avoid repeated calculations
does not save so much here, but avoids having inconsistent calculation (e.g. nonSchmid effects) and serves as a template for more complex models
This commit is contained in:
parent
cf65aae92a
commit
c9208315f5
|
@ -521,14 +521,18 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar_v,ipc,ip,
|
|||
j,k,l,m,n, &
|
||||
of
|
||||
real(pReal) :: &
|
||||
tau_slip_pos,tau_slip_neg, &
|
||||
gdot_slip_pos,gdot_slip_neg, &
|
||||
dgdot_dtauslip_pos,dgdot_dtauslip_neg, &
|
||||
gdot_twin,dgdot_dtautwin,tau_twin
|
||||
dgdot_dtautwin
|
||||
real(pReal), dimension(3,3) :: &
|
||||
S !< Second-Piola Kirchhoff stress
|
||||
real(pReal), dimension(3,3,3,3) :: &
|
||||
dLp_dS !< derivative of Lp with respect to Mstar as 4th order tensor
|
||||
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: &
|
||||
tau_slip_pos,tau_slip_neg, &
|
||||
gdot_slip_pos,gdot_slip_neg
|
||||
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNtwin) :: &
|
||||
gdot_twin,tau_twin
|
||||
|
||||
type(tParameters) :: prm
|
||||
type(tPhenopowerlawState) :: stt
|
||||
|
||||
|
@ -542,47 +546,33 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar_v,ipc,ip,
|
|||
|
||||
S = math_Mandel6to33(Mstar_v)
|
||||
|
||||
call resolvedStress_slip(prm,S,tau_slip_pos,tau_slip_neg)
|
||||
call shearRates_slip(prm,stt,of,tau_slip_pos,tau_slip_neg,gdot_slip_pos,gdot_slip_neg)
|
||||
slipSystems: do j = 1_pInt, prm%totalNslip
|
||||
|
||||
tau_slip_pos = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
tau_slip_neg = tau_slip_pos
|
||||
do k = 1,size(prm%nonSchmidCoeff)
|
||||
tau_slip_pos = tau_slip_pos + math_mul33xx33(S,prm%nonSchmid_pos(1:3,1:3,k,j))
|
||||
tau_slip_neg = tau_slip_neg + math_mul33xx33(S,prm%nonSchmid_neg(1:3,1:3,k,j))
|
||||
enddo
|
||||
gdot_slip_pos = 0.5_pReal*prm%gdot0_slip &
|
||||
* sign(abs(tau_slip_pos/stt%s_slip(j,of))**prm%n_slip, tau_slip_pos)
|
||||
gdot_slip_neg = 0.5_pReal*prm%gdot0_slip &
|
||||
* sign(abs(tau_slip_neg/stt%s_slip(j,of))**prm%n_slip, tau_slip_neg)
|
||||
|
||||
Lp = Lp + (1.0_pReal-stt%sumF(of))*(gdot_slip_pos+gdot_slip_neg)*prm%Schmid_slip(1:3,1:3,j)
|
||||
|
||||
if (dNeq0(tau_slip_pos)) then
|
||||
dgdot_dtauslip_pos = gdot_slip_pos*prm%n_slip/tau_slip_pos
|
||||
Lp = Lp + (1.0_pReal-stt%sumF(of))*(gdot_slip_pos(j)+gdot_slip_neg(j))*prm%Schmid_slip(1:3,1:3,j)
|
||||
if (dNeq0(tau_slip_pos(j))) then
|
||||
dgdot_dtauslip_pos = gdot_slip_pos(j)*prm%n_slip/tau_slip_pos(j)
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
|
||||
+ dgdot_dtauslip_pos * prm%Schmid_slip(k,l,j) &
|
||||
*(prm%Schmid_slip(m,n,j) + sum(prm%nonSchmid_pos(m,n,:,j)))
|
||||
endif
|
||||
if (dNeq0(tau_slip_neg)) then
|
||||
dgdot_dtauslip_neg = gdot_slip_neg*prm%n_slip/tau_slip_neg
|
||||
if (dNeq0(tau_slip_neg(j))) then
|
||||
dgdot_dtauslip_neg = gdot_slip_neg(j)*prm%n_slip/tau_slip_neg(j)
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
|
||||
+ dgdot_dtauslip_neg * prm%Schmid_slip(k,l,j) &
|
||||
*(prm%Schmid_slip(m,n,j) + sum(prm%nonSchmid_neg(m,n,:,j)))
|
||||
endif
|
||||
|
||||
enddo slipSystems
|
||||
|
||||
call resolvedStress_twin(prm,S,tau_twin)
|
||||
call shearRates_twin(prm,stt,of,tau_twin,gdot_twin)
|
||||
twinSystems: do j = 1_pInt, prm%totalNtwin
|
||||
Lp = Lp + gdot_twin(j)*prm%Schmid_twin(1:3,1:3,j)
|
||||
|
||||
tau_twin = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||
