Merge branch 'development' into CCodeUse
This commit is contained in:
commit
ca5ed22d66
|
@ -3569,11 +3569,7 @@ logical function crystallite_integrateStress(&
|
||||||
maxticks
|
maxticks
|
||||||
|
|
||||||
external :: &
|
external :: &
|
||||||
#if(FLOAT==8)
|
|
||||||
dgesv
|
dgesv
|
||||||
#elif(FLOAT==4)
|
|
||||||
sgesv
|
|
||||||
#endif
|
|
||||||
|
|
||||||
!* be pessimistic
|
!* be pessimistic
|
||||||
crystallite_integrateStress = .false.
|
crystallite_integrateStress = .false.
|
||||||
|
@ -3756,11 +3752,7 @@ logical function crystallite_integrateStress(&
|
||||||
- math_Plain3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dT3333,dT_dFe3333),dFe_dLp3333))
|
- math_Plain3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dT3333,dT_dFe3333),dFe_dLp3333))
|
||||||
dRLp_dLp2 = dRLp_dLp ! will be overwritten in first call to LAPACK routine
|
dRLp_dLp2 = dRLp_dLp ! will be overwritten in first call to LAPACK routine
|
||||||
work = math_plain33to9(residuumLp)
|
work = math_plain33to9(residuumLp)
|
||||||
#if(FLOAT==8)
|
|
||||||
call dgesv(9,1,dRLp_dLp2,9,ipiv,work,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp
|
call dgesv(9,1,dRLp_dLp2,9,ipiv,work,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp
|
||||||
#elif(FLOAT==4)
|
|
||||||
call sgesv(9,1,dRLp_dLp2,9,ipiv,work,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp
|
|
||||||
#endif
|
|
||||||
if (ierr /= 0_pInt) then
|
if (ierr /= 0_pInt) then
|
||||||
#ifndef _OPENMP
|
#ifndef _OPENMP
|
||||||
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
||||||
|
@ -3849,31 +3841,27 @@ logical function crystallite_integrateStress(&
|
||||||
math_mul3333xx3333(dT_dFi3333, dFi_dLi3333))) &
|
math_mul3333xx3333(dT_dFi3333, dFi_dLi3333))) &
|
||||||
- math_Plain3333to99(math_mul3333xx3333(dLi_dFi3333, dFi_dLi3333))
|
- math_Plain3333to99(math_mul3333xx3333(dLi_dFi3333, dFi_dLi3333))
|
||||||
work = math_plain33to9(residuumLi)
|
work = math_plain33to9(residuumLi)
|
||||||
#if(FLOAT==8)
|
|
||||||
call dgesv(9,1,dRLi_dLi,9,ipiv,work,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
|
call dgesv(9,1,dRLi_dLi,9,ipiv,work,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
|
||||||
#elif(FLOAT==4)
|
if (ierr /= 0_pInt) then
|
||||||
call sgesv(9,1,dRLi_dLi,9,ipiv,work,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
|
|
||||||
#endif
|
|
||||||
if (ierr /= 0_pInt) then
|
|
||||||
#ifndef _OPENMP
|
#ifndef _OPENMP
|
||||||
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
||||||
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on dR/dLi inversion at el ip ipc ', &
|
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on dR/dLi inversion at el ip ipc ', &
|
||||||
el,mesh_element(1,el),ip,ipc
|
el,mesh_element(1,el),ip,ipc
|
||||||
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
||||||
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g)&
|
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g)&
|
||||||
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
||||||
write(6,*)
|
write(6,*)
|
||||||
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dR_dLi',transpose(dRLi_dLi)
|
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dR_dLi',transpose(dRLi_dLi)
|
||||||
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dFe_dLi',transpose(math_Plain3333to99(dFe_dLi3333))
|
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dFe_dLi',transpose(math_Plain3333to99(dFe_dLi3333))
|
||||||
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dT_dFi_constitutive',transpose(math_Plain3333to99(dT_dFi3333))
|
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dT_dFi_constitutive',transpose(math_Plain3333to99(dT_dFi3333))
|
||||||
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dLi_dT_constitutive',transpose(math_Plain3333to99(dLi_dT3333))
|
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dLi_dT_constitutive',transpose(math_Plain3333to99(dLi_dT3333))
|
||||||
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Li_constitutive',math_transpose33(Li_constitutive)
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Li_constitutive',math_transpose33(Li_constitutive)
|
||||||
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Liguess',math_transpose33(Liguess)
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Liguess',math_transpose33(Liguess)
|
||||||
endif
|
|
||||||
endif
|
endif
|
||||||
#endif
|
|
||||||
return
|
|
||||||
endif
|
endif
|
||||||
|
#endif
|
||||||
|
return
|
||||||
|
endif
|
||||||
|
|
||||||
deltaLi = - math_plain9to33(work)
|
deltaLi = - math_plain9to33(work)
|
||||||
endif
|
endif
|
||||||
|
|
|
@ -2182,7 +2182,7 @@ pure function lattice_qDisorientation(Q1, Q2, struct)
|
||||||
real(pReal), dimension(4) :: lattice_qDisorientation
|
real(pReal), dimension(4) :: lattice_qDisorientation
|
||||||
real(pReal), dimension(4), intent(in) :: &
|
real(pReal), dimension(4), intent(in) :: &
|
||||||
Q1, & ! 1st orientation
|
Q1, & ! 1st orientation
|
||||||
Q2 ! 2nd orientation
|
Q2 ! 2nd orientation
|
||||||
integer(kind(LATTICE_undefined_ID)), optional, intent(in) :: & ! if given, symmetries between the two orientation will be considered
|
integer(kind(LATTICE_undefined_ID)), optional, intent(in) :: & ! if given, symmetries between the two orientation will be considered
|
||||||
struct
|
struct
|
||||||
|
|
||||||
|
|
|
@ -186,10 +186,6 @@ module math
|
||||||
halton_seed_set, &
|
halton_seed_set, &
|
||||||
i_to_halton, &
|
i_to_halton, &
|
||||||
prime
|
prime
|
||||||
external :: &
|
|
||||||
dsyev, &
|
|
||||||
dgetrf, &
|
|
||||||
dgetri
|
|
||||||
|
|
||||||
contains
|
contains
|
||||||
|
|
||||||
|
@ -811,15 +807,13 @@ function math_invSym3333(A)
|
||||||
integer(pInt), dimension(6) :: ipiv6
|
integer(pInt), dimension(6) :: ipiv6
|
||||||
real(pReal), dimension(6,6) :: temp66_Real
|
real(pReal), dimension(6,6) :: temp66_Real
|
||||||
real(pReal), dimension(6) :: work6
|
real(pReal), dimension(6) :: work6
|
||||||
|
external :: &
|
||||||
|
dgetrf, &
|
||||||
|
dgetri
|
||||||
|
|
||||||
temp66_real = math_Mandel3333to66(A)
|
temp66_real = math_Mandel3333to66(A)
|
||||||
#if(FLOAT==8)
|
|
||||||
call dgetrf(6,6,temp66_real,6,ipiv6,ierr)
|
call dgetrf(6,6,temp66_real,6,ipiv6,ierr)
|
||||||
call dgetri(6,temp66_real,6,ipiv6,work6,6,ierr)
|
call dgetri(6,temp66_real,6,ipiv6,work6,6,ierr)
|
||||||
#elif(FLOAT==4)
|
|
||||||
call sgetrf(6,6,temp66_real,6,ipiv6,ierr)
|
|
||||||
call sgetri(6,temp66_real,6,ipiv6,work6,6,ierr)
|
|
||||||
#endif
|
|
||||||
if (ierr == 0_pInt) then
|
if (ierr == 0_pInt) then
|
||||||
math_invSym3333 = math_Mandel66to3333(temp66_real)
|
math_invSym3333 = math_Mandel66to3333(temp66_real)
|
||||||
else
|
else
|
||||||
|
@ -847,13 +841,8 @@ subroutine math_invert(myDim,A, InvA, error)
|
||||||
logical, intent(out) :: error
|
logical, intent(out) :: error
|
||||||
|
|
||||||
invA = A
|
invA = A
|
||||||
#if(FLOAT==8)
|
|
||||||
call dgetrf(myDim,myDim,invA,myDim,ipiv,ierr)
|
call dgetrf(myDim,myDim,invA,myDim,ipiv,ierr)
|
||||||
call dgetri(myDim,InvA,myDim,ipiv,work,myDim,ierr)
|
call dgetri(myDim,InvA,myDim,ipiv,work,myDim,ierr)
|
||||||
#elif(FLOAT==4)
|
|
||||||
call sgetrf(myDim,myDim,invA,myDim,ipiv,ierr)
|
|
||||||
call sgetri(myDim,InvA,myDim,ipiv,work,myDim,ierr)
|
|
||||||
#endif
|
|
||||||
error = merge(.true.,.false., ierr /= 0_pInt) ! http://fortraninacworld.blogspot.de/2012/12/ternary-operator.html
|
error = merge(.true.,.false., ierr /= 0_pInt) ! http://fortraninacworld.blogspot.de/2012/12/ternary-operator.html
|
||||||
|
|
||||||
end subroutine math_invert
|
end subroutine math_invert
|
||||||
|
@ -1937,16 +1926,13 @@ subroutine math_eigenValuesVectorsSym(m,values,vectors,error)
|
||||||
real(pReal), dimension(size(m,1)), intent(out) :: values
|
real(pReal), dimension(size(m,1)), intent(out) :: values
|
||||||
real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: vectors
|
real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: vectors
|
||||||
logical, intent(out) :: error
|
logical, intent(out) :: error
|
||||||
|
|
||||||
integer(pInt) :: info
|
integer(pInt) :: info
|
||||||
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
||||||
|
external :: &
|
||||||
|
dsyev
|
||||||
|
|
||||||
vectors = m ! copy matrix to input (doubles as output) array
|
vectors = m ! copy matrix to input (doubles as output) array
|
||||||
#if(FLOAT==8)
|
|
||||||
call dsyev('V','U',size(m,1),vectors,size(m,1),values,work,(64+2)*size(m,1),info)
|
call dsyev('V','U',size(m,1),vectors,size(m,1),values,work,(64+2)*size(m,1),info)
|
||||||
#elif(FLOAT==4)
|
|
||||||
call ssyev('V','U',size(m,1),vectors,size(m,1),values,work,(64+2)*size(m,1),info)
|
|
||||||
#endif
|
|
||||||
error = (info == 0_pInt)
|
error = (info == 0_pInt)
|
||||||
|
|
||||||
end subroutine math_eigenValuesVectorsSym
|
