles[i]))
|
||||
except:
|
||||
logging.critical('Reference2Current: Unable to copy file %s'%file)
|
||||
logging.critical('Reference2Current: Unable to copy file "{}"'.format(file))
|
||||
|
||||
|
||||
def copy_Base2Current(self,sourceDir,sourcefiles=[],targetfiles=[]):
|
||||
|
||||
source=os.path.normpath(os.path.join(self.dirBase,'../../../'+sourceDir))
|
||||
source=os.path.normpath(os.path.join(self.dirBase,'../../..',sourceDir))
|
||||
if len(targetfiles) == 0: targetfiles = sourcefiles
|
||||
for i,file in enumerate(sourcefiles):
|
||||
try:
|
||||
shutil.copy2(os.path.join(source,file),self.fileInCurrent(targetfiles[i]))
|
||||
except:
|
||||
logging.error(os.path.join(source,file))
|
||||
logging.critical('Base2Current: Unable to copy file %s'%file)
|
||||
logging.critical('Base2Current: Unable to copy file "{}"'.format(file))
|
||||
|
||||
|
||||
def copy_Current2Reference(self,sourcefiles=[],targetfiles=[]):
|
||||
|
@ -215,7 +215,7 @@ class Test():
|
|||
try:
|
||||
shutil.copy2(self.fileInCurrent(file),self.fileInReference(targetfiles[i]))
|
||||
except:
|
||||
logging.critical('Current2Reference: Unable to copy file %s'%file)
|
||||
logging.critical('Current2Reference: Unable to copy file "{}"'.format(file))
|
||||
|
||||
|
||||
def copy_Proof2Current(self,sourcefiles=[],targetfiles=[]):
|
||||
|
@ -225,7 +225,7 @@ class Test():
|
|||
try:
|
||||
shutil.copy2(self.fileInProof(file),self.fileInCurrent(targetfiles[i]))
|
||||
except:
|
||||
logging.critical('Proof2Current: Unable to copy file %s'%file)
|
||||
logging.critical('Proof2Current: Unable to copy file "{}"'.format(file))
|
||||
|
||||
|
||||
def copy_Current2Current(self,sourcefiles=[],targetfiles=[]):
|
||||
|
@ -234,7 +234,7 @@ class Test():
|
|||
try:
|
||||
shutil.copy2(self.fileInReference(file),self.fileInCurrent(targetfiles[i]))
|
||||
except:
|
||||
logging.critical('Current2Current: Unable to copy file %s'%file)
|
||||
logging.critical('Current2Current: Unable to copy file "{}"'.format(file))
|
||||
|
||||
|
||||
def execute_inCurrentDir(self,cmd,streamIn=None):
|
||||
|
@ -252,7 +252,7 @@ class Test():
|
|||
def compare_Array(self,File1,File2):
|
||||
|
||||
import numpy as np
|
||||
logging.info('comparing\n '+File1+'\n '+File2)
|
||||
logging.info('\n '.join(['comparing',File1,File2]))
|
||||
table1 = damask.ASCIItable(name=File1,readonly=True)
|
||||
table1.head_read()
|
||||
len1=len(table1.info)+2
|
||||
|
@ -270,8 +270,9 @@ class Test():
|
|||
max_loc=np.argmax(abs(refArrayNonZero[curArray.nonzero()]/curArray[curArray.nonzero()]-1.))
|
||||
refArrayNonZero = refArrayNonZero[curArray.nonzero()]
|
||||
curArray = curArray[curArray.nonzero()]
|
||||
print(' ********\n * maximum relative error %e for %e and %e\n ********'
|
||||
%(max_err, refArrayNonZero[max_loc],curArray[max_loc]))
|
||||
print(' ********\n * maximum relative error {} between {} and {}\n ********'.format(max_err,
|
||||
refArrayNonZero[max_loc],
|
||||
curArray[max_loc]))
|
||||
return max_err
|
||||
else:
|
||||
raise Exception('mismatch in array size to compare')
|
||||
|
@ -295,7 +296,7 @@ class Test():
|
|||
absoluteTolerance=False,perLine=False,skipLines=[]):
|
||||
|
||||
import numpy as np
|
||||
logging.info('comparing ASCII Tables\n %s \n %s'%(file0,file1))
|
||||
logging.info('\n '.join(['comparing ASCII Tables',file0,file1]))
|
||||
if normHeadings == '': normHeadings = headings0
|
||||
|
||||
# check if comparison is possible and determine lenght of columns
|
||||
|
@ -315,7 +316,7 @@ class Test():
|
|||
|
||||
for i in xrange(dataLength):
|
||||
if headings0[i]['shape'] != headings1[i]['shape']:
|
||||
raise Exception('shape mismatch when comparing %s with %s '%(headings0[i]['label'],headings1[i]['label']))
