Depending on which state integrator one uses for the stiffness calculation, the initial state has to be chosen accordingly: e.g. for FPI choose last converged state, but for explicit RK choose converged state from start of increment (in case of explicit euler no state integration at all, but only stress integration). For this purpose we also need to remember "Fe" which now follows the cutbacking procedure as it is used for "Fp".
This commit is contained in:
parent
4966231e5b
commit
ca3d21a3b6
|
@ -66,6 +66,7 @@ real(pReal), dimension (:,:,:,:), allocatable :: &
|
|||
crystallite_rotation ! grain rotation away from initial orientation as axis-angle (in degrees)
|
||||
real(pReal), dimension (:,:,:,:,:), allocatable :: &
|
||||
crystallite_Fe, & ! current "elastic" def grad (end of converged time step)
|
||||
crystallite_subFe0,& ! "elastic" def grad at start of crystallite inc
|
||||
crystallite_Fp, & ! current plastic def grad (end of converged time step)
|
||||
crystallite_invFp, & ! inverse of current plastic def grad (end of converged time step)
|
||||
crystallite_Fp0, & ! plastic def grad at start of FE inc
|
||||
|
@ -202,6 +203,7 @@ allocate(crystallite_subFp0(3,3,gMax,iMax,eMax)); crys
|
|||
allocate(crystallite_Fp(3,3,gMax,iMax,eMax)); crystallite_Fp = 0.0_pReal
|
||||
allocate(crystallite_invFp(3,3,gMax,iMax,eMax)); crystallite_invFp = 0.0_pReal
|
||||
allocate(crystallite_Fe(3,3,gMax,iMax,eMax)); crystallite_Fe = 0.0_pReal
|
||||
allocate(crystallite_subFe0(3,3,gMax,iMax,eMax)); crystallite_subFe0 = 0.0_pReal
|
||||
allocate(crystallite_Lp0(3,3,gMax,iMax,eMax)); crystallite_Lp0 = 0.0_pReal
|
||||
allocate(crystallite_partionedLp0(3,3,gMax,iMax,eMax)); crystallite_partionedLp0 = 0.0_pReal
|
||||
allocate(crystallite_subLp0(3,3,gMax,iMax,eMax)); crystallite_subLp0 = 0.0_pReal
|
||||
|
@ -400,6 +402,7 @@ if (debug_verbosity > 0) then
|
|||
write(6,'(a35,x,7(i8,x))') 'crystallite_subTemperature0: ', shape(crystallite_subTemperature0)
|
||||
write(6,'(a35,x,7(i8,x))') 'crystallite_symmetryID: ', shape(crystallite_symmetryID)
|
||||
write(6,'(a35,x,7(i8,x))') 'crystallite_subF0: ', shape(crystallite_subF0)
|
||||
write(6,'(a35,x,7(i8,x))') 'crystallite_subFe0: ', shape(crystallite_subFe0)
|
||||
write(6,'(a35,x,7(i8,x))') 'crystallite_subFp0: ', shape(crystallite_subFp0)
|
||||
write(6,'(a35,x,7(i8,x))') 'crystallite_subLp0: ', shape(crystallite_subLp0)
|
||||
write(6,'(a35,x,7(i8,x))') 'crystallite_P: ', shape(crystallite_P)
|
||||
|
@ -561,6 +564,8 @@ crystallite_subStep = 0.0_pReal
|
|||
crystallite_dPdF0(1:3,1:3,1:3,1:3,g,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,g,i,e) ! ...stiffness
|
||||
crystallite_subF0(1:3,1:3,g,i,e) = crystallite_partionedF0(1:3,1:3,g,i,e) ! ...def grad
|
||||
crystallite_subTstar0_v(1:6,g,i,e) = crystallite_partionedTstar0_v(1:6,g,i,e) !...2nd PK stress
|
||||
crystallite_subFe0(1:3,1:3,g,i,e) = math_mul33x33(crystallite_subF0(1:3,1:3,g,i,e), &
|
||||
math_inv3x3(crystallite_subFp0(1:3,1:3,g,i,e))) ! only needed later on for stiffness calculation
|
||||
|
||||
crystallite_subFrac(g,i,e) = 0.0_pReal
|
||||
crystallite_subStep(g,i,e) = 1.0_pReal/subStepSizeCryst
|
||||
|
@ -607,6 +612,7 @@ do while (any(crystallite_subStep(:,:,FEsolving_execELem(1):FEsolving_execElem(2
|
|||
crystallite_subTemperature0(g,i,e) = crystallite_Temperature(g,i,e) ! wind forward...