end subroutine math_eigenValuesVectorsSym
|
||||||
|
@ -2135,16 +2121,13 @@ function math_eigenvaluesSym(m)
|
||||||
real(pReal), dimension(:,:), intent(in) :: m
|
real(pReal), dimension(:,:), intent(in) :: m
|
||||||
real(pReal), dimension(size(m,1)) :: math_eigenvaluesSym
|
real(pReal), dimension(size(m,1)) :: math_eigenvaluesSym
|
||||||
real(pReal), dimension(size(m,1),size(m,1)) :: vectors
|
real(pReal), dimension(size(m,1),size(m,1)) :: vectors
|
||||||
|
|
||||||
integer(pInt) :: info
|
integer(pInt) :: info
|
||||||
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
||||||
|
external :: &
|
||||||
|
dsyev
|
||||||
|
|
||||||
vectors = m ! copy matrix to input (doubles as output) array
|
vectors = m ! copy matrix to input (doubles as output) array
|
||||||
#if(FLOAT==8)
|
|
||||||
call dsyev('N','U',size(m,1),vectors,size(m,1),math_eigenvaluesSym,work,(64+2)*size(m,1),info)
|
call dsyev('N','U',size(m,1),vectors,size(m,1),math_eigenvaluesSym,work,(64+2)*size(m,1),info)
|
||||||
#elif(FLOAT==4)
|
|
||||||
call ssyev('N','U',size(m,1),vectors,size(m,1),math_eigenvaluesSym,work,(64+2)*size(m,1),info)
|
|
||||||
#endif
|
|
||||||
if (info /= 0_pInt) math_eigenvaluesSym = DAMASK_NaN
|
if (info /= 0_pInt) math_eigenvaluesSym = DAMASK_NaN
|
||||||
|
|
||||||
end function math_eigenvaluesSym
|
end function math_eigenvaluesSym
|
||||||
|
|
|
@ -4,9 +4,9 @@
|
||||||
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
|
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
|
||||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||||
!> @author Luv Sharma, Max-Planck-Institut für Eisenforschung GmbH
|
!> @author Luv Sharma, Max-Planck-Institut für Eisenforschung GmbH
|
||||||
!> @brief setting precision for real and int type depending on makros "FLOAT" and "INT"
|
!> @brief setting precision for real and int type
|
||||||
!> @details setting precision for real and int type and for DAMASK_NaN. Definition is made
|
!> @details setting precision for real and int type and for DAMASK_NaN. Definition is made
|
||||||
!! depending on makros "FLOAT" and "INT" defined during compilation
|
!! depending on makro "INT" defined during compilation
|
||||||
!! for details on NaN see https://software.intel.com/en-us/forums/topic/294680
|
!! for details on NaN see https://software.intel.com/en-us/forums/topic/294680
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
module prec
|
module prec
|
||||||
|
@ -18,18 +18,7 @@ module prec
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
private
|
private
|
||||||
#if (FLOAT==4)
|
#if (FLOAT==8)
|
||||||
#if defined(Spectral) || defined(FEM)
|
|
||||||
SPECTRAL SOLVER AND OWN FEM DO NOT SUPPORT SINGLE PRECISION, STOPPING COMPILATION
|
|
||||||
#endif
|
|
||||||
integer, parameter, public :: pReal = 4 !< floating point single precition (was selected_real_kind(6,37), number with 6 significant digits, up to 1e+-37)
|
|
||||||
#ifdef __INTEL_COMPILER
|
|
||||||
real(pReal), parameter, public :: DAMASK_NaN = Z'7F800001' !< quiet NaN for single precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran)
|
|
||||||
#endif
|
|
||||||
#ifdef __GFORTRAN__
|
|
||||||
real(pReal), parameter, public :: DAMASK_NaN = real(Z'7F800001', pReal) !< quiet NaN for single precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran)
|
|
||||||
#endif
|
|
||||||
#elif (FLOAT==8)
|
|
||||||
integer, parameter, public :: pReal = 8 !< floating point double precision (was selected_real_kind(15,300), number with 15 significant digits, up to 1e+-300)
|
integer, parameter, public :: pReal = 8 !< floating point double precision (was selected_real_kind(15,300), number with 15 significant digits, up to 1e+-300)
|
||||||
#ifdef __INTEL_COMPILER
|
#ifdef __INTEL_COMPILER
|
||||||
real(pReal), parameter, public :: DAMASK_NaN = Z'7FF8000000000000' !< quiet NaN for double precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran)
|
real(pReal), parameter, public :: DAMASK_NaN = Z'7FF8000000000000' !< quiet NaN for double precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran)
|
||||||
|
@ -172,9 +161,9 @@ end subroutine prec_init
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief figures out if a floating point number is NaN
|
!> @brief figures out if a floating point number is NaN
|
||||||
! basically just a small wrapper, because gfortran < 4.9 does not have the IEEE module
|
! basically just a small wrapper, because gfortran < 5.0 does not have the IEEE module
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
logical elemental function prec_isNaN(a)
|
logical elemental pure function prec_isNaN(a)
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), intent(in) :: a
|
real(pReal), intent(in) :: a
|
||||||
|
@ -187,4 +176,30 @@ logical elemental function prec_isNaN(a)
|
||||||
#endif
|
#endif
|
||||||
end function prec_isNaN
|
end function prec_isNaN
|
||||||
|
|
||||||
|
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
!> @brief equality comparison for double precision
|
||||||
|
! replaces "==" but for certain (relative) tolerance. Counterpart to dNeq
|
||||||
|
! http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
logical elemental pure function dEq(a,b,tol)
|
||||||
|
real(pReal), intent(in) :: a,b
|
||||||
|
real(pReal), intent(in), optional :: tol
|
||||||
|
real(pReal), parameter :: eps = 2.2204460492503131E-16 ! DBL_EPSILON in C
|
||||||
|
dEq = merge(.True., .False.,abs(a-b) <= merge(tol,eps,present(tol))*maxval(abs([a,b])))
|
||||||
|
end function dEq
|
||||||
|
|
||||||
|
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
!> @brief inequality comparison for double precision
|
||||||
|
! replaces "!=" but for certain (relative) tolerance. Counterpart to dEq
|
||||||
|
! http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
logical elemental pure function dNeq(a,b,tol)
|
||||||
|
real(pReal), intent(in) :: a,b
|
||||||
|
real(pReal), intent(in), optional :: tol
|
||||||
|
real(pReal), parameter :: eps = 2.2204460492503131E-16 ! DBL_EPSILON in C
|
||||||
|
dNeq = merge(.False., .True.,abs(a-b) <= merge(tol,eps,present(tol))*maxval(abs([a,b])))
|
||||||
|
end function dNeq
|
||||||
|
|
||||||
end module prec
|
end module prec
|
||||||
|
|
|
@ -517,22 +517,27 @@ class ASCIItable():
|
||||||
|
|
||||||
# ------------------------------------------------------------------
|
# ------------------------------------------------------------------
|
||||||
def microstructure_read(self,
|
def microstructure_read(self,
|
||||||
grid):
|
grid,
|
||||||
|
type = 'i',
|
||||||
|
strict = False):
|
||||||
"""read microstructure data (from .geom format)"""
|
"""read microstructure data (from .geom format)"""
|
||||||
N = grid.prod() # expected number of microstructure indices in data
|
def datatype(item):
|
||||||
microstructure = np.zeros(N,'i') # initialize as flat array
|
return int(item) if type.lower() == 'i' else float(item)
|
||||||
|
|
||||||
|
N = grid.prod() # expected number of microstructure indices in data
|
||||||
|
microstructure = np.zeros(N,type) # initialize as flat array
|
||||||
|
|
||||||
i = 0
|
i = 0
|
||||||
while i < N and self.data_read():
|
while i < N and self.data_read():
|
||||||
items = self.data
|
items = self.data
|
||||||
if len(items) > 2:
|
if len(items) > 2:
|
||||||
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
|
if items[1].lower() == 'of': items = np.ones(datatype(items[0]))*datatype(items[2])
|
||||||
elif items[1].lower() == 'to': items = range(int(items[0]),1+int(items[2]))
|
elif items[1].lower() == 'to': items = np.arange(datatype(items[0]),1+datatype(items[2]))
|
||||||
else: items = map(int,items)
|
else: items = map(datatype,items)
|
||||||
else: items = map(int,items)
|
else: items = map(datatype,items)
|
||||||
|
|
||||||
s = min(len(items), N-i) # prevent overflow of microstructure array
|
s = min(len(items), N-i) # prevent overflow of microstructure array
|
||||||
microstructure[i:i+s] = items[:s]
|
microstructure[i:i+s] = items[:s]
|
||||||
i += s
|
i += len(items)
|
||||||
|
|
||||||
return microstructure
|
return (microstructure, i == N and not self.data_read()) if strict else microstructure # check for proper point count and end of file
|
||||||
|
|
|
@ -22,11 +22,11 @@ class Test():
|
||||||
|
|
||||||
logger = logging.getLogger()
|
logger = logging.getLogger()
|
||||||
logger.setLevel(0)
|
logger.setLevel(0)
|
||||||
fh = logging.FileHandler('test.log') # create file handler which logs even debug messages
|
fh = logging.FileHandler('test.log') # create file handler which logs even debug messages
|
||||||
fh.setLevel(logging.DEBUG)
|
fh.setLevel(logging.DEBUG)
|
||||||
full = logging.Formatter('%(asctime)s - %(levelname)s: \n%(message)s')
|
full = logging.Formatter('%(asctime)s - %(levelname)s: \n%(message)s')
|
||||||
fh.setFormatter(full)
|
fh.setFormatter(full)