|
||||
raise Exception('shape mismatch between {} and {} '.format(headings0[i]['label'],headings1[i]['label']))
|
||||
shape[i] = headings0[i]['shape']
|
||||
for j in xrange(np.shape(shape[i])[0]):
|
||||
length[i] *= shape[i][j]
|
||||
|
@ -323,7 +324,9 @@ class Test():
|
|||
for j in xrange(np.shape(normShape[i])[0]):
|
||||
normLength[i] *= normShape[i][j]
|
||||
else:
|
||||
raise Exception('trying to compare %i with %i normed by %i data sets'%(len(headings0),len(headings1),len(normHeadings)))
|
||||
raise Exception('trying to compare {} with {} normed by {} data sets'.format(len(headings0),
|
||||
len(headings1),
|
||||
len(normHeadings)))
|
||||
|
||||
table0 = damask.ASCIItable(name=file0,readonly=True)
|
||||
table0.head_read()
|
||||
|
@ -331,22 +334,19 @@ class Test():
|
|||
table1.head_read()
|
||||
|
||||
for i in xrange(dataLength):
|
||||
key0 = {True :'1_%s',
|
||||
False:'%s' }[length[i]>1]%headings0[i]['label']
|
||||
key1 = {True :'1_%s',
|
||||
False:'%s' }[length[i]>1]%headings1[i]['label']
|
||||
normKey = {True :'1_%s',
|
||||
False:'%s' }[normLength[i]>1]%normHeadings[i]['label']
|
||||
key0 = ('1_' if length[i]>1 else '') + headings0[i]['label']
|
||||
key1 = ('1_' if length[i]>1 else '') + headings1[i]['label']
|
||||
normKey = ('1_' if normLength[i]>1 else '') + normHeadings[i]['label']
|
||||
if key0 not in table0.labels:
|
||||
raise Exception('column %s not found in 1. table...\n'%key0)
|
||||
raise Exception('column {} not found in 1. table...\n'.format(key0))
|
||||
elif key1 not in table1.labels:
|
||||
raise Exception('column %s not found in 2. table...\n'%key1)
|
||||
raise Exception('column {} not found in 2. table...\n'.format(key1))
|
||||
elif normKey not in table0.labels:
|
||||
raise Exception('column %s not found in 1. table...\n'%normKey)
|
||||
raise Exception('column {} not found in 1. table...\n'.format(normKey))
|
||||
else:
|
||||
column[0][i] = table0.labels.index(key0) # remember columns of requested data
|
||||
column[1][i] = table1.labels.index(key1) # remember columns of requested data in second column
|
||||
normColumn[i] = table0.labels.index(normKey) # remember columns of requested data in second column
|
||||
column[0][i] = table0.labels.index(key0)
|
||||
column[1][i] = table1.labels.index(key1)
|
||||
normColumn[i] = table0.labels.index(normKey)
|
||||
|
||||
line0 = 0
|
||||
while table0.data_read(): # read next data line of ASCII table
|
||||
|
@ -370,9 +370,9 @@ class Test():
|
|||
norm[i] = [1.0 for j in xrange(line0-len(skipLines))]
|
||||
absTol[i] = True
|
||||
if perLine:
|
||||
logging.warning('At least one norm of %s in 1. table is 0.0, using absolute tolerance'%headings0[i]['label'])
|
||||
logging.warning('At least one norm of {} in 1. table is 0.0, using absolute tolerance'.format(headings0[i]['label']))
|
||||
else:
|
||||
logging.warning('Maximum norm of %s in 1. table is 0.0, using absolute tolerance'%headings0[i]['label'])
|
||||
logging.warning('Maximum norm of {} in 1. table is 0.0, using absolute tolerance'.format(headings0[i]['label']))
|
||||
|
||||
line1 = 0
|
||||
while table1.data_read(): # read next data line of ASCII table
|
||||
|
@ -384,14 +384,18 @@ class Test():
|
|||
norm[i][line1-len(skipLines)])
|
||||
line1 +=1
|
||||
|
||||
if (line0 != line1): raise Exception('found %s lines in 1. table and %s in 2. table'%(line0,line1))
|
||||
if (line0 != line1): raise Exception('found {} lines in 1. table but {} in 2. table'.format(line0,line1))
|
||||
|
||||
logging.info(' ********')
|
||||
for i in xrange(dataLength):
|
||||
if absTol[i]:
|
||||