|
||||
crystallite_subF0(1:3,1:3,g,i,e) = crystallite_subF(1:3,1:3,g,i,e) ! ...def grad
|
||||
crystallite_subFp0(1:3,1:3,g,i,e) = crystallite_Fp(1:3,1:3,g,i,e) ! ...plastic def grad
|
||||
crystallite_subFe0(1:3,1:3,g,i,e) = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), crystallite_invFp(1:3,1:3,g,i,e)) ! only needed later on for stiffness calculation
|
||||
crystallite_subLp0(1:3,1:3,g,i,e) = crystallite_Lp(1:3,1:3,g,i,e) ! ...plastic velocity gradient
|
||||
constitutive_subState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructure
|
||||
crystallite_subTstar0_v(1:6,g,i,e) = crystallite_Tstar_v(1:6,g,i,e) ! ...2nd PK stress
|
||||
|
@ -719,6 +725,7 @@ enddo
|
|||
if(updateJaco) then ! Jacobian required
|
||||
numerics_integrationMode = 2_pInt
|
||||
|
||||
|
||||
! --- BACKUP ---
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(myNgrains,mySizeState,mySizeDotState)
|
||||
|
@ -753,14 +760,63 @@ if(updateJaco) then
|
|||
if (iand(pert_method,perturbation) > 0) then ! mask for desired direction
|
||||
myPert = -pert_Fg * (-1.0_pReal)**perturbation ! set perturbation step
|
||||
do k = 1,3; do l = 1,3 ! ...alter individual components
|
||||
#ifndef _OPENMP
|
||||
if (debug_verbosity> 5) then
|
||||
!$OMP CRITICAL (write2out)
|
||||
write(6,'(a,2(x,i1),x,a)') '<< CRYST >> [[[[[[ Stiffness perturbation',k,l,']]]]]]'
|
||||
write(6,*)
|
||||
!$OMP END CRITICAL (write2out)
|
||||
endif
|
||||
crystallite_subF(k,l,:,:,:) = crystallite_subF(k,l,:,:,:) + myPert ! perturb either forward or backward
|
||||
#endif
|
||||
|
||||
|
||||
! --- INITIALIZE UNPERTURBED STATE ---
|
||||
|
||||
select case(numerics_integrator(numerics_integrationMode))
|
||||
case(1) ! Fix-point method: restore to last converged state at end of subinc, since this is probably closest to perturbed state
|
||||
!$OMP PARALLEL DO PRIVATE(myNgrains,mySizeState,mySizeDotState)
|
||||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||||
do g = 1,myNgrains
|
||||
mySizeState = constitutive_sizeState(g,i,e)
|
||||
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
||||
constitutive_state(g,i,e)%p(1:mySizeState) = constitutive_state_backup(g,i,e)%p(1:mySizeState)
|
||||
constitutive_dotState(g,i,e)%p(1:mySizeDotState) = constitutive_dotState_backup(g,i,e)%p(1:mySizeDotState)
|
||||
enddo; enddo; enddo
|
||||
!OMP END PARALLEL DO
|
||||
crystallite_Temperature = Temperature_backup
|
||||
crystallite_Fp = Fp_backup
|
||||
crystallite_invFp = InvFp_backup
|
||||
crystallite_Fe = Fe_backup
|
||||
crystallite_Lp = Lp_backup
|
||||
crystallite_Tstar_v = Tstar_v_backup
|
||||
case(2,3) ! explicit Euler methods: nothing to restore (except for F), since we are only doing a stress integration step
|
||||
case(4,5) ! explicit Runge-Kutta methods: restore to start of subinc, since we are doing a full integration of state and stress
|
||||
!$OMP PARALLEL DO PRIVATE(myNgrains,mySizeState,mySizeDotState)
|
||||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||||
do g = 1,myNgrains
|
||||
mySizeState = constitutive_sizeState(g,i,e)
|
||||
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
||||
constitutive_state(g,i,e)%p(1:mySizeState) = constitutive_subState0(g,i,e)%p(1:mySizeState)
|
||||
constitutive_dotState(g,i,e)%p(1:mySizeDotState) = constitutive_dotState_backup(g,i,e)%p(1:mySizeDotState)
|
||||
enddo; enddo; enddo
|
||||
!OMP END PARALLEL DO
|
||||
crystallite_Temperature = crystallite_subTemperature0
|
||||
crystallite_Fp = crystallite_subFp0
|
||||
crystallite_Fe = crystallite_subFe0
|
||||
crystallite_Tstar_v = crystallite_subTstar0_v
|
||||
end select
|
||||
|
||||
|
||||
! --- PERTURB EITHER FORWARD OR BACKWARD ---
|
||||
|
||||
crystallite_subF = F_backup
|
||||