|
||||||
ch = logging.StreamHandler(stream=sys.stdout) # create console handler with a higher log level
|
ch = logging.StreamHandler(stream=sys.stdout) # create console handler with a higher log level
|
||||||
ch.setLevel(logging.INFO)
|
ch.setLevel(logging.INFO)
|
||||||
# create formatter and add it to the handlers
|
# create formatter and add it to the handlers
|
||||||
plain = logging.Formatter('%(message)s')
|
plain = logging.Formatter('%(message)s')
|
||||||
|
@ -60,10 +60,10 @@ class Test():
|
||||||
try:
|
try:
|
||||||
self.postprocess(variant)
|
self.postprocess(variant)
|
||||||
if not self.compare(variant):
|
if not self.compare(variant):
|
||||||
return variant+1 # return culprit
|
return variant+1 # return culprit
|
||||||
except Exception as e :
|
except Exception as e :
|
||||||
logging.critical('\nWARNING:\n %s\n'%e)
|
logging.critical('\nWARNING:\n {}\n'.format(e))
|
||||||
return variant+1 # return culprit
|
return variant+1 # return culprit
|
||||||
return 0
|
return 0
|
||||||
else:
|
else:
|
||||||
if not self.testPossible(): return -1
|
if not self.testPossible(): return -1
|
||||||
|
@ -74,13 +74,13 @@ class Test():
|
||||||
self.prepare(variant)
|
self.prepare(variant)
|
||||||
self.run(variant)
|
self.run(variant)
|
||||||
self.postprocess(variant)
|
self.postprocess(variant)
|
||||||
if self.updateRequested: # update requested
|
if self.updateRequested: # update requested
|
||||||
self.update(variant)
|
self.update(variant)
|
||||||
elif not (self.options.accept or self.compare(variant)): # no update, do comparison
|
elif not (self.options.accept or self.compare(variant)): # no update, do comparison
|
||||||
return variant+1 # return culprit
|
return variant+1 # return culprit
|
||||||
except Exception as e :
|
except Exception as e :
|
||||||
logging.critical('\nWARNING:\n %s\n'%e)
|
logging.critical('\nWARNING:\n {}\n'.format(e))
|
||||||
return variant+1 # return culprit
|
return variant+1 # return culprit
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
def testPossible(self):
|
def testPossible(self):
|
||||||
|
@ -94,13 +94,13 @@ class Test():
|
||||||
try:
|
try:
|
||||||
shutil.rmtree(self.dirCurrent())
|
shutil.rmtree(self.dirCurrent())
|
||||||
except:
|
except:
|
||||||
logging.warning('removal of directory "%s" not possible...'%(self.dirCurrent()))
|
logging.warning('removal of directory "{}" not possible...'.format(self.dirCurrent()))
|
||||||
status = status and False
|
status = status and False
|
||||||
|
|
||||||
try:
|
try:
|
||||||
os.mkdir(self.dirCurrent())
|
os.mkdir(self.dirCurrent())
|
||||||
except:
|
except:
|
||||||
logging.critical('creation of directory "%s" failed...'%(self.dirCurrent()))
|
logging.critical('creation of directory "{}" failed...'.format(self.dirCurrent()))
|
||||||
status = status and False
|
status = status and False
|
||||||
|
|
||||||
return status
|
return status
|
||||||
|
@ -193,19 +193,19 @@ class Test():
|
||||||
try:
|
try:
|
||||||
shutil.copy2(self.fileInReference(file),self.fileInCurrent(targetfiles[i]))
|
shutil.copy2(self.fileInReference(file),self.fileInCurrent(targetfiles[i]))
|
||||||
except:
|
except:
|
||||||
logging.critical('Reference2Current: Unable to copy file %s'%file)
|
logging.critical('Reference2Current: Unable to copy file "{}"'.format(file))
|
||||||
|
|
||||||
|
|
||||||
def copy_Base2Current(self,sourceDir,sourcefiles=[],targetfiles=[]):
|
def copy_Base2Current(self,sourceDir,sourcefiles=[],targetfiles=[]):
|
||||||
|
|
||||||
source=os.path.normpath(os.path.join(self.dirBase,'../../../'+sourceDir))
|
source=os.path.normpath(os.path.join(self.dirBase,'../../..',sourceDir))
|
||||||
if len(targetfiles) == 0: targetfiles = sourcefiles
|
if len(targetfiles) == 0: targetfiles = sourcefiles
|
||||||
for i,file in enumerate(sourcefiles):
|
for i,file in enumerate(sourcefiles):
|
||||||
try:
|
try:
|
||||||
shutil.copy2(os.path.join(source,file),self.fileInCurrent(targetfiles[i]))
|
shutil.copy2(os.path.join(source,file),self.fileInCurrent(targetfiles[i]))
|
||||||
except:
|
except:
|
||||||
logging.error(os.path.join(source,file))
|
logging.error(os.path.join(source,file))
|
||||||
logging.critical('Base2Current: Unable to copy file %s'%file)
|
logging.critical('Base2Current: Unable to copy file "{}"'.format(file))
|
||||||
|
|
||||||
|
|
||||||
def copy_Current2Reference(self,sourcefiles=[],targetfiles=[]):
|
def copy_Current2Reference(self,sourcefiles=[],targetfiles=[]):
|
||||||
|
@ -215,7 +215,7 @@ class Test():
|
||||||
try:
|
try:
|
||||||
shutil.copy2(self.fileInCurrent(file),self.fileInReference(targetfiles[i]))
|
shutil.copy2(self.fileInCurrent(file),self.fileInReference(targetfiles[i]))
|
||||||
except:
|
except:
|
||||||
logging.critical('Current2Reference: Unable to copy file %s'%file)
|
logging.critical('Current2Reference: Unable to copy file "{}"'.format(file))
|
||||||
|
|
||||||
|
|
||||||
def copy_Proof2Current(self,sourcefiles=[],targetfiles=[]):
|
def copy_Proof2Current(self,sourcefiles=[],targetfiles=[]):
|
||||||
|
@ -225,7 +225,7 @@ class Test():
|
||||||
try:
|
try:
|
||||||
shutil.copy2(self.fileInProof(file),self.fileInCurrent(targetfiles[i]))
|
shutil.copy2(self.fileInProof(file),self.fileInCurrent(targetfiles[i]))
|
||||||
except:
|
except:
|
||||||
logging.critical('Proof2Current: Unable to copy file %s'%file)
|
logging.critical('Proof2Current: Unable to copy file "{}"'.format(file))
|
||||||
|
|
||||||
|
|
||||||
def copy_Current2Current(self,sourcefiles=[],targetfiles=[]):
|
def copy_Current2Current(self,sourcefiles=[],targetfiles=[]):
|
||||||
|
@ -234,7 +234,7 @@ class Test():
|
||||||
try:
|
try:
|
||||||
shutil.copy2(self.fileInReference(file),self.fileInCurrent(targetfiles[i]))
|
shutil.copy2(self.fileInReference(file),self.fileInCurrent(targetfiles[i]))
|
||||||
except:
|
except:
|
||||||
logging.critical('Current2Current: Unable to copy file %s'%file)
|
logging.critical('Current2Current: Unable to copy file "{}"'.format(file))
|
||||||
|
|
||||||
|
|
||||||
def execute_inCurrentDir(self,cmd,streamIn=None):
|
def execute_inCurrentDir(self,cmd,streamIn=None):
|
||||||
|
@ -252,7 +252,7 @@ class Test():
|
||||||
def compare_Array(self,File1,File2):
|
def compare_Array(self,File1,File2):
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
logging.info('comparing\n '+File1+'\n '+File2)
|
logging.info('\n '.join(['comparing',File1,File2]))
|
||||||
table1 = damask.ASCIItable(name=File1,readonly=True)
|
table1 = damask.ASCIItable(name=File1,readonly=True)
|
||||||
table1.head_read()
|
table1.head_read()
|
||||||
len1=len(table1.info)+2
|
len1=len(table1.info)+2
|
||||||
|
@ -270,8 +270,9 @@ class Test():
|
||||||
max_loc=np.argmax(abs(refArrayNonZero[curArray.nonzero()]/curArray[curArray.nonzero()]-1.))
|
max_loc=np.argmax(abs(refArrayNonZero[curArray.nonzero()]/curArray[curArray.nonzero()]-1.))
|
||||||
refArrayNonZero = refArrayNonZero[curArray.nonzero()]
|
refArrayNonZero = refArrayNonZero[curArray.nonzero()]
|
||||||
curArray = curArray[curArray.nonzero()]
|
curArray = curArray[curArray.nonzero()]
|
||||||
print(' ********\n * maximum relative error %e for %e and %e\n ********'
|
print(' ********\n * maximum relative error {} between {} and {}\n ********'.format(max_err,
|
||||||
%(max_err, refArrayNonZero[max_loc],curArray[max_loc]))
|
refArrayNonZero[max_loc],
|
||||||
|
curArray[max_loc]))
|
||||||
return max_err
|
return max_err
|
||||||
else:
|
else:
|
||||||
raise Exception('mismatch in array size to compare')
|
raise Exception('mismatch in array size to compare')
|
||||||
|
@ -295,7 +296,7 @@ class Test():
|
||||||
absoluteTolerance=False,perLine=False,skipLines=[]):
|
absoluteTolerance=False,perLine=False,skipLines=[]):
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
logging.info('comparing ASCII Tables\n %s \n %s'%(file0,file1))
|
logging.info('\n '.join(['comparing ASCII Tables',file0,file1]))
|
||||||
if normHeadings == '': normHeadings = headings0
|
if normHeadings == '': normHeadings = headings0
|
||||||
|
|
||||||
# check if comparison is possible and determine lenght of columns
|
# check if comparison is possible and determine lenght of columns
|
||||||
|
@ -315,7 +316,7 @@ class Test():
|
||||||
|
|
||||||
for i in xrange(dataLength):
|
for i in xrange(dataLength):
|
||||||
if headings0[i]['shape'] != headings1[i]['shape']:
|
if headings0[i]['shape'] != headings1[i]['shape']:
|
||||||
raise Exception('shape mismatch when comparing %s with %s '%(headings0[i]['label'],headings1[i]['label']))
|
raise Exception('shape mismatch between {} and {} '.format(headings0[i]['label'],headings1[i]['label']))
|
||||||
shape[i] = headings0[i]['shape']
|
shape[i] = headings0[i]['shape']
|
||||||
for j in xrange(np.shape(shape[i])[0]):
|
for j in xrange(np.shape(shape[i])[0]):
|
||||||