logging.info(' * maximum absolute error %e for %s and %s'%(maxError[i],headings0[i]['label'],headings1[i]['label']))
|
||||
logging.info(' * maximum absolute error {} between {} and {}'.format(maxError[i],
|
||||
headings0[i]['label'],
|
||||
headings1[i]['label']))
|
||||
else:
|
||||
logging.info(' * maximum relative error %e for %s and %s'%(maxError[i],headings0[i]['label'],headings1[i]['label']))
|
||||
logging.info(' * maximum relative error {} between {} and {}'.format(maxError[i],
|
||||
headings0[i]['label'],
|
||||
headings1[i]['label']))
|
||||
logging.info(' ********')
|
||||
return maxError
|
||||
|
||||
|
@ -443,8 +447,8 @@ class Test():
|
|||
normedDelta = np.where(normBy>preFilter,delta/normBy,0.0)
|
||||
mean = np.amax(np.abs(np.mean(normedDelta,0)))
|
||||
std = np.amax(np.std(normedDelta,0))
|
||||
logging.info('mean: %f'%mean)
|
||||
logging.info('std: %f'%std)
|
||||
logging.info('mean: {:f}'.format(mean))
|
||||
logging.info('std: {:f}'.format(std))
|
||||
|
||||
return (mean<meanTol) & (std < stdTol)
|
||||
|
||||
|
@ -495,7 +499,7 @@ class Test():
|
|||
table.close()
|
||||
|
||||
maximum /= len(tables)
|
||||
maximum = np.where(maximum >0.0, maximum, 1) # do not devide by zero for empty columns
|
||||
maximum = np.where(maximum >0.0, maximum, 1) # avoid div by zero for empty columns
|
||||
for i in xrange(len(data)):
|
||||
data[i] /= maximum
|
||||
|
||||
|
@ -511,8 +515,8 @@ class Test():
|
|||
t0 = np.where(mask,0.0,data[i-1])
|
||||
t1 = np.where(mask,0.0,data[i ])
|
||||
j = np.argmin(np.abs(t1)*rtol+atol-np.abs(t0-t1))
|
||||
logging.info('%f'%np.amax(np.abs(t0-t1)/(np.abs(t1)*rtol+atol)))
|
||||
logging.info('%f %f'%((t0*maximum).flatten()[j],(t1*maximum).flatten()[j]))
|
||||
logging.info('{:f}'.format(np.amax(np.abs(t0-t1)/(np.abs(t1)*rtol+atol))))
|
||||
logging.info('{:f} {:f}'.format((t0*maximum).flatten()[j],(t1*maximum).flatten()[j]))
|
||||
allclose &= np.allclose(np.where(mask,0.0,data[i-1]),
|
||||
np.where(mask,0.0,data[i ]),rtol,atol) # accumulate "pessimism"
|
||||
|
||||
|
@ -543,14 +547,13 @@ class Test():
|
|||
def report_Success(self,culprit):
|
||||
|
||||
if culprit == 0:
|
||||
logging.critical('%s passed.'%({False: 'The test',
|
||||
True: 'All %i tests'%(len(self.variants))}[len(self.variants) > 1]))
|
||||
logging.critical(('The test' if len(self.variants) == 1 else 'All {} tests'.format(len(self.variants))) + ' passed')
|
||||
logging.critical('\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n')
|
||||
return 0
|
||||
if culprit == -1:
|
||||
logging.warning('Warning: Could not start test')
|
||||
return 0
|
||||
else:
|
||||
logging.critical(' ********\n * Test %i failed...\n ********'%(culprit))
|
||||
logging.critical(' ********\n * Test {} failed...\n ********'.format(culprit))
|
||||
logging.critical('\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n')
|
||||
return culprit
|
||||
|
|
|
@ -58,6 +58,24 @@ def emph(what):
|
|||
"""emphasizes string on screen"""
|
||||
return bcolors.BOLD+srepr(what)+bcolors.ENDC
|
||||
|
||||
# -----------------------------
|
||||
def execute(cmd,
|
||||
streamIn = None,
|
||||
wd = './'):
|
||||
"""executes a command in given directory and returns stdout and stderr for optional stdin"""
|
||||
initialPath = os.getcwd()
|
||||
os.chdir(wd)
|
||||
process = subprocess.Popen(shlex.split(cmd),
|
||||
stdout = subprocess.PIPE,
|
||||
stderr = subprocess.PIPE,
|
||||
stdin = subprocess.PIPE)
|
||||
out,error = [i.replace("\x08","") for i in (process.communicate() if streamIn is None
|
||||
else process.communicate(streamIn.read()))]
|
||||
os.chdir(initialPath)
|
||||
if process.returncode != 0: raise RuntimeError('{} failed with returncode {}'.format(cmd,process.returncode))
