Depending on which state integrator one uses for the stiffness calculation, the initial state has to be chosen accordingly: e.g. for FPI choose last converged state, but for explicit RK choose converged state from start of increment (in case of explicit euler no state integration at all, but only stress integration). For this purpose we also need to remember "Fe" which now follows the cutbacking procedure as it is used for "Fp".

This commit is contained in:
Christoph Kords 2011-11-04 12:44:50 +00:00
parent 4966231e5b
commit ca3d21a3b6
1 changed files with 209 additions and 147 deletions

View File

@ -66,6 +66,7 @@ real(pReal), dimension (:,:,:,:), allocatable :: &
crystallite_rotation ! grain rotation away from initial orientation as axis-angle (in degrees)
real(pReal), dimension (:,:,:,:,:), allocatable :: &
crystallite_Fe, & ! current "elastic" def grad (end of converged time step)
crystallite_subFe0,& ! "elastic" def grad at start of crystallite inc
crystallite_Fp, & ! current plastic def grad (end of converged time step)
crystallite_invFp, & ! inverse of current plastic def grad (end of converged time step)
crystallite_Fp0, & ! plastic def grad at start of FE inc
@ -202,6 +203,7 @@ allocate(crystallite_subFp0(3,3,gMax,iMax,eMax)); crys
allocate(crystallite_Fp(3,3,gMax,iMax,eMax)); crystallite_Fp = 0.0_pReal
allocate(crystallite_invFp(3,3,gMax,iMax,eMax)); crystallite_invFp = 0.0_pReal
allocate(crystallite_Fe(3,3,gMax,iMax,eMax)); crystallite_Fe = 0.0_pReal
allocate(crystallite_subFe0(3,3,gMax,iMax,eMax)); crystallite_subFe0 = 0.0_pReal
allocate(crystallite_Lp0(3,3,gMax,iMax,eMax)); crystallite_Lp0 = 0.0_pReal
allocate(crystallite_partionedLp0(3,3,gMax,iMax,eMax)); crystallite_partionedLp0 = 0.0_pReal
allocate(crystallite_subLp0(3,3,gMax,iMax,eMax)); crystallite_subLp0 = 0.0_pReal
@ -400,6 +402,7 @@ if (debug_verbosity > 0) then
write(6,'(a35,x,7(i8,x))') 'crystallite_subTemperature0: ', shape(crystallite_subTemperature0)
write(6,'(a35,x,7(i8,x))') 'crystallite_symmetryID: ', shape(crystallite_symmetryID)
write(6,'(a35,x,7(i8,x))') 'crystallite_subF0: ', shape(crystallite_subF0)
write(6,'(a35,x,7(i8,x))') 'crystallite_subFe0: ', shape(crystallite_subFe0)
write(6,'(a35,x,7(i8,x))') 'crystallite_subFp0: ', shape(crystallite_subFp0)
write(6,'(a35,x,7(i8,x))') 'crystallite_subLp0: ', shape(crystallite_subLp0)
write(6,'(a35,x,7(i8,x))') 'crystallite_P: ', shape(crystallite_P)
@ -561,6 +564,8 @@ crystallite_subStep = 0.0_pReal
crystallite_dPdF0(1:3,1:3,1:3,1:3,g,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,g,i,e) ! ...stiffness
crystallite_subF0(1:3,1:3,g,i,e) = crystallite_partionedF0(1:3,1:3,g,i,e) ! ...def grad
crystallite_subTstar0_v(1:6,g,i,e) = crystallite_partionedTstar0_v(1:6,g,i,e) !...2nd PK stress
crystallite_subFe0(1:3,1:3,g,i,e) = math_mul33x33(crystallite_subF0(1:3,1:3,g,i,e), &
math_inv3x3(crystallite_subFp0(1:3,1:3,g,i,e))) ! only needed later on for stiffness calculation
crystallite_subFrac(g,i,e) = 0.0_pReal
crystallite_subStep(g,i,e) = 1.0_pReal/subStepSizeCryst
@ -607,6 +612,7 @@ do while (any(crystallite_subStep(:,:,FEsolving_execELem(1):FEsolving_execElem(2
crystallite_subTemperature0(g,i,e) = crystallite_Temperature(g,i,e) ! wind forward...