length[i] *= shape[i][j]
|
length[i] *= shape[i][j]
|
||||||
|
@ -323,7 +324,9 @@ class Test():
|
||||||
for j in xrange(np.shape(normShape[i])[0]):
|
for j in xrange(np.shape(normShape[i])[0]):
|
||||||
normLength[i] *= normShape[i][j]
|
normLength[i] *= normShape[i][j]
|
||||||
else:
|
else:
|
||||||
raise Exception('trying to compare %i with %i normed by %i data sets'%(len(headings0),len(headings1),len(normHeadings)))
|
raise Exception('trying to compare {} with {} normed by {} data sets'.format(len(headings0),
|
||||||
|
len(headings1),
|
||||||
|
len(normHeadings)))
|
||||||
|
|
||||||
table0 = damask.ASCIItable(name=file0,readonly=True)
|
table0 = damask.ASCIItable(name=file0,readonly=True)
|
||||||
table0.head_read()
|
table0.head_read()
|
||||||
|
@ -331,37 +334,34 @@ class Test():
|
||||||
table1.head_read()
|
table1.head_read()
|
||||||
|
|
||||||
for i in xrange(dataLength):
|
for i in xrange(dataLength):
|
||||||
key0 = {True :'1_%s',
|
key0 = ('1_' if length[i]>1 else '') + headings0[i]['label']
|
||||||
False:'%s' }[length[i]>1]%headings0[i]['label']
|
key1 = ('1_' if length[i]>1 else '') + headings1[i]['label']
|
||||||
key1 = {True :'1_%s',
|
normKey = ('1_' if normLength[i]>1 else '') + normHeadings[i]['label']
|
||||||
False:'%s' }[length[i]>1]%headings1[i]['label']
|
|
||||||
normKey = {True :'1_%s',
|
|
||||||
False:'%s' }[normLength[i]>1]%normHeadings[i]['label']
|
|
||||||
if key0 not in table0.labels:
|
if key0 not in table0.labels:
|
||||||
raise Exception('column %s not found in 1. table...\n'%key0)
|
raise Exception('column {} not found in 1. table...\n'.format(key0))
|
||||||
elif key1 not in table1.labels:
|
elif key1 not in table1.labels:
|
||||||
raise Exception('column %s not found in 2. table...\n'%key1)
|
raise Exception('column {} not found in 2. table...\n'.format(key1))
|
||||||
elif normKey not in table0.labels:
|
elif normKey not in table0.labels:
|
||||||
raise Exception('column %s not found in 1. table...\n'%normKey)
|
raise Exception('column {} not found in 1. table...\n'.format(normKey))
|
||||||
else:
|
else:
|
||||||
column[0][i] = table0.labels.index(key0) # remember columns of requested data
|
column[0][i] = table0.labels.index(key0)
|
||||||
column[1][i] = table1.labels.index(key1) # remember columns of requested data in second column
|
column[1][i] = table1.labels.index(key1)
|
||||||
normColumn[i] = table0.labels.index(normKey) # remember columns of requested data in second column
|
normColumn[i] = table0.labels.index(normKey)
|
||||||
|
|
||||||
line0 = 0
|
line0 = 0
|
||||||
while table0.data_read(): # read next data line of ASCII table
|
while table0.data_read(): # read next data line of ASCII table
|
||||||
if line0 not in skipLines:
|
if line0 not in skipLines:
|
||||||
for i in xrange(dataLength):
|
for i in xrange(dataLength):
|
||||||
myData = np.array(map(float,table0.data[column[0][i]:\
|
myData = np.array(map(float,table0.data[column[0][i]:\
|
||||||
column[0][i]+length[i]]),'d')
|
column[0][i]+length[i]]),'d')
|
||||||
normData = np.array(map(float,table0.data[normColumn[i]:\
|
normData = np.array(map(float,table0.data[normColumn[i]:\
|
||||||
normColumn[i]+normLength[i]]),'d')
|
normColumn[i]+normLength[i]]),'d')
|
||||||
data[i] = np.append(data[i],np.reshape(myData,shape[i]))
|
data[i] = np.append(data[i],np.reshape(myData,shape[i]))
|
||||||
if normType == 'pInf':
|
if normType == 'pInf':
|
||||||
norm[i] = np.append(norm[i],np.max(np.abs(normData)))
|
norm[i] = np.append(norm[i],np.max(np.abs(normData)))
|
||||||
else:
|
else:
|
||||||
norm[i] = np.append(norm[i],np.linalg.norm(np.reshape(normData,normShape[i]),normType))
|
norm[i] = np.append(norm[i],np.linalg.norm(np.reshape(normData,normShape[i]),normType))
|
||||||
line0 +=1
|
line0 += 1
|
||||||
|
|
||||||
for i in xrange(dataLength):
|
for i in xrange(dataLength):
|
||||||
if not perLine: norm[i] = [np.max(norm[i]) for j in xrange(line0-len(skipLines))]
|
if not perLine: norm[i] = [np.max(norm[i]) for j in xrange(line0-len(skipLines))]
|
||||||
|
@ -370,12 +370,12 @@ class Test():
|
||||||
norm[i] = [1.0 for j in xrange(line0-len(skipLines))]
|
norm[i] = [1.0 for j in xrange(line0-len(skipLines))]
|
||||||
absTol[i] = True
|
absTol[i] = True
|
||||||
if perLine:
|
if perLine:
|
||||||
logging.warning('At least one norm of %s in 1. table is 0.0, using absolute tolerance'%headings0[i]['label'])
|
logging.warning('At least one norm of {} in 1. table is 0.0, using absolute tolerance'.format(headings0[i]['label']))
|
||||||
else:
|
else:
|
||||||
logging.warning('Maximum norm of %s in 1. table is 0.0, using absolute tolerance'%headings0[i]['label'])
|
logging.warning('Maximum norm of {} in 1. table is 0.0, using absolute tolerance'.format(headings0[i]['label']))
|
||||||
|
|
||||||
line1 = 0
|
line1 = 0
|
||||||
while table1.data_read(): # read next data line of ASCII table
|
while table1.data_read(): # read next data line of ASCII table
|
||||||
if line1 not in skipLines:
|
if line1 not in skipLines:
|
||||||
for i in xrange(dataLength):
|
for i in xrange(dataLength):
|
||||||
myData = np.array(map(float,table1.data[column[1][i]:\
|
myData = np.array(map(float,table1.data[column[1][i]:\
|
||||||
|
@ -384,21 +384,25 @@ class Test():
|
||||||
norm[i][line1-len(skipLines)])
|
norm[i][line1-len(skipLines)])
|
||||||
line1 +=1
|
line1 +=1
|
||||||
|
|
||||||
if (line0 != line1): raise Exception('found %s lines in 1. table and %s in 2. table'%(line0,line1))
|
if (line0 != line1): raise Exception('found {} lines in 1. table but {} in 2. table'.format(line0,line1))
|
||||||
|
|
||||||
logging.info(' ********')
|
logging.info(' ********')
|
||||||
for i in xrange(dataLength):
|
for i in xrange(dataLength):
|
||||||
if absTol[i]:
|
if absTol[i]:
|
||||||
logging.info(' * maximum absolute error %e for %s and %s'%(maxError[i],headings0[i]['label'],headings1[i]['label']))
|
logging.info(' * maximum absolute error {} between {} and {}'.format(maxError[i],
|
||||||
|
headings0[i]['label'],
|
||||||
|
headings1[i]['label']))
|
||||||
else:
|
else:
|
||||||
logging.info(' * maximum relative error %e for %s and %s'%(maxError[i],headings0[i]['label'],headings1[i]['label']))
|
logging.info(' * maximum relative error {} between {} and {}'.format(maxError[i],
|
||||||
|
headings0[i]['label'],
|
||||||
|
headings1[i]['label']))
|
||||||
logging.info(' ********')
|
logging.info(' ********')
|
||||||
return maxError
|
return maxError
|
||||||
|
|
||||||
|
|
||||||
def compare_TablesStatistically(self,
|
def compare_TablesStatistically(self,
|
||||||
files = [None,None], # list of file names
|
files = [None,None], # list of file names
|
||||||
columns = [None], # list of list of column labels (per file)
|
columns = [None], # list of list of column labels (per file)
|
||||||
meanTol = 1.0e-4,
|
meanTol = 1.0e-4,
|
||||||
stdTol = 1.0e-6,
|
stdTol = 1.0e-6,
|
||||||
preFilter = 1.0e-9):
|
preFilter = 1.0e-9):
|
||||||
|
@ -407,18 +411,18 @@ class Test():
|
||||||
|
|
||||||
threshold can be used to ignore small values (a negative number disables this feature)
|
threshold can be used to ignore small values (a negative number disables this feature)
|
||||||
"""
|
"""
|
||||||
if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested
|
if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested
|
||||||
files = [str(files)]
|
files = [str(files)]
|
||||||
|
|
||||||
tables = [damask.ASCIItable(name = filename,readonly = True) for filename in files]
|
tables = [damask.ASCIItable(name = filename,readonly = True) for filename in files]
|
||||||
for table in tables:
|
for table in tables:
|
||||||
table.head_read()
|
table.head_read()
|
||||||
|
|
||||||
columns += [columns[0]]*(len(files)-len(columns)) # extend to same length as files
|
columns += [columns[0]]*(len(files)-len(columns)) # extend to same length as files
|
||||||
columns = columns[:len(files)] # truncate to same length as files
|
columns = columns[:len(files)] # truncate to same length as files
|
||||||
|
|
||||||
for i,column in enumerate(columns):
|
for i,column in enumerate(columns):
|
||||||
if column is None: columns[i] = tables[i].labels # if no column is given, read all
|
if column is None: columns[i] = tables[i].labels # if no column is given, read all
|
||||||
|
|
||||||
logging.info('comparing ASCIItables statistically')
|
logging.info('comparing ASCIItables statistically')
|
||||||
for i in xrange(len(columns)):
|
for i in xrange(len(columns)):
|
||||||
|
@ -428,7 +432,7 @@ class Test():
|
||||||
)
|
)
|
||||||
logging.info(files[i]+':'+','.join(columns[i]))
|
logging.info(files[i]+':'+','.join(columns[i]))
|
||||||
|
|
||||||
if len(files) < 2: return True # single table is always close to itself...
|
if len(files) < 2: return True # single table is always close to itself...