|
||||
return out,error
|
||||
|
||||
|
||||
# -----------------------------
|
||||
# Matlab like trigonometric functions that take and return angles in degrees.
|
||||
# -----------------------------
|
||||
|
@ -104,7 +122,9 @@ class extendableOption(Option):
|
|||
class backgroundMessage(threading.Thread):
|
||||
"""reporting with animation to indicate progress"""
|
||||
|
||||
choices = {'bounce': ['_','o','O','°','¯','¯','°','O','o',],
|
||||
choices = {'bounce': ['_', 'o', 'O', u'\u00B0',
|
||||
u'\u203e',u'\u203e',u'\u00B0','O','o','_'],
|
||||
'spin': [u'\u25dc',u'\u25dd',u'\u25de',u'\u25df'],
|
||||
'circle': [u'\u25f4',u'\u25f5',u'\u25f6',u'\u25f7'],
|
||||
'hexagon': [u'\u2b22',u'\u2b23'],
|
||||
'square': [u'\u2596',u'\u2598',u'\u259d',u'\u2597'],
|
||||
|
@ -228,7 +248,7 @@ def leastsqBound(func, x0, args=(), bounds=None, Dfun=None, full_output=0,
|
|||
return shape(res), dt
|
||||
|
||||
def _int2extGrad(p_int, bounds):
|
||||
"""Calculate the gradients of transforming the internal (unconstrained) to external (constained) parameter."""
|
||||
"""Calculate the gradients of transforming the internal (unconstrained) to external (constrained) parameter."""
|
||||
grad = np.empty_like(p_int)
|
||||
for i, (x, bound) in enumerate(zip(p_int, bounds)):
|
||||
lower, upper = bound
|
||||
|
@ -430,22 +450,4 @@ def curve_fit_bound(f, xdata, ydata, p0=None, sigma=None, bounds=None, **kw):
|
|||
else:
|
||||
pcov = np.inf
|
||||
|
||||
if return_full:
|
||||
return popt, pcov, infodict, errmsg, ier
|
||||
else:
|
||||
return popt, pcov
|
||||
|
||||
|
||||
def execute(cmd,streamIn=None,wd='./'):
|
||||
"""executes a command in given directory and returns stdout and stderr for optional stdin"""
|
||||
initialPath=os.getcwd()
|
||||
os.chdir(wd)
|
||||
process = subprocess.Popen(shlex.split(cmd),stdout=subprocess.PIPE,stderr = subprocess.PIPE,stdin=subprocess.PIPE)
|
||||
if streamIn is not None:
|
||||
out,error = [i.replace("\x08","") for i in process.communicate(streamIn.read())]
|
||||
else:
|
||||
out,error =[i.replace("\x08","") for i in process.communicate()]
|
||||
os.chdir(initialPath)
|
||||
if process.returncode !=0: raise RuntimeError(cmd+' failed with returncode '+str(process.returncode))
|
||||
return out,error
|
||||
|
||||
return (popt, pcov, infodict, errmsg, ier) if return_full else (popt, pcov)
|
||||
|
|
|
@ -10,40 +10,35 @@ scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
|||
scriptID = ' '.join([scriptName,damask.version])
|
||||
|
||||
def curlFFT(geomdim,field):
|
||||
grid = np.array(np.shape(field)[2::-1])
|
||||
N = grid.prod() # field size
|
||||
n = np.array(np.shape(field)[3:]).prod() # data size
|
||||
|
||||
if n == 3:
|
||||
dataType = 'vector'
|
||||
elif n == 9:
|
||||
dataType = 'tensor'
|
||||
if n == 3: dataType = 'vector'
|
||||
elif n == 9: dataType = 'tensor'
|
||||
|
||||
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2))
|
||||
curl_fourier = np.zeros(field_fourier.shape,'c16')
|
||||
|
||||
# differentiation in Fourier space
|
||||
k_s = np.zeros([3],'i')
|
||||
TWOPIIMG = (0.0+2.0j*math.pi)
|
||||
TWOPIIMG = 2.0j*math.pi
|
||||
for i in xrange(grid[2]):
|
||||
k_s[0] = i
|
||||
if(grid[2]%2==0 and i == grid[2]//2): # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
k_s[0]=0
|
||||
elif (i > grid[2]//2):
|
||||
k_s[0] = k_s[0] - grid[2]
|
||||
if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
elif i > grid[2]//2: k_s[0] -= grid[2]
|
||||
|
||||
for j in xrange(grid[1]):
|
||||
k_s[1] = j
|
||||
if(grid[1]%2==0 and j == grid[1]//2): # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
k_s[1]=0
|
||||
elif (j > grid[1]//2):
|
||||
k_s[1] = k_s[1] - grid[1]
|
||||
if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
elif j > grid[1]//2: k_s[1] -= grid[1]
|
||||
|
||||
for k in xrange(grid[0]//2+1):
|
||||
k_s[2] = k
|
||||
if(grid[0]%2==0 and k == grid[0]//2): # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
k_s[2]=0
|
||||
if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
|
||||
xi = (k_s/geomdim)[2::-1].astype('c16') # reversing the field input order
|
||||
|
||||
xi = np.array([k_s[2]/geomdim[2]+0.0j,k_s[1]/geomdim[1]+0.j,k_s[0]/geomdim[0]+0.j],'c16')
|
||||
if dataType == 'tensor':
|
||||
for l in xrange(3):
|
||||
curl_fourier[i,j,k,0,l] = ( field_fourier[i,j,k,l,2]*xi[1]\
|
||||
|
@ -100,10 +95,8 @@ if options.vector is None and options.tensor is None:
|
|||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try:
|
||||
table = damask.ASCIItable(name = name,buffered = False)
|
||||
except:
|
||||
continue
|
||||
try: table = damask.ASCIItable(name = name,buffered = False)
|
||||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
# ------------------------------------------ read header ------------------------------------------
|
||||
|
@ -161,9 +154,10 @@ for name in filenames:
|
|||
stack = [table.data]
|
||||
for type, data in items.iteritems():
|
||||
for i,label in enumerate(data['active']):
|
||||
stack.append(curlFFT(size[::-1], # we need to reverse order here, because x
|
||||
table.data[:,data['column'][i]:data['column'][i]+data['dim']]. # is fastest,ie rightmost, but leftmost in
|
||||
reshape([grid[2],grid[1],grid[0]]+data['shape']))) # our x,y,z notation
|
||||
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
|
||||
stack.append(curlFFT(size[::-1],
|
||||
table.data[:,data['column'][i]:data['column'][i]+data['dim']].