crystallite_subF(k,l,:,:,:) = crystallite_subF(k,l,:,:,:) + myPert
|
||||
|
||||
crystallite_converged = convergenceFlag_backup
|
||||
crystallite_todo = crystallite_requested .and. crystallite_converged
|
||||
where (crystallite_todo) crystallite_converged = .false. ! start out non-converged
|
||||
|
||||
|
@ -793,32 +849,6 @@ if(updateJaco) then
|
|||
enddo; enddo; enddo
|
||||
!OMP END PARALLEL DO
|
||||
|
||||
|
||||
! --- RESTORE ---
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(myNgrains,mySizeState,mySizeDotState)
|
||||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||||
do g = 1,myNgrains
|
||||
mySizeState = constitutive_sizeState(g,i,e)
|
||||
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
||||
constitutive_state(g,i,e)%p(1:mySizeState) = constitutive_state_backup(g,i,e)%p(1:mySizeState)
|
||||
constitutive_dotState(g,i,e)%p(1:mySizeDotState) = constitutive_dotState_backup(g,i,e)%p(1:mySizeDotState)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!OMP END PARALLEL DO
|
||||
crystallite_Temperature = Temperature_backup
|
||||
crystallite_subF = F_backup
|
||||
crystallite_Fp = Fp_backup
|
||||
crystallite_invFp = InvFp_backup
|
||||
crystallite_Fe = Fe_backup
|
||||
crystallite_Lp = Lp_backup
|
||||
crystallite_Tstar_v = Tstar_v_backup
|
||||
crystallite_P = P_backup
|
||||
crystallite_converged = convergenceFlag_backup
|
||||
|
||||
enddo; enddo ! k,l loop
|
||||
endif
|
||||
enddo ! perturbation direction
|
||||
|
@ -831,7 +861,7 @@ if(updateJaco) then
|
|||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||||
do g = 1,myNgrains
|
||||
if (crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) then ! central solution converged
|
||||
if (crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) then ! central solution converged
|
||||
select case(pert_method)
|
||||
case(1)
|
||||
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = dPdF_perturbation1(1:3,1:3,1:3,1:3,g,i,e)
|
||||
|
@ -841,7 +871,7 @@ if(updateJaco) then
|
|||
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = 0.5_pReal* ( dPdF_perturbation1(1:3,1:3,1:3,1:3,g,i,e) &
|
||||
+ dPdF_perturbation2(1:3,1:3,1:3,1:3,g,i,e))
|
||||
end select
|
||||
elseif (crystallite_requested(g,i,e) .and. .not. crystallite_converged(g,i,e)) then ! central solution did not converge
|
||||
elseif (crystallite_requested(g,i,e) .and. .not. convergenceFlag_backup(g,i,e)) then ! central solution did not converge
|
||||
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = crystallite_fallbackdPdF(1:3,1:3,1:3,1:3,g,i,e) ! use (elastic) fallback
|
||||
endif
|
||||
enddo
|
||||
|
@ -849,6 +879,30 @@ if(updateJaco) then
|
|||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
|
||||
! --- RESTORE ---
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(myNgrains,mySizeState,mySizeDotState)
|
||||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||||
do g = 1,myNgrains
|
||||
mySizeState = constitutive_sizeState(g,i,e)
|
||||
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
||||
constitutive_state(g,i,e)%p(1:mySizeState) = constitutive_state_backup(g,i,e)%p(1:mySizeState)
|
||||
constitutive_dotState(g,i,e)%p(1:mySizeDotState) = constitutive_dotState_backup(g,i,e)%p(1:mySizeDotState)
|
||||
enddo; enddo; enddo
|
||||
!OMP END PARALLEL DO
|
||||
crystallite_Temperature = Temperature_backup
|
||||
crystallite_subF = F_backup
|
||||
crystallite_Fp = Fp_backup
|
||||
crystallite_invFp = InvFp_backup
|
||||
crystallite_Fe = Fe_backup
|
||||
crystallite_Lp = Lp_backup
|
||||
crystallite_Tstar_v = Tstar_v_backup
|
||||
crystallite_P = P_backup
|
||||
crystallite_converged = convergenceFlag_backup
|
||||
|
||||
endif ! jacobian calculation
|
||||
|
||||
endsubroutine