|
||||||
|
|
||||||
data = []
|
data = []
|
||||||
for table,labels in zip(tables,columns):
|
for table,labels in zip(tables,columns):
|
||||||
|
@ -443,16 +447,16 @@ class Test():
|
||||||
normedDelta = np.where(normBy>preFilter,delta/normBy,0.0)
|
normedDelta = np.where(normBy>preFilter,delta/normBy,0.0)
|
||||||
mean = np.amax(np.abs(np.mean(normedDelta,0)))
|
mean = np.amax(np.abs(np.mean(normedDelta,0)))
|
||||||
std = np.amax(np.std(normedDelta,0))
|
std = np.amax(np.std(normedDelta,0))
|
||||||
logging.info('mean: %f'%mean)
|
logging.info('mean: {:f}'.format(mean))
|
||||||
logging.info('std: %f'%std)
|
logging.info('std: {:f}'.format(std))
|
||||||
|
|
||||||
return (mean<meanTol) & (std < stdTol)
|
return (mean<meanTol) & (std < stdTol)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def compare_Tables(self,
|
def compare_Tables(self,
|
||||||
files = [None,None], # list of file names
|
files = [None,None], # list of file names
|
||||||
columns = [None], # list of list of column labels (per file)
|
columns = [None], # list of list of column labels (per file)
|
||||||
rtol = 1e-5,
|
rtol = 1e-5,
|
||||||
atol = 1e-8,
|
atol = 1e-8,
|
||||||
preFilter = -1.0,
|
preFilter = -1.0,
|
||||||
|
@ -463,18 +467,18 @@ class Test():
|
||||||
|
|
||||||
threshold can be used to ignore small values (a negative number disables this feature)
|
threshold can be used to ignore small values (a negative number disables this feature)
|
||||||
"""
|
"""
|
||||||
if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested
|
if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested
|
||||||
files = [str(files)]
|
files = [str(files)]
|
||||||
|
|
||||||
tables = [damask.ASCIItable(name = filename,readonly = True) for filename in files]
|
tables = [damask.ASCIItable(name = filename,readonly = True) for filename in files]
|
||||||
for table in tables:
|
for table in tables:
|
||||||
table.head_read()
|
table.head_read()
|
||||||
|
|
||||||
columns += [columns[0]]*(len(files)-len(columns)) # extend to same length as files
|
columns += [columns[0]]*(len(files)-len(columns)) # extend to same length as files
|
||||||
columns = columns[:len(files)] # truncate to same length as files
|
columns = columns[:len(files)] # truncate to same length as files
|
||||||
|
|
||||||
for i,column in enumerate(columns):
|
for i,column in enumerate(columns):
|
||||||
if column is None: columns[i] = tables[i].labels # if no column is given, read all
|
if column is None: columns[i] = tables[i].labels # if no column is given, read all
|
||||||
|
|
||||||
logging.info('comparing ASCIItables')
|
logging.info('comparing ASCIItables')
|
||||||
for i in xrange(len(columns)):
|
for i in xrange(len(columns)):
|
||||||
|
@ -484,7 +488,7 @@ class Test():
|
||||||
)
|
)
|
||||||
logging.info(files[i]+':'+','.join(columns[i]))
|
logging.info(files[i]+':'+','.join(columns[i]))
|
||||||
|
|
||||||
if len(files) < 2: return True # single table is always close to itself...
|
if len(files) < 2: return True # single table is always close to itself...
|
||||||
|
|
||||||
maximum = np.zeros(len(columns[0]),dtype='f')
|
maximum = np.zeros(len(columns[0]),dtype='f')
|
||||||
data = []
|
data = []
|
||||||
|
@ -495,26 +499,26 @@ class Test():
|
||||||
table.close()
|
table.close()
|
||||||
|
|
||||||
maximum /= len(tables)
|
maximum /= len(tables)
|
||||||
maximum = np.where(maximum >0.0, maximum, 1) # do not devide by zero for empty columns
|
maximum = np.where(maximum >0.0, maximum, 1) # avoid div by zero for empty columns
|
||||||
for i in xrange(len(data)):
|
for i in xrange(len(data)):
|
||||||
data[i] /= maximum
|
data[i] /= maximum
|
||||||
|
|
||||||
mask = np.zeros_like(table.data,dtype='bool')
|
mask = np.zeros_like(table.data,dtype='bool')
|
||||||
|
|
||||||
for table in data:
|
for table in data:
|
||||||
mask |= np.where(np.abs(table)<postFilter,True,False) # mask out (all) tiny values
|
mask |= np.where(np.abs(table)<postFilter,True,False) # mask out (all) tiny values
|
||||||
|
|
||||||
|
|
||||||
allclose = True # start optimistic
|
allclose = True # start optimistic
|
||||||
for i in xrange(1,len(data)):
|
for i in xrange(1,len(data)):
|
||||||
if debug:
|
if debug:
|
||||||
t0 = np.where(mask,0.0,data[i-1])
|
t0 = np.where(mask,0.0,data[i-1])
|
||||||
t1 = np.where(mask,0.0,data[i ])
|
t1 = np.where(mask,0.0,data[i ])
|
||||||
j = np.argmin(np.abs(t1)*rtol+atol-np.abs(t0-t1))
|
j = np.argmin(np.abs(t1)*rtol+atol-np.abs(t0-t1))
|
||||||
logging.info('%f'%np.amax(np.abs(t0-t1)/(np.abs(t1)*rtol+atol)))
|
logging.info('{:f}'.format(np.amax(np.abs(t0-t1)/(np.abs(t1)*rtol+atol))))
|
||||||
logging.info('%f %f'%((t0*maximum).flatten()[j],(t1*maximum).flatten()[j]))
|
logging.info('{:f} {:f}'.format((t0*maximum).flatten()[j],(t1*maximum).flatten()[j]))
|
||||||
allclose &= np.allclose(np.where(mask,0.0,data[i-1]),
|
allclose &= np.allclose(np.where(mask,0.0,data[i-1]),
|
||||||
np.where(mask,0.0,data[i ]),rtol,atol) # accumulate "pessimism"
|
np.where(mask,0.0,data[i ]),rtol,atol) # accumulate "pessimism"
|
||||||
|
|
||||||
return allclose
|
return allclose
|
||||||
|
|
||||||
|
@ -543,14 +547,13 @@ class Test():
|
||||||
def report_Success(self,culprit):
|
def report_Success(self,culprit):
|
||||||
|
|
||||||
if culprit == 0:
|
if culprit == 0:
|
||||||
logging.critical('%s passed.'%({False: 'The test',
|
logging.critical(('The test' if len(self.variants) == 1 else 'All {} tests'.format(len(self.variants))) + ' passed')
|
||||||
True: 'All %i tests'%(len(self.variants))}[len(self.variants) > 1]))
|
|
||||||
logging.critical('\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n')
|
logging.critical('\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n')
|
||||||
return 0
|
return 0
|
||||||
if culprit == -1:
|
if culprit == -1:
|
||||||
logging.warning('Warning: Could not start test')
|
logging.warning('Warning: Could not start test')
|
||||||
return 0
|
return 0
|
||||||
else:
|
else:
|
||||||
logging.critical(' ********\n * Test %i failed...\n ********'%(culprit))
|
logging.critical(' ********\n * Test {} failed...\n ********'.format(culprit))
|
||||||
logging.critical('\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n')
|
logging.critical('\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n')
|
||||||
return culprit
|
return culprit
|
||||||
|
|
|
@ -58,6 +58,24 @@ def emph(what):
|
||||||
"""emphasizes string on screen"""
|
"""emphasizes string on screen"""
|
||||||
return bcolors.BOLD+srepr(what)+bcolors.ENDC
|
return bcolors.BOLD+srepr(what)+bcolors.ENDC
|
||||||
|
|
||||||
|
# -----------------------------
|
||||||
|
def execute(cmd,
|
||||||
|
streamIn = None,
|
||||||
|
wd = './'):
|
||||||
|
"""executes a command in given directory and returns stdout and stderr for optional stdin"""
|
||||||
|
initialPath = os.getcwd()
|
||||||
|
os.chdir(wd)
|
||||||
|
process = subprocess.Popen(shlex.split(cmd),
|
||||||
|
stdout = subprocess.PIPE,
|
||||||
|
stderr = subprocess.PIPE,
|
||||||
|
stdin = subprocess.PIPE)
|
||||||
|
out,error = [i.replace("\x08","") for i in (process.communicate() if streamIn is None
|
||||||
|
else process.communicate(streamIn.read()))]
|
||||||
|
os.chdir(initialPath)
|
||||||
|
if process.returncode != 0: raise RuntimeError('{} failed with returncode {}'.format(cmd,process.returncode))
|
||||||
|
return out,error
|
||||||
|
|
||||||
|
|
||||||
# -----------------------------
|
# -----------------------------
|
||||||
# Matlab like trigonometric functions that take and return angles in degrees.
|
# Matlab like trigonometric functions that take and return angles in degrees.
|
||||||
# -----------------------------
|
# -----------------------------
|
||||||
|
@ -75,7 +93,7 @@ def gridLocation(idx,res):
|
||||||
|
|
||||||
# -----------------------------
|
# -----------------------------
|
||||||
def gridIndex(location,res):
|
def gridIndex(location,res):
|
||||||
return ( location[0] % res[0] + \
|
return ( location[0] % res[0] + \
|
||||||
( location[1] % res[1]) * res[0] + \
|
( location[1] % res[1]) * res[0] + \
|
||||||
( location[2] % res[2]) * res[1] * res[0] )
|
( location[2] % res[2]) * res[1] * res[0] )
|
||||||
|
|
||||||
|
@ -104,7 +122,9 @@ class extendableOption(Option):
|
||||||
class backgroundMessage(threading.Thread):
|
class backgroundMessage(threading.Thread):
|
||||||
"""reporting with animation to indicate progress"""
|
"""reporting with animation to indicate progress"""
|
||||||
|
|
||||||
choices = {'bounce': ['_','o','O','°','¯','¯','°','O','o',],
|
choices = {'bounce': ['_', 'o', 'O', u'\u00B0',
|
||||||
|
u'\u203e',u'\u203e',u'\u00B0','O','o','_'],
|
||||||
|
'spin': [u'\u25dc',u'\u25dd',u'\u25de',u'\u25df'],
|
||||||
'circle': [u'\u25f4',u'\u25f5',u'\u25f6',u'\u25f7'],
|
'circle': [u'\u25f4',u'\u25f5',u'\u25f6',u'\u25f7'],
|
||||||
'hexagon': [u'\u2b22',u'\u2b23'],
|
'hexagon': [u'\u2b22',u'\u2b23'],
|
||||||
'square': [u'\u2596',u'\u2598',u'\u259d',u'\u2597'],
|
'square': [u'\u2596',u'\u2598',u'\u259d',u'\u2597'],
|
||||||
|
@ -228,7 +248,7 @@ def leastsqBound(func, x0, args=(), bounds=None, Dfun=None, full_output=0,
|
||||||
return shape(res), dt
|
return shape(res), dt
|
||||||
|
|
||||||
def _int2extGrad(p_int, bounds):
|
def _int2extGrad(p_int, bounds):
|
||||||
"""Calculate the gradients of transforming the internal (unconstrained) to external (constained) parameter."""
|
"""Calculate the gradients of transforming the internal (unconstrained) to external (constrained) parameter."""