|
||||
reshape([grid[2],grid[1],grid[0]]+data['shape'])))
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
|
||||
|
|
|
@ -10,6 +10,7 @@ scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
|||
scriptID = ' '.join([scriptName,damask.version])
|
||||
|
||||
def divFFT(geomdim,field):
|
||||
grid = np.array(np.shape(field)[2::-1])
|
||||
N = grid.prod() # field size
|
||||
n = np.array(np.shape(field)[3:]).prod() # data size
|
||||
|
||||
|
@ -18,27 +19,22 @@ def divFFT(geomdim,field):
|
|||
|
||||
# differentiation in Fourier space
|
||||
k_s=np.zeros([3],'i')
|
||||
TWOPIIMG = (0.0+2.0j*math.pi)
|
||||
TWOPIIMG = 2.0j*math.pi
|
||||
for i in xrange(grid[2]):
|
||||
k_s[0] = i
|
||||
if(grid[2]%2==0 and i == grid[2]//2): # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
k_s[0]=0
|
||||
elif (i > grid[2]//2):
|
||||
k_s[0] = k_s[0] - grid[2]
|
||||
if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
elif i > grid[2]//2: k_s[0] -= grid[2]
|
||||
|
||||
for j in xrange(grid[1]):
|
||||
k_s[1] = j
|
||||
if(grid[1]%2==0 and j == grid[1]//2): # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
k_s[1]=0
|
||||
elif (j > grid[1]//2):
|
||||
k_s[1] = k_s[1] - grid[1]
|
||||
if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
elif j > grid[1]//2: k_s[1] -= grid[1]
|
||||
|
||||
for k in xrange(grid[0]//2+1):
|
||||
k_s[2] = k
|
||||
if(grid[0]%2==0 and k == grid[0]//2): # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
k_s[2]=0
|
||||
if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
|
||||
xi=np.array([k_s[2]/geomdim[2]+0.0j,k_s[1]/geomdim[1]+0.j,k_s[0]/geomdim[0]+0.j],'c16')
|
||||
xi = (k_s/geomdim)[2::-1].astype('c16') # reversing the field input order
|
||||
if n == 9: # tensor, 3x3 -> 3
|
||||
for l in xrange(3):
|
||||
div_fourier[i,j,k,l] = sum(field_fourier[i,j,k,l,0:3]*xi) *TWOPIIMG
|
||||
|
@ -80,15 +76,13 @@ parser.set_defaults(coords = 'ipinitialcoord',
|
|||
if options.vector is None and options.tensor is None:
|
||||
parser.error('no data column specified.')
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
# --- loop over input files ------------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try:
|
||||
table = damask.ASCIItable(name = name,buffered = False)
|
||||
except:
|
||||
continue
|
||||
try: table = damask.ASCIItable(name = name,buffered = False)
|
||||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
# ------------------------------------------ read header ------------------------------------------
|
||||
|
@ -140,16 +134,17 @@ for name in filenames:
|
|||
maxcorner = np.array(map(max,coords))
|
||||
grid = np.array(map(len,coords),'i')
|
||||
size = grid/np.maximum(np.ones(3,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1)
|
||||
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 set to smallest among other spacings
|
||||
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 equal to smallest among other ones
|
||||
|
||||
# ------------------------------------------ process value field -----------------------------------
|
||||
|
||||
stack = [table.data]
|
||||
for type, data in items.iteritems():
|
||||
for i,label in enumerate(data['active']):
|
||||
stack.append(divFFT(size[::-1], # we need to reverse order here, because x
|
||||
table.data[:,data['column'][i]:data['column'][i]+data['dim']]. # is fastest,ie rightmost, but leftmost in
|
||||
reshape([grid[2],grid[1],grid[0]]+data['shape']))) # our x,y,z notation
|
||||
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
|
||||
stack.append(divFFT(size[::-1],
|
||||
table.data[:,data['column'][i]:data['column'][i]+data['dim']].