crystallite_subF0(1:3,1:3,g,i,e) = crystallite_subF(1:3,1:3,g,i,e) ! ...def grad
crystallite_subFp0(1:3,1:3,g,i,e) = crystallite_Fp(1:3,1:3,g,i,e) ! ...plastic def grad
crystallite_subFe0(1:3,1:3,g,i,e) = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), crystallite_invFp(1:3,1:3,g,i,e)) ! only needed later on for stiffness calculation
crystallite_subLp0(1:3,1:3,g,i,e) = crystallite_Lp(1:3,1:3,g,i,e) ! ...plastic velocity gradient
constitutive_subState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructure
crystallite_subTstar0_v(1:6,g,i,e) = crystallite_Tstar_v(1:6,g,i,e) ! ...2nd PK stress
@ -719,6 +725,7 @@ enddo
if(updateJaco) then ! Jacobian required
numerics_integrationMode = 2_pInt
! --- BACKUP ---
!$OMP PARALLEL DO PRIVATE(myNgrains,mySizeState,mySizeDotState)
@ -753,14 +760,63 @@ if(updateJaco) then
if (iand(pert_method,perturbation) > 0) then ! mask for desired direction
myPert = -pert_Fg * (-1.0_pReal)**perturbation ! set perturbation step
do k = 1,3; do l = 1,3 ! ...alter individual components
#ifndef _OPENMP
if (debug_verbosity> 5) then
!$OMP CRITICAL (write2out)
write(6,'(a,2(x,i1),x,a)') '<< CRYST >> [[[[[[ Stiffness perturbation',k,l,']]]]]]'
write(6,*)
!$OMP END CRITICAL (write2out)
endif
crystallite_subF(k,l,:,:,:) = crystallite_subF(k,l,:,:,:) + myPert ! perturb either forward or backward
#endif
! --- INITIALIZE UNPERTURBED STATE ---
select case(numerics_integrator(numerics_integrationMode))
case(1) ! Fix-point method: restore to last converged state at end of subinc, since this is probably closest to perturbed state
!$OMP PARALLEL DO PRIVATE(myNgrains,mySizeState,mySizeDotState)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,myNgrains
mySizeState = constitutive_sizeState(g,i,e)
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_state(g,i,e)%p(1:mySizeState) = constitutive_state_backup(g,i,e)%p(1:mySizeState)
constitutive_dotState(g,i,e)%p(1:mySizeDotState) = constitutive_dotState_backup(g,i,e)%p(1:mySizeDotState)
enddo; enddo; enddo
!OMP END PARALLEL DO
crystallite_Temperature = Temperature_backup
crystallite_Fp = Fp_backup
crystallite_invFp = InvFp_backup
crystallite_Fe = Fe_backup
crystallite_Lp = Lp_backup
crystallite_Tstar_v = Tstar_v_backup
case(2,3) ! explicit Euler methods: nothing to restore (except for F), since we are only doing a stress integration step
case(4,5) ! explicit Runge-Kutta methods: restore to start of subinc, since we are doing a full integration of state and stress
!$OMP PARALLEL DO PRIVATE(myNgrains,mySizeState,mySizeDotState)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,myNgrains
mySizeState = constitutive_sizeState(g,i,e)
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_state(g,i,e)%p(1:mySizeState) = constitutive_subState0(g,i,e)%p(1:mySizeState)
constitutive_dotState(g,i,e)%p(1:mySizeDotState) = constitutive_dotState_backup(g,i,e)%p(1:mySizeDotState)
enddo; enddo; enddo
!OMP END PARALLEL DO
crystallite_Temperature = crystallite_subTemperature0
crystallite_Fp = crystallite_subFp0
crystallite_Fe = crystallite_subFe0
crystallite_Tstar_v = crystallite_subTstar0_v
end select
! --- PERTURB EITHER FORWARD OR BACKWARD ---
crystallite_subF = F_backup
crystallite_subF(k,l,:,:,:) = crystallite_subF(k,l,:,:,:) + myPert
crystallite_converged = convergenceFlag_backup
crystallite_todo = crystallite_requested .and. crystallite_converged
where (crystallite_todo) crystallite_converged = .false. ! start out non-converged