|
||||||
grad = np.empty_like(p_int)
|
grad = np.empty_like(p_int)
|
||||||
for i, (x, bound) in enumerate(zip(p_int, bounds)):
|
for i, (x, bound) in enumerate(zip(p_int, bounds)):
|
||||||
lower, upper = bound
|
lower, upper = bound
|
||||||
|
@ -430,22 +450,4 @@ def curve_fit_bound(f, xdata, ydata, p0=None, sigma=None, bounds=None, **kw):
|
||||||
else:
|
else:
|
||||||
pcov = np.inf
|
pcov = np.inf
|
||||||
|
|
||||||
if return_full:
|
return (popt, pcov, infodict, errmsg, ier) if return_full else (popt, pcov)
|
||||||
return popt, pcov, infodict, errmsg, ier
|
|
||||||
else:
|
|
||||||
return popt, pcov
|
|
||||||
|
|
||||||
|
|
||||||
def execute(cmd,streamIn=None,wd='./'):
|
|
||||||
"""executes a command in given directory and returns stdout and stderr for optional stdin"""
|
|
||||||
initialPath=os.getcwd()
|
|
||||||
os.chdir(wd)
|
|
||||||
process = subprocess.Popen(shlex.split(cmd),stdout=subprocess.PIPE,stderr = subprocess.PIPE,stdin=subprocess.PIPE)
|
|
||||||
if streamIn is not None:
|
|
||||||
out,error = [i.replace("\x08","") for i in process.communicate(streamIn.read())]
|
|
||||||
else:
|
|
||||||
out,error =[i.replace("\x08","") for i in process.communicate()]
|
|
||||||
os.chdir(initialPath)
|
|
||||||
if process.returncode !=0: raise RuntimeError(cmd+' failed with returncode '+str(process.returncode))
|
|
||||||
return out,error
|
|
||||||
|
|
||||||
|
|
|
@ -10,40 +10,35 @@ scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||||
scriptID = ' '.join([scriptName,damask.version])
|
scriptID = ' '.join([scriptName,damask.version])
|
||||||
|
|
||||||
def curlFFT(geomdim,field):
|
def curlFFT(geomdim,field):
|
||||||
N = grid.prod() # field size
|
grid = np.array(np.shape(field)[2::-1])
|
||||||
n = np.array(np.shape(field)[3:]).prod() # data size
|
N = grid.prod() # field size
|
||||||
|
n = np.array(np.shape(field)[3:]).prod() # data size
|
||||||
|
|
||||||
if n == 3:
|
if n == 3: dataType = 'vector'
|
||||||
dataType = 'vector'
|
elif n == 9: dataType = 'tensor'
|
||||||
elif n == 9:
|
|
||||||
dataType = 'tensor'
|
|
||||||
|
|
||||||
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2))
|
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2))
|
||||||
curl_fourier = np.zeros(field_fourier.shape,'c16')
|
curl_fourier = np.zeros(field_fourier.shape,'c16')
|
||||||
|
|
||||||
# differentiation in Fourier space
|
# differentiation in Fourier space
|
||||||
k_s = np.zeros([3],'i')
|
k_s = np.zeros([3],'i')
|
||||||
TWOPIIMG = (0.0+2.0j*math.pi)
|
TWOPIIMG = 2.0j*math.pi
|
||||||
for i in xrange(grid[2]):
|
for i in xrange(grid[2]):
|
||||||
k_s[0] = i
|
k_s[0] = i
|
||||||
if(grid[2]%2==0 and i == grid[2]//2): # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||||
k_s[0]=0
|
elif i > grid[2]//2: k_s[0] -= grid[2]
|
||||||
elif (i > grid[2]//2):
|
|
||||||
k_s[0] = k_s[0] - grid[2]
|
|
||||||
|
|
||||||
for j in xrange(grid[1]):
|
for j in xrange(grid[1]):
|
||||||
k_s[1] = j
|
k_s[1] = j
|
||||||
if(grid[1]%2==0 and j == grid[1]//2): # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||||
k_s[1]=0
|
elif j > grid[1]//2: k_s[1] -= grid[1]
|
||||||
elif (j > grid[1]//2):
|
|
||||||
k_s[1] = k_s[1] - grid[1]
|
|
||||||
|
|
||||||
for k in xrange(grid[0]//2+1):
|
for k in xrange(grid[0]//2+1):
|
||||||
k_s[2] = k
|
k_s[2] = k
|
||||||
if(grid[0]%2==0 and k == grid[0]//2): # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||||
k_s[2]=0
|
|
||||||
|
xi = (k_s/geomdim)[2::-1].astype('c16') # reversing the field input order
|
||||||
|
|
||||||
xi = np.array([k_s[2]/geomdim[2]+0.0j,k_s[1]/geomdim[1]+0.j,k_s[0]/geomdim[0]+0.j],'c16')
|
|
||||||
if dataType == 'tensor':
|
if dataType == 'tensor':
|
||||||
for l in xrange(3):
|
for l in xrange(3):
|
||||||
curl_fourier[i,j,k,0,l] = ( field_fourier[i,j,k,l,2]*xi[1]\
|
curl_fourier[i,j,k,0,l] = ( field_fourier[i,j,k,l,2]*xi[1]\
|
||||||
|
@ -100,10 +95,8 @@ if options.vector is None and options.tensor is None:
|
||||||
if filenames == []: filenames = [None]
|
if filenames == []: filenames = [None]
|
||||||
|
|
||||||
for name in filenames:
|
for name in filenames:
|
||||||
try:
|
try: table = damask.ASCIItable(name = name,buffered = False)
|
||||||
table = damask.ASCIItable(name = name,buffered = False)
|
except: continue
|
||||||
except:
|
|
||||||
continue
|
|
||||||
damask.util.report(scriptName,name)
|
damask.util.report(scriptName,name)
|
||||||
|
|
||||||
# ------------------------------------------ read header ------------------------------------------
|
# ------------------------------------------ read header ------------------------------------------
|
||||||
|
@ -161,9 +154,10 @@ for name in filenames:
|
||||||
stack = [table.data]
|
stack = [table.data]
|
||||||
for type, data in items.iteritems():
|
for type, data in items.iteritems():
|
||||||
for i,label in enumerate(data['active']):
|
for i,label in enumerate(data['active']):
|
||||||
stack.append(curlFFT(size[::-1], # we need to reverse order here, because x
|
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
|
||||||
table.data[:,data['column'][i]:data['column'][i]+data['dim']]. # is fastest,ie rightmost, but leftmost in
|
stack.append(curlFFT(size[::-1],
|
||||||
reshape([grid[2],grid[1],grid[0]]+data['shape']))) # our x,y,z notation
|
table.data[:,data['column'][i]:data['column'][i]+data['dim']].
|
||||||
|
reshape([grid[2],grid[1],grid[0]]+data['shape'])))
|
||||||
|
|
||||||
# ------------------------------------------ output result -----------------------------------------
|
# ------------------------------------------ output result -----------------------------------------
|
||||||
|
|
||||||
|
|
|
@ -10,39 +10,35 @@ scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||||
scriptID = ' '.join([scriptName,damask.version])
|
scriptID = ' '.join([scriptName,damask.version])
|
||||||
|
|
||||||
def divFFT(geomdim,field):
|
def divFFT(geomdim,field):
|
||||||
N = grid.prod() # field size
|
grid = np.array(np.shape(field)[2::-1])
|
||||||
n = np.array(np.shape(field)[3:]).prod() # data size
|
N = grid.prod() # field size
|
||||||
|
n = np.array(np.shape(field)[3:]).prod() # data size
|
||||||
|
|
||||||
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2))
|
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2))
|
||||||
div_fourier = np.zeros(field_fourier.shape[0:len(np.shape(field))-1],'c16') # size depents on whether tensor or vector
|
div_fourier = np.zeros(field_fourier.shape[0:len(np.shape(field))-1],'c16') # size depents on whether tensor or vector
|
||||||
|
|
||||||
# differentiation in Fourier space
|
# differentiation in Fourier space
|
||||||
k_s=np.zeros([3],'i')
|
k_s=np.zeros([3],'i')
|
||||||
TWOPIIMG = (0.0+2.0j*math.pi)
|
TWOPIIMG = 2.0j*math.pi
|
||||||
for i in xrange(grid[2]):
|
for i in xrange(grid[2]):
|
||||||
k_s[0] = i
|
k_s[0] = i
|
||||||
if(grid[2]%2==0 and i == grid[2]//2): # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||||
k_s[0]=0
|
elif i > grid[2]//2: k_s[0] -= grid[2]
|
||||||
elif (i > grid[2]//2):
|
|
||||||
k_s[0] = k_s[0] - grid[2]
|
|
||||||
|
|
||||||
for j in xrange(grid[1]):
|
for j in xrange(grid[1]):
|
||||||
k_s[1] = j
|
k_s[1] = j
|
||||||
if(grid[1]%2==0 and j == grid[1]//2): # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||||
k_s[1]=0
|
elif j > grid[1]//2: k_s[1] -= grid[1]
|
||||||
elif (j > grid[1]//2):
|
|
||||||
k_s[1] = k_s[1] - grid[1]
|
|
||||||
|
|
||||||
for k in xrange(grid[0]//2+1):
|
for k in xrange(grid[0]//2+1):
|
||||||
k_s[2] = k
|
k_s[2] = k
|
||||||
if(grid[0]%2==0 and k == grid[0]//2): # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||||
k_s[2]=0
|
|
||||||
|
|
||||||
xi=np.array([k_s[2]/geomdim[2]+0.0j,k_s[1]/geomdim[1]+0.j,k_s[0]/geomdim[0]+0.j],'c16')
|
xi = (k_s/geomdim)[2::-1].astype('c16') # reversing the field input order
|
||||||
if n == 9: # tensor, 3x3 -> 3
|
if n == 9: # tensor, 3x3 -> 3
|
||||||
for l in xrange(3):
|
for l in xrange(3):
|
||||||
div_fourier[i,j,k,l] = sum(field_fourier[i,j,k,l,0:3]*xi) *TWOPIIMG
|
div_fourier[i,j,k,l] = sum(field_fourier[i,j,k,l,0:3]*xi) *TWOPIIMG
|
||||||
elif n == 3: # vector, 3 -> 1
|
elif n == 3: # vector, 3 -> 1
|
||||||
div_fourier[i,j,k] = sum(field_fourier[i,j,k,0:3]*xi) *TWOPIIMG
|
div_fourier[i,j,k] = sum(field_fourier[i,j,k,0:3]*xi) *TWOPIIMG
|
||||||
|
|
||||||
return np.fft.fftpack.irfftn(div_fourier,axes=(0,1,2)).reshape([N,n/3])
|
return np.fft.fftpack.irfftn(div_fourier,axes=(0,1,2)).reshape([N,n/3])
|
||||||
|
@ -80,15 +76,13 @@ parser.set_defaults(coords = 'ipinitialcoord',
|
||||||
if options.vector is None and options.tensor is None:
|
if options.vector is None and options.tensor is None:
|
||||||
parser.error('no data column specified.')
|
parser.error('no data column specified.')