|
||||
reshape([grid[2],grid[1],grid[0]]+data['shape'])))
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
|
||||
|
|
|
@ -0,0 +1,158 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding: UTF-8 no BOM -*-
|
||||
|
||||
import os,sys,math
|
||||
import numpy as np
|
||||
from optparse import OptionParser
|
||||
import damask
|
||||
|
||||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||
scriptID = ' '.join([scriptName,damask.version])
|
||||
|
||||
def gradFFT(geomdim,field):
|
||||
grid = np.array(np.shape(field)[2::-1])
|
||||
N = grid.prod() # field size
|
||||
n = np.array(np.shape(field)[3:]).prod() # data size
|
||||
if n == 3: dataType = 'vector'
|
||||
elif n == 1: dataType = 'scalar'
|
||||
|
||||
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2))
|
||||
grad_fourier = np.zeros(field_fourier.shape+(3,),'c16')
|
||||
|
||||
# differentiation in Fourier space
|
||||
k_s = np.zeros([3],'i')
|
||||
TWOPIIMG = 2.0j*math.pi
|
||||
for i in xrange(grid[2]):
|
||||
k_s[0] = i
|
||||
if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
elif i > grid[2]//2: k_s[0] -= grid[2]
|
||||
|
||||
for j in xrange(grid[1]):
|
||||
k_s[1] = j
|
||||
if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
elif j > grid[1]//2: k_s[1] -= grid[1]
|
||||
|
||||
for k in xrange(grid[0]//2+1):
|
||||
k_s[2] = k
|
||||
if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
|
||||
xi = (k_s/geomdim)[2::-1].astype('c16') # reversing the field order
|
||||
|
||||
grad_fourier[i,j,k,0,:] = field_fourier[i,j,k,0]*xi *TWOPIIMG # vector field from scalar data
|
||||
|
||||
if dataType == 'vector':
|
||||
grad_fourier[i,j,k,1,:] = field_fourier[i,j,k,1]*xi *TWOPIIMG # tensor field from vector data
|
||||
grad_fourier[i,j,k,2,:] = field_fourier[i,j,k,2]*xi *TWOPIIMG
|
||||
|
||||
return np.fft.fftpack.irfftn(grad_fourier,axes=(0,1,2)).reshape([N,3*n])
|
||||
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
|
||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||
Add column(s) containing gradient of requested column(s).
|
||||
Operates on periodic ordered three-dimensional data sets.
|
||||
Deals with both vector- and scalar fields.
|
||||
|
||||
""", version = scriptID)
|
||||
|
||||
parser.add_option('-c','--coordinates',
|
||||
dest = 'coords',
|
||||
type = 'string', metavar='string',
|
||||
help = 'column heading for coordinates [%default]')
|
||||
parser.add_option('-v','--vector',
|
||||
dest = 'vector',
|
||||
action = 'extend', metavar = '<string LIST>',
|
||||
help = 'heading of columns containing vector field values')
|
||||
parser.add_option('-s','--scalar',
|
||||
dest = 'scalar',
|
||||
action = 'extend', metavar = '<string LIST>',
|
||||
help = 'heading of columns containing scalar field values')
|
||||
|
||||
parser.set_defaults(coords = 'ipinitialcoord',
|
||||
)
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
if options.vector is None and options.scalar is None:
|
||||
parser.error('no data column specified.')