@ -793,32 +849,6 @@ if(updateJaco) then
enddo; enddo; enddo
!OMP END PARALLEL DO
! --- RESTORE ---
!$OMP PARALLEL DO PRIVATE(myNgrains,mySizeState,mySizeDotState)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,myNgrains
mySizeState = constitutive_sizeState(g,i,e)
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_state(g,i,e)%p(1:mySizeState) = constitutive_state_backup(g,i,e)%p(1:mySizeState)
constitutive_dotState(g,i,e)%p(1:mySizeDotState) = constitutive_dotState_backup(g,i,e)%p(1:mySizeDotState)
enddo
enddo
enddo
!OMP END PARALLEL DO
crystallite_Temperature = Temperature_backup
crystallite_subF = F_backup
crystallite_Fp = Fp_backup
crystallite_invFp = InvFp_backup
crystallite_Fe = Fe_backup
crystallite_Lp = Lp_backup
crystallite_Tstar_v = Tstar_v_backup
crystallite_P = P_backup
crystallite_converged = convergenceFlag_backup
enddo; enddo ! k,l loop
endif
enddo ! perturbation direction
@ -831,7 +861,7 @@ if(updateJaco) then
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,myNgrains
if (crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) then ! central solution converged
if (crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) then ! central solution converged
select case(pert_method)
case(1)
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = dPdF_perturbation1(1:3,1:3,1:3,1:3,g,i,e)
@ -841,7 +871,7 @@ if(updateJaco) then
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = 0.5_pReal* ( dPdF_perturbation1(1:3,1:3,1:3,1:3,g,i,e) &
+ dPdF_perturbation2(1:3,1:3,1:3,1:3,g,i,e))
end select
elseif (crystallite_requested(g,i,e) .and. .not. crystallite_converged(g,i,e)) then ! central solution did not converge
elseif (crystallite_requested(g,i,e) .and. .not. convergenceFlag_backup(g,i,e)) then ! central solution did not converge
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = crystallite_fallbackdPdF(1:3,1:3,1:3,1:3,g,i,e) ! use (elastic) fallback
endif
enddo
@ -849,6 +879,30 @@ if(updateJaco) then
enddo
!$OMP END PARALLEL DO
! --- RESTORE ---
!$OMP PARALLEL DO PRIVATE(myNgrains,mySizeState,mySizeDotState)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,myNgrains
mySizeState = constitutive_sizeState(g,i,e)
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_state(g,i,e)%p(1:mySizeState) = constitutive_state_backup(g,i,e)%p(1:mySizeState)
constitutive_dotState(g,i,e)%p(1:mySizeDotState) = constitutive_dotState_backup(g,i,e)%p(1:mySizeDotState)
enddo; enddo; enddo
!OMP END PARALLEL DO
crystallite_Temperature = Temperature_backup
crystallite_subF = F_backup
crystallite_Fp = Fp_backup
crystallite_invFp = InvFp_backup
crystallite_Fe = Fe_backup
crystallite_Lp = Lp_backup
crystallite_Tstar_v = Tstar_v_backup
crystallite_P = P_backup
crystallite_converged = convergenceFlag_backup
endif ! jacobian calculation
endsubroutine
@ -1671,10 +1725,12 @@ else
endif
! --- RESET DOTSTATE ---
!$OMP PARALLEL PRIVATE(mySizeDotState)
if (numerics_integrationMode < 2) then
! --- RESET DOTSTATE ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
@ -1741,6 +1797,8 @@ stateResiduum = 0.0_pReal
enddo; enddo; enddo
!$OMP ENDDO
endif
! --- STRESS INTEGRATION (EULER INTEGRATION) ---
@ -1938,10 +1996,12 @@ else
endif
! --- RESET DOTSTATE ---
!$OMP PARALLEL PRIVATE(mySizeDotState)
if (numerics_integrationMode < 2) then
! --- RESET DOTSTATE ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
@ -2015,6 +2075,8 @@ endif
enddo; enddo; enddo
!$OMP ENDDO
endif
! --- STRESS INTEGRATION ---