|
||||||
|
|
||||||
# --- loop over input files -------------------------------------------------------------------------
|
# --- loop over input files ------------------------------------------------------------------------
|
||||||
|
|
||||||
if filenames == []: filenames = [None]
|
if filenames == []: filenames = [None]
|
||||||
|
|
||||||
for name in filenames:
|
for name in filenames:
|
||||||
try:
|
try: table = damask.ASCIItable(name = name,buffered = False)
|
||||||
table = damask.ASCIItable(name = name,buffered = False)
|
except: continue
|
||||||
except:
|
|
||||||
continue
|
|
||||||
damask.util.report(scriptName,name)
|
damask.util.report(scriptName,name)
|
||||||
|
|
||||||
# ------------------------------------------ read header ------------------------------------------
|
# ------------------------------------------ read header ------------------------------------------
|
||||||
|
@ -140,16 +134,17 @@ for name in filenames:
|
||||||
maxcorner = np.array(map(max,coords))
|
maxcorner = np.array(map(max,coords))
|
||||||
grid = np.array(map(len,coords),'i')
|
grid = np.array(map(len,coords),'i')
|
||||||
size = grid/np.maximum(np.ones(3,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1)
|
size = grid/np.maximum(np.ones(3,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1)
|
||||||
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 set to smallest among other spacings
|
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 equal to smallest among other ones
|
||||||
|
|
||||||
# ------------------------------------------ process value field -----------------------------------
|
# ------------------------------------------ process value field -----------------------------------
|
||||||
|
|
||||||
stack = [table.data]
|
stack = [table.data]
|
||||||
for type, data in items.iteritems():
|
for type, data in items.iteritems():
|
||||||
for i,label in enumerate(data['active']):
|
for i,label in enumerate(data['active']):
|
||||||
stack.append(divFFT(size[::-1], # we need to reverse order here, because x
|
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
|
||||||
table.data[:,data['column'][i]:data['column'][i]+data['dim']]. # is fastest,ie rightmost, but leftmost in
|
stack.append(divFFT(size[::-1],
|
||||||
reshape([grid[2],grid[1],grid[0]]+data['shape']))) # our x,y,z notation
|
table.data[:,data['column'][i]:data['column'][i]+data['dim']].
|
||||||
|
reshape([grid[2],grid[1],grid[0]]+data['shape'])))
|
||||||
|
|
||||||
# ------------------------------------------ output result -----------------------------------------
|
# ------------------------------------------ output result -----------------------------------------
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,158 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
# -*- coding: UTF-8 no BOM -*-
|
||||||
|
|
||||||
|
import os,sys,math
|
||||||
|
import numpy as np
|
||||||
|
from optparse import OptionParser
|
||||||
|
import damask
|
||||||
|
|
||||||
|
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||||
|
scriptID = ' '.join([scriptName,damask.version])
|
||||||
|
|
||||||
|
def gradFFT(geomdim,field):
|
||||||
|
grid = np.array(np.shape(field)[2::-1])
|
||||||
|
N = grid.prod() # field size
|
||||||
|
n = np.array(np.shape(field)[3:]).prod() # data size
|
||||||
|
if n == 3: dataType = 'vector'
|
||||||
|
elif n == 1: dataType = 'scalar'
|
||||||
|
|
||||||
|
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2))
|
||||||
|
grad_fourier = np.zeros(field_fourier.shape+(3,),'c16')
|
||||||
|
|
||||||
|
# differentiation in Fourier space
|
||||||
|
k_s = np.zeros([3],'i')
|
||||||
|
TWOPIIMG = 2.0j*math.pi
|
||||||
|
for i in xrange(grid[2]):
|
||||||
|
k_s[0] = i
|
||||||
|
if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||||
|
elif i > grid[2]//2: k_s[0] -= grid[2]
|
||||||
|
|
||||||
|
for j in xrange(grid[1]):
|
||||||
|
k_s[1] = j
|
||||||
|
if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||||
|
elif j > grid[1]//2: k_s[1] -= grid[1]
|
||||||
|
|
||||||
|
for k in xrange(grid[0]//2+1):
|
||||||
|
k_s[2] = k
|
||||||
|
if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||||
|
|
||||||
|
xi = (k_s/geomdim)[2::-1].astype('c16') # reversing the field order
|
||||||
|
|
||||||
|
grad_fourier[i,j,k,0,:] = field_fourier[i,j,k,0]*xi *TWOPIIMG # vector field from scalar data
|
||||||
|
|
||||||
|
if dataType == 'vector':
|
||||||
|
grad_fourier[i,j,k,1,:] = field_fourier[i,j,k,1]*xi *TWOPIIMG # tensor field from vector data
|
||||||
|
grad_fourier[i,j,k,2,:] = field_fourier[i,j,k,2]*xi *TWOPIIMG
|
||||||
|
|
||||||
|
return np.fft.fftpack.irfftn(grad_fourier,axes=(0,1,2)).reshape([N,3*n])
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------------------------------
|
||||||
|
# MAIN
|
||||||
|
# --------------------------------------------------------------------
|
||||||
|
|
||||||
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||||
|
Add column(s) containing gradient of requested column(s).
|
||||||
|
Operates on periodic ordered three-dimensional data sets.
|
||||||
|
Deals with both vector- and scalar fields.
|
||||||
|
|
||||||
|
""", version = scriptID)
|
||||||
|
|
||||||
|
parser.add_option('-c','--coordinates',
|
||||||
|
dest = 'coords',
|
||||||
|
type = 'string', metavar='string',
|
||||||
|
help = 'column heading for coordinates [%default]')
|
||||||
|
parser.add_option('-v','--vector',
|
||||||
|
dest = 'vector',
|
||||||
|
action = 'extend', metavar = '<string LIST>',
|
||||||
|
help = 'heading of columns containing vector field values')
|
||||||
|
parser.add_option('-s','--scalar',
|
||||||
|
dest = 'scalar',
|
||||||
|
action = 'extend', metavar = '<string LIST>',
|
||||||
|
help = 'heading of columns containing scalar field values')
|
||||||
|
|
||||||
|
parser.set_defaults(coords = 'ipinitialcoord',
|
||||||
|
)
|
||||||
|
|
||||||
|
(options,filenames) = parser.parse_args()
|
||||||
|
|
||||||
|
if options.vector is None and options.scalar is None:
|
||||||
|
parser.error('no data column specified.')
|
||||||
|
|
||||||
|
# --- loop over input files ------------------------------------------------------------------------
|
||||||
|
|
||||||
|
if filenames == []: filenames = [None]
|
||||||
|
|
||||||
|
for name in filenames:
|
||||||
|
try: table = damask.ASCIItable(name = name,buffered = False)
|
||||||
|
except: continue
|
||||||
|
damask.util.report(scriptName,name)
|
||||||
|
|
||||||
|
# ------------------------------------------ read header ------------------------------------------
|
||||||
|
|
||||||
|
table.head_read()
|
||||||
|
|
||||||
|
# ------------------------------------------ sanity checks ----------------------------------------
|
||||||
|
|
||||||
|
items = {
|
||||||
|
'scalar': {'dim': 1, 'shape': [1], 'labels':options.scalar, 'active':[], 'column': []},
|
||||||
|
'vector': {'dim': 3, 'shape': [3], 'labels':options.vector, 'active':[], 'column': []},
|
||||||
|
}
|
||||||
|
errors = []
|
||||||
|
remarks = []
|
||||||
|
column = {}
|
||||||
|
|
||||||
|
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
|
||||||
|
else: colCoord = table.label_index(options.coords)
|
||||||
|
|
||||||
|
for type, data in items.iteritems():
|
||||||
|
for what in (data['labels'] if data['labels'] is not None else []):
|
||||||
|
dim = table.label_dimension(what)
|
||||||
|
if dim != data['dim']: remarks.append('column {} is not a {}.'.format(what,type))
|
||||||
|
else:
|
||||||
|
items[type]['active'].append(what)
|
||||||
|
items[type]['column'].append(table.label_index(what))
|
||||||
|
|
||||||
|
if remarks != []: damask.util.croak(remarks)
|
||||||
|
if errors != []:
|
||||||
|
damask.util.croak(errors)
|
||||||
|
table.close(dismiss = True)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# ------------------------------------------ assemble header --------------------------------------
|
||||||
|
|
||||||
|
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||||
|
for type, data in items.iteritems():
|
||||||
|
for label in data['active']:
|
||||||
|
table.labels_append(['{}_gradFFT({})'.format(i+1,label) for i in xrange(3 * data['dim'])]) # extend ASCII header with new labels
|
||||||
|
table.head_write()
|
||||||
|
|
||||||
|
# --------------- figure out size and grid ---------------------------------------------------------
|
||||||
|
|
||||||
|
table.data_readArray()
|
||||||
|
|
||||||
|
coords = [np.unique(table.data[:,colCoord+i]) for i in xrange(3)]
|
||||||
|
mincorner = np.array(map(min,coords))
|
||||||
|
maxcorner = np.array(map(max,coords))
|
||||||
|
grid = np.array(map(len,coords),'i')
|
||||||
|
size = grid/np.maximum(np.ones(3,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1)
|
||||||
|
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1]))
|
||||||
|
|
||||||
|
# ------------------------------------------ process value field -----------------------------------
|
||||||
|
|
||||||
|
stack = [table.data]
|
||||||
|
for type, data in items.iteritems():
|
||||||
|
for i,label in enumerate(data['active']):
|
||||||
|
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
|
||||||
|
stack.append(gradFFT(size[::-1],
|
||||||
|
table.data[:,data['column'][i]:data['column'][i]+data['dim']].
|
||||||
|
reshape([grid[2],grid[1],grid[0]]+data['shape'])))
|
||||||
|
|
||||||
|
# ------------------------------------------ output result -----------------------------------------
|
||||||
|
|
||||||
|
if len(stack) > 1: table.data = np.hstack(tuple(stack))
|
||||||
|
table.data_writeArray('%.12g')
|
||||||
|
|
||||||
|
# ------------------------------------------ output finalization -----------------------------------
|
||||||
|
|
||||||
|
table.close() # close input ASCII table (works for stdin)
|
|
@ -35,7 +35,7 @@ Filter rows according to condition and columns by either white or black listing.