|
||||
|
@ -1671,21 +1725,23 @@ else
|
|||
endif
|
||||
|
||||
|
||||
! --- RESET DOTSTATE ---
|
||||
|
||||
!$OMP PARALLEL PRIVATE(mySizeDotState)
|
||||
|
||||
!$OMP DO
|
||||
if (numerics_integrationMode < 2) then
|
||||
|
||||
! --- RESET DOTSTATE ---
|
||||
|
||||
!$OMP DO
|
||||
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
|
||||
enddo; enddo; enddo
|
||||
!$OMP ENDDO
|
||||
!$OMP ENDDO
|
||||
|
||||
|
||||
! --- DOT STATE AND TEMPERATURE (EULER INTEGRATION) ---
|
||||
! --- DOT STATE AND TEMPERATURE (EULER INTEGRATION) ---
|
||||
|
||||
stateResiduum = 0.0_pReal
|
||||
!$OMP DO
|
||||
stateResiduum = 0.0_pReal
|
||||
!$OMP DO
|
||||
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
|
||||
|
@ -1694,8 +1750,8 @@ stateResiduum = 0.0_pReal
|
|||
crystallite_Temperature(g,i,e),g,i,e)
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMP ENDDO
|
||||
!$OMP DO
|
||||
!$OMP ENDDO
|
||||
!$OMP DO
|
||||
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
||||
|
@ -1710,12 +1766,12 @@ stateResiduum = 0.0_pReal
|
|||
endif
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMP ENDDO
|
||||
!$OMP ENDDO
|
||||
|
||||
|
||||
! --- STATE UPDATE (EULER INTEGRATION) ---
|
||||
! --- STATE UPDATE (EULER INTEGRATION) ---
|
||||
|
||||
!$OMP DO
|
||||
!$OMP DO
|
||||
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
||||
|
@ -1727,19 +1783,21 @@ stateResiduum = 0.0_pReal
|
|||
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMP ENDDO
|
||||
!$OMP ENDDO
|
||||
|
||||
|
||||
! --- UPDATE DEPENDENT STATES (EULER INTEGRATION) ---
|
||||
! --- UPDATE DEPENDENT STATES (EULER INTEGRATION) ---
|
||||
|
||||
!$OMP DO
|
||||
!$OMP DO
|
||||
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe, g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
endif
|
||||
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
|
||||
enddo; enddo; enddo
|
||||
!$OMP ENDDO
|
||||
!$OMP ENDDO
|
||||
|
||||
endif
|
||||
|
||||
|
||||
! --- STRESS INTEGRATION (EULER INTEGRATION) ---
|
||||
|
@ -1938,20 +1996,22 @@ else
|
|||
endif
|
||||
|
||||
|
||||
! --- RESET DOTSTATE ---
|
||||
|
||||
!$OMP PARALLEL PRIVATE(mySizeDotState)
|
||||
|
||||
!$OMP DO
|
||||
if (numerics_integrationMode < 2) then
|
||||
|
||||
! --- RESET DOTSTATE ---
|
||||
|
||||
!$OMP DO
|
||||
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
|
||||
enddo; enddo; enddo
|
||||
!$OMP ENDDO
|
||||
!$OMP ENDDO
|
||||
|
||||
|
||||
! --- DOT STATE AND TEMPERATURE ---
|
||||
! --- DOT STATE AND TEMPERATURE ---
|
||||
|
||||
!$OMP DO
|
||||
!$OMP DO
|
||||
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
|
||||
|
@ -1960,8 +2020,8 @@ endif
|
|||
crystallite_Temperature(g,i,e),g,i,e)
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMP ENDDO
|
||||
!$OMP DO
|
||||
!$OMP ENDDO
|
||||
!$OMP DO
|
||||
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
||||
|
@ -1976,12 +2036,12 @@ endif
|
|||
endif
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMP ENDDO
|
||||
!$OMP ENDDO
|
||||
|
||||
|
||||
! --- UPDATE STATE AND TEMPERATURE ---
|
||||
! --- UPDATE STATE AND TEMPERATURE ---
|
||||
|
||||
!$OMP DO
|
||||
!$OMP DO
|
||||
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
||||
|
@ -2002,18 +2062,20 @@ endif
|
|||
#endif
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMP ENDDO
|
||||
!$OMP ENDDO
|
||||
|
||||
|
||||
! --- UPDATE DEPENDENT STATES ---
|
||||
! --- UPDATE DEPENDENT STATES ---
|
||||
|
||||
!$OMP DO
|
||||
!$OMP DO
|
||||
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe, g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMP ENDDO
|
||||
!$OMP ENDDO
|
||||
|
||||
endif
|
||||
|
||||
|
||||
! --- STRESS INTEGRATION ---
|
||||
|
|
Loading…
Reference in New Issue