|
||||
|
||||
# --- loop over input files ------------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try: table = damask.ASCIItable(name = name,buffered = False)
|
||||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
# ------------------------------------------ read header ------------------------------------------
|
||||
|
||||
table.head_read()
|
||||
|
||||
# ------------------------------------------ sanity checks ----------------------------------------
|
||||
|
||||
items = {
|
||||
'scalar': {'dim': 1, 'shape': [1], 'labels':options.scalar, 'active':[], 'column': []},
|
||||
'vector': {'dim': 3, 'shape': [3], 'labels':options.vector, 'active':[], 'column': []},
|
||||
}
|
||||
errors = []
|
||||
remarks = []
|
||||
column = {}
|
||||
|
||||
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
|
||||
else: colCoord = table.label_index(options.coords)
|
||||
|
||||
for type, data in items.iteritems():
|
||||
for what in (data['labels'] if data['labels'] is not None else []):
|
||||
dim = table.label_dimension(what)
|
||||
if dim != data['dim']: remarks.append('column {} is not a {}.'.format(what,type))
|
||||
else:
|
||||
items[type]['active'].append(what)
|
||||
items[type]['column'].append(table.label_index(what))
|
||||
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
if errors != []:
|
||||
damask.util.croak(errors)
|
||||
table.close(dismiss = True)
|
||||
continue
|
||||
|
||||
# ------------------------------------------ assemble header --------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
for type, data in items.iteritems():
|
||||
for label in data['active']:
|
||||
table.labels_append(['{}_gradFFT({})'.format(i+1,label) for i in xrange(3 * data['dim'])]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# --------------- figure out size and grid ---------------------------------------------------------
|
||||
|
||||
table.data_readArray()
|
||||
|
||||
coords = [np.unique(table.data[:,colCoord+i]) for i in xrange(3)]
|
||||
mincorner = np.array(map(min,coords))
|
||||
maxcorner = np.array(map(max,coords))
|
||||
grid = np.array(map(len,coords),'i')
|
||||
size = grid/np.maximum(np.ones(3,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1)
|
||||
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1]))
|
||||
|
||||
# ------------------------------------------ process value field -----------------------------------
|
||||
|
||||
stack = [table.data]
|
||||
for type, data in items.iteritems():
|
||||
for i,label in enumerate(data['active']):
|
||||
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
|
||||
stack.append(gradFFT(size[::-1],
|
||||
table.data[:,data['column'][i]:data['column'][i]+data['dim']].
|
||||
reshape([grid[2],grid[1],grid[0]]+data['shape'])))
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
|
||||
if len(stack) > 1: table.data = np.hstack(tuple(stack))
|
||||
table.data_writeArray('%.12g')
|
||||
|
||||
# ------------------------------------------ output finalization -----------------------------------
|
||||
|
||||
table.close() # close input ASCII table (works for stdin)
|
|
@ -35,7 +35,7 @@ Filter rows according to condition and columns by either white or black listing.
|
|||
|
||||
Examples:
|
||||
Every odd row if x coordinate is positive -- " #ip.x# >= 0.0 and #_row_#%2 == 1 ).
|
||||
All rows where label 'foo' equals 'bar' -- " #foo# == \"bar\" "
|
||||
All rows where label 'foo' equals 'bar' -- " #s#foo# == 'bar' "
|
||||
|
||||
""", version = scriptID)
|
||||
|
||||
|
|
|
@ -151,7 +151,7 @@ for name in filenames:
|
|||
writer = vtk.vtkXMLRectilinearGridWriter()
|
||||
writer.SetDataModeToBinary()
|
||||
writer.SetCompressorTypeToZLib()
|
||||
writer.SetFileName(os.path.splitext(options.vtk)[0]+('' if options.inplace else '_added.vtr'))
|
||||
writer.SetFileName(os.path.splitext(options.vtk)[0]+('.vtr' if options.inplace else '_added.vtr'))
|
||||
if vtk.VTK_MAJOR_VERSION <= 5: writer.SetInput(rGrid)
|
||||
else: writer.SetInputData(rGrid)
|
||||
writer.Write()
|
||||
|
|
|
@ -28,24 +28,32 @@ parser.add_option('-o', '--offset',
|
|||
help = 'a,b,c offset from old to new origin of grid [%default]')
|
||||
parser.add_option('-f', '--fill',
|
||||
dest = 'fill',
|
||||
type = 'int', metavar = 'int',
|
||||
type = 'float', metavar = 'float',
|
||||
help = '(background) canvas grain index. "0" selects maximum microstructure index + 1 [%default]')
|
||||
parser.add_option('--float',
|
||||
dest = 'real',
|
||||
action = 'store_true',
|
||||
help = 'input data is float [%default]')
|
||||
|
||||
parser.set_defaults(grid = ['0','0','0'],
|
||||
offset = (0,0,0),
|
||||
fill = 0,
|
||||
real = False,
|
||||
)
|
||||
|
||||
(options, filenames) = parser.parse_args()
|
||||
|
||||
datatype = 'f' if options.real else 'i'
|
||||
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try:
|
||||
table = damask.ASCIItable(name = name,
|
||||
buffered = False, labeled = False)
|
||||
try: table = damask.ASCIItable(name = name,
|
||||
buffered = False,
|
||||
labeled = False)
|
||||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
|
@ -71,7 +79,7 @@ for name in filenames:
|
|||
|
||||
# --- read data ------------------------------------------------------------------------------------
|
||||
|
||||
microstructure = table.microstructure_read(info['grid']).reshape(info['grid'],order='F') # read microstructure
|
||||
microstructure = table.microstructure_read(info['grid'],datatype).reshape(info['grid'],order='F') # read microstructure
|
||||
|
||||
# --- do work ------------------------------------------------------------------------------------
|
||||
|
||||
|
@ -85,8 +93,8 @@ for name in filenames:
|
|||
else int(n) for o,n in zip(info['grid'],options.grid)],'i')
|
||||
newInfo['grid'] = np.where(newInfo['grid'] > 0, newInfo['grid'],info['grid'])
|
||||
|
||||
microstructure_cropped = np.zeros(newInfo['grid'],'i')
|
||||
microstructure_cropped.fill(options.fill if options.fill > 0 else microstructure.max()+1)
|
||||
microstructure_cropped = np.zeros(newInfo['grid'],datatype)
|
||||
microstructure_cropped.fill(options.fill if options.real or options.fill > 0 else microstructure.max()+1)
|
||||
xindex = list(set(xrange(options.offset[0],options.offset[0]+newInfo['grid'][0])) & \
|
||||
set(xrange(info['grid'][0])))
|
||||
yindex = list(set(xrange(options.offset[1],options.offset[1]+newInfo['grid'][1])) & \
|
||||
|
@ -152,9 +160,9 @@ for name in filenames:
|
|||
|
||||
# --- write microstructure information ------------------------------------------------------------
|
||||
|
||||
formatwidth = int(math.floor(math.log10(microstructure_cropped.max())+1))
|
||||
format = '%g' if options.real else '%{}i'.format(int(math.floor(math.log10(microstructure_cropped.max())+1)))
|
||||
table.data = microstructure_cropped.reshape((newInfo['grid'][0],newInfo['grid'][1]*newInfo['grid'][2]),order='F').transpose()
|
||||
table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
|
||||
table.data_writeArray(format,delimiter=' ')
|
||||
|
||||
# --- output finalization --------------------------------------------------------------------------
|
||||
|
||||
|
|
|
@ -54,12 +54,25 @@ for name in filenames:
|
|||
errors = []
|
||||
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
|
||||
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
|
||||
|
||||
#--- read microstructure information --------------------------------------------------------------
|
||||
|
||||
if options.data:
|
||||
microstructure,ok = table.microstructure_read(info['grid'],strict = True) # read microstructure
|
||||
|
||||
if ok:
|
||||
structure = vtk.vtkIntArray()
|
||||
structure.SetName('Microstructures')
|
||||
for idx in microstructure: structure.InsertNextValue(idx)
|
||||
|
||||
else: errors.append('mismatch between data and grid dimension.')
|
||||
|
||||
if errors != []:
|
||||
damask.util.croak(errors)
|
||||
table.close(dismiss = True)
|
||||
continue
|
||||
|
||||
# --- generate VTK rectilinear grid --------------------------------------------------------------------------------
|
||||
# --- generate VTK rectilinear grid ---------------------------------------------------------------
|
||||
|
||||
grid = vtk.vtkRectilinearGrid()
|
||||
grid.SetDimensions([x+1 for x in info['grid']])
|
||||
|
@ -72,18 +85,8 @@ for name in filenames:
|
|||
elif i == 1: grid.SetYCoordinates(temp)
|
||||
elif i == 2: grid.SetZCoordinates(temp)
|
||||
|
||||
#--- read microstructure information --------------------------------------------------------------
|
||||
|
||||
if options.data:
|
||||
microstructure = table.microstructure_read(info['grid']) # read microstructure
|
||||
|
||||
structure = vtk.vtkIntArray()
|
||||
structure.SetName('Microstructures')
|
||||
|
||||
for idx in microstructure:
|
||||
structure.InsertNextValue(idx)
|
||||
|
||||
grid.GetCellData().AddArray(structure)
|
||||
if options.data: grid.GetCellData().AddArray(structure)
|
||||
|
||||
# --- write data -----------------------------------------------------------------------------------
|
||||
if name:
|
||||
|
|
|
@ -18,6 +18,14 @@ Unpack geometry files containing ranges "a to b" and/or "n of x" multiples (excl
|
|||
|
||||
""", version = scriptID)
|
||||
|
||||
parser.add_option('-1', '--onedimensional',
|
||||
dest = 'oneD',
|
||||
action = 'store_true',
|
||||
help = 'output geom file with one-dimensional data arrangement')
|
||||
|
||||
parser.set_defaults(oneD = False,
|
||||
)
|
||||
|
||||
(options, filenames) = parser.parse_args()
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
|
@ -69,7 +77,8 @@ for name in filenames:
|
|||
|
||||
microstructure = table.microstructure_read(info['grid']) # read microstructure
|
||||
formatwidth = int(math.floor(math.log10(microstructure.max())+1)) # efficient number printing format
|
||||
table.data = microstructure.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
|
||||
table.data = microstructure if options.oneD else \
|
||||
microstructure.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
|
||||
table.data_writeArray('%%%ii'%(formatwidth),delimiter = ' ')
|
||||
|
||||
#--- output finalization --------------------------------------------------------------------------
|
||||
|
|
Loading…
Reference in New Issue