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
Every odd row if x coordinate is positive -- " #ip.x# >= 0.0 and #_row_#%2 == 1 ).
|
Every odd row if x coordinate is positive -- " #ip.x# >= 0.0 and #_row_#%2 == 1 ).
|
||||||
All rows where label 'foo' equals 'bar' -- " #foo# == \"bar\" "
|
All rows where label 'foo' equals 'bar' -- " #s#foo# == 'bar' "
|
||||||
|
|
||||||
""", version = scriptID)
|
""", version = scriptID)
|
||||||
|
|
||||||
|
|
|
@ -151,7 +151,7 @@ for name in filenames:
|
||||||
writer = vtk.vtkXMLRectilinearGridWriter()
|
writer = vtk.vtkXMLRectilinearGridWriter()
|
||||||
writer.SetDataModeToBinary()
|
writer.SetDataModeToBinary()
|
||||||
writer.SetCompressorTypeToZLib()
|
writer.SetCompressorTypeToZLib()
|
||||||
writer.SetFileName(os.path.splitext(options.vtk)[0]+('' if options.inplace else '_added.vtr'))
|
writer.SetFileName(os.path.splitext(options.vtk)[0]+('.vtr' if options.inplace else '_added.vtr'))
|
||||||
if vtk.VTK_MAJOR_VERSION <= 5: writer.SetInput(rGrid)
|
if vtk.VTK_MAJOR_VERSION <= 5: writer.SetInput(rGrid)
|
||||||
else: writer.SetInputData(rGrid)
|
else: writer.SetInputData(rGrid)
|
||||||
writer.Write()
|
writer.Write()
|
||||||
|
|
|
@ -28,24 +28,32 @@ parser.add_option('-o', '--offset',
|
||||||
help = 'a,b,c offset from old to new origin of grid [%default]')
|
help = 'a,b,c offset from old to new origin of grid [%default]')
|
||||||
parser.add_option('-f', '--fill',
|
parser.add_option('-f', '--fill',
|
||||||
dest = 'fill',
|
dest = 'fill',
|
||||||
type = 'int', metavar = 'int',
|
type = 'float', metavar = 'float',
|
||||||
help = '(background) canvas grain index. "0" selects maximum microstructure index + 1 [%default]')
|
help = '(background) canvas grain index. "0" selects maximum microstructure index + 1 [%default]')
|
||||||
|
parser.add_option('--float',
|
||||||
|
dest = 'real',
|
||||||
|
action = 'store_true',
|
||||||
|
help = 'input data is float [%default]')
|
||||||
|
|
||||||
parser.set_defaults(grid = ['0','0','0'],
|
parser.set_defaults(grid = ['0','0','0'],
|
||||||
offset = (0,0,0),
|
offset = (0,0,0),
|
||||||
fill = 0,
|
fill = 0,
|
||||||
|
real = False,
|
||||||
)
|
)
|
||||||
|
|
||||||
(options, filenames) = parser.parse_args()
|
(options, filenames) = parser.parse_args()
|
||||||
|
|
||||||
|
datatype = 'f' if options.real else 'i'
|
||||||
|
|
||||||
|
|
||||||
# --- loop over input files -------------------------------------------------------------------------
|
# --- loop over input files -------------------------------------------------------------------------
|
||||||
|
|
||||||
if filenames == []: filenames = [None]
|
if filenames == []: filenames = [None]
|
||||||
|
|
||||||
for name in filenames:
|
for name in filenames:
|
||||||
try:
|
try: table = damask.ASCIItable(name = name,
|
||||||
table = damask.ASCIItable(name = name,
|
buffered = False,
|
||||||
buffered = False, labeled = False)
|
labeled = False)
|
||||||
except: continue
|
except: continue
|
||||||
damask.util.report(scriptName,name)
|
damask.util.report(scriptName,name)
|
||||||
|
|
||||||
|
@ -71,7 +79,7 @@ for name in filenames:
|
||||||
|
|
||||||
# --- read data ------------------------------------------------------------------------------------
|
# --- read data ------------------------------------------------------------------------------------
|
||||||
|
|
||||||
microstructure = table.microstructure_read(info['grid']).reshape(info['grid'],order='F') # read microstructure
|
microstructure = table.microstructure_read(info['grid'],datatype).reshape(info['grid'],order='F') # read microstructure
|
||||||
|
|
||||||
# --- do work ------------------------------------------------------------------------------------
|
# --- do work ------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
@ -85,8 +93,8 @@ for name in filenames:
|
||||||
else int(n) for o,n in zip(info['grid'],options.grid)],'i')
|
else int(n) for o,n in zip(info['grid'],options.grid)],'i')
|
||||||
newInfo['grid'] = np.where(newInfo['grid'] > 0, newInfo['grid'],info['grid'])
|
newInfo['grid'] = np.where(newInfo['grid'] > 0, newInfo['grid'],info['grid'])
|
||||||
|
|
||||||
microstructure_cropped = np.zeros(newInfo['grid'],'i')
|
microstructure_cropped = np.zeros(newInfo['grid'],datatype)
|
||||||
microstructure_cropped.fill(options.fill if options.fill > 0 else microstructure.max()+1)
|
microstructure_cropped.fill(options.fill if options.real or options.fill > 0 else microstructure.max()+1)
|
||||||
xindex = list(set(xrange(options.offset[0],options.offset[0]+newInfo['grid'][0])) & \
|
xindex = list(set(xrange(options.offset[0],options.offset[0]+newInfo['grid'][0])) & \
|
||||||
set(xrange(info['grid'][0])))
|
set(xrange(info['grid'][0])))
|
||||||
yindex = list(set(xrange(options.offset[1],options.offset[1]+newInfo['grid'][1])) & \
|
yindex = list(set(xrange(options.offset[1],options.offset[1]+newInfo['grid'][1])) & \
|
||||||
|
@ -152,9 +160,9 @@ for name in filenames:
|
||||||
|
|
||||||
# --- write microstructure information ------------------------------------------------------------
|
# --- write microstructure information ------------------------------------------------------------
|
||||||
|
|
||||||
formatwidth = int(math.floor(math.log10(microstructure_cropped.max())+1))
|
format = '%g' if options.real else '%{}i'.format(int(math.floor(math.log10(microstructure_cropped.max())+1)))
|
||||||
table.data = microstructure_cropped.reshape((newInfo['grid'][0],newInfo['grid'][1]*newInfo['grid'][2]),order='F').transpose()
|
table.data = microstructure_cropped.reshape((newInfo['grid'][0],newInfo['grid'][1]*newInfo['grid'][2]),order='F').transpose()
|
||||||
table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
|
table.data_writeArray(format,delimiter=' ')
|
||||||
|
|
||||||
# --- output finalization --------------------------------------------------------------------------
|
# --- output finalization --------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
|
@ -54,12 +54,25 @@ for name in filenames:
|
||||||
errors = []
|
errors = []
|
||||||
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
|
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
|
||||||
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
|
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
|
||||||
|
|
||||||
|
#--- read microstructure information --------------------------------------------------------------
|
||||||
|
|
||||||
|
if options.data:
|
||||||
|
microstructure,ok = table.microstructure_read(info['grid'],strict = True) # read microstructure
|
||||||
|
|
||||||
|
if ok:
|
||||||
|
structure = vtk.vtkIntArray()
|
||||||
|
structure.SetName('Microstructures')
|
||||||
|
for idx in microstructure: structure.InsertNextValue(idx)
|
||||||
|
|
||||||
|
else: errors.append('mismatch between data and grid dimension.')
|
||||||
|
|
||||||
if errors != []:
|
if errors != []:
|
||||||
damask.util.croak(errors)
|
damask.util.croak(errors)
|
||||||
table.close(dismiss = True)
|
table.close(dismiss = True)
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# --- generate VTK rectilinear grid --------------------------------------------------------------------------------
|
# --- generate VTK rectilinear grid ---------------------------------------------------------------
|
||||||
|
|
||||||
grid = vtk.vtkRectilinearGrid()
|
grid = vtk.vtkRectilinearGrid()
|
||||||
grid.SetDimensions([x+1 for x in info['grid']])
|
grid.SetDimensions([x+1 for x in info['grid']])
|
||||||
|
@ -72,18 +85,8 @@ for name in filenames:
|
||||||
elif i == 1: grid.SetYCoordinates(temp)
|
elif i == 1: grid.SetYCoordinates(temp)
|
||||||
elif i == 2: grid.SetZCoordinates(temp)
|
elif i == 2: grid.SetZCoordinates(temp)
|
||||||
|
|
||||||
#--- read microstructure information --------------------------------------------------------------
|
|
||||||
|
|
||||||
if options.data:
|
if options.data: grid.GetCellData().AddArray(structure)
|
||||||
microstructure = table.microstructure_read(info['grid']) # read microstructure
|
|
||||||
|
|
||||||
structure = vtk.vtkIntArray()
|
|
||||||
structure.SetName('Microstructures')
|
|
||||||
|
|
||||||
for idx in microstructure:
|
|
||||||
structure.InsertNextValue(idx)
|
|
||||||
|
|
||||||
grid.GetCellData().AddArray(structure)
|
|
||||||
|
|
||||||
# --- write data -----------------------------------------------------------------------------------
|
# --- write data -----------------------------------------------------------------------------------
|
||||||
if name:
|
if name:
|
||||||
|
|
|
@ -18,6 +18,14 @@ Unpack geometry files containing ranges "a to b" and/or "n of x" multiples (excl
|
||||||
|
|
||||||
""", version = scriptID)
|
""", version = scriptID)
|
||||||
|
|
||||||
|
parser.add_option('-1', '--onedimensional',
|
||||||
|
dest = 'oneD',
|
||||||
|
action = 'store_true',
|
||||||
|
help = 'output geom file with one-dimensional data arrangement')
|
||||||
|
|
||||||
|
parser.set_defaults(oneD = False,
|
||||||
|
)
|
||||||
|
|
||||||
(options, filenames) = parser.parse_args()
|
(options, filenames) = parser.parse_args()
|
||||||
|
|
||||||
# --- loop over input files -------------------------------------------------------------------------
|
# --- loop over input files -------------------------------------------------------------------------
|
||||||
|
@ -69,7 +77,8 @@ for name in filenames:
|
||||||
|
|
||||||
microstructure = table.microstructure_read(info['grid']) # read microstructure
|
microstructure = table.microstructure_read(info['grid']) # read microstructure
|
||||||
formatwidth = int(math.floor(math.log10(microstructure.max())+1)) # efficient number printing format
|
formatwidth = int(math.floor(math.log10(microstructure.max())+1)) # efficient number printing format
|
||||||
table.data = microstructure.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
|
table.data = microstructure if options.oneD else \
|
||||||
|
microstructure.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
|
||||||
table.data_writeArray('%%%ii'%(formatwidth),delimiter = ' ')
|
table.data_writeArray('%%%ii'%(formatwidth),delimiter = ' ')
|
||||||
|
|
||||||
#--- output finalization --------------------------------------------------------------------------
|
#--- output finalization --------------------------------------------------------------------------
|
||||||
|
|
Loading…
Reference in New Issue