gdot_twin = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin*(abs(tau_twin)/stt%s_twin(j,of))**prm%n_twin &
|
||||
* max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
||||
Lp = Lp + gdot_twin*prm%Schmid_twin(1:3,1:3,j)
|
||||
|
||||
if (dNeq0(gdot_twin)) then
|
||||
dgdot_dtautwin = gdot_twin*prm%n_twin/tau_twin
|
||||
if (dNeq0(gdot_twin(j))) then
|
||||
dgdot_dtautwin = gdot_twin(j)*prm%n_twin/tau_twin(j)
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
|
||||
+ dgdot_dtautwin*prm%Schmid_twin(k,l,j)*prm%Schmid_twin(m,n,j)
|
||||
|
@ -622,15 +612,17 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
|
|||
of
|
||||
real(pReal) :: &
|
||||
c_SlipSlip,c_TwinSlip,c_TwinTwin, &
|
||||
ssat_offset, &
|
||||
tau_slip_pos,tau_slip_neg,tau_twin
|
||||
ssat_offset
|
||||
|
||||
real(pReal), dimension(3,3) :: &
|
||||
S !< Second-Piola Kirchhoff stress
|
||||
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: &
|
||||
gdot_slip,left_SlipSlip,right_SlipSlip
|
||||
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: &
|
||||
tau_slip_pos,tau_slip_neg, &
|
||||
gdot_slip_pos,gdot_slip_neg
|
||||
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNtwin) :: &
|
||||
gdot_twin
|
||||
gdot_twin,tau_twin
|
||||
|
||||
type(tParameters) :: prm
|
||||
type(tPhenopowerlawState) :: dst,stt
|
||||
|
@ -643,6 +635,14 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
|
|||
dst%whole(:,of) = 0.0_pReal
|
||||
S = math_Mandel6to33(Mstar6)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! shear rates
|
||||
call resolvedStress_slip(prm,S,tau_slip_pos,tau_slip_neg)
|
||||
call shearRates_slip(prm,stt,of,tau_slip_pos,tau_slip_neg,gdot_slip_pos,gdot_slip_neg)
|
||||
gdot_slip = 0.5_pReal*(gdot_slip_pos+gdot_slip_neg)
|
||||
call resolvedStress_twin(prm,S,tau_twin)
|
||||
call shearRates_twin(prm,stt,of,tau_twin,gdot_twin)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices
|
||||
c_SlipSlip = prm%h0_slipslip * (1.0_pReal + prm%twinC*stt%sumF(of)** prm%twinB)
|
||||
|
@ -657,46 +657,137 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
|
|||
right_SlipSlip(j) = abs(1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset)) **prm%a_slip &
|
||||
* sign(1.0_pReal,1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset))
|
||||
|
||||
tau_slip_pos = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
tau_slip_neg = tau_slip_pos
|
||||
nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
|
||||
tau_slip_pos = tau_slip_pos + math_mul33xx33(S,prm%nonSchmid_pos(1:3,1:3,k,j))
|
||||
tau_slip_neg = tau_slip_neg + math_mul33xx33(S,prm%nonSchmid_neg(1:3,1:3,k,j))
|
||||
enddo nonSchmidSystems
|
||||
gdot_slip(j) = prm%gdot0_slip*0.5_pReal* & !ToDo: save to dotState
|
||||
( sign(abs(tau_slip_pos/stt%s_slip(j,of))**prm%n_slip, tau_slip_pos) &
|
||||
+ sign(abs(tau_slip_neg/stt%s_slip(j,of))**prm%n_slip, tau_slip_neg))
|
||||
enddo slipSystems
|
||||
|
||||
twinSystems: do j = 1_pInt, prm%totalNtwin
|
||||
tau_twin = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||
gdot_twin(j) = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin* abs(tau_twin/stt%s_twin(j,of))**prm%n_twin & !ToDo: save to dotState
|
||||
* max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
||||
enddo twinSystems
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate the overall hardening based on above
|
||||
do j = 1_pInt, prm%totalNslip
|
||||
! hardening
|
||||
hardeningSlip: do j = 1_pInt, prm%totalNslip
|
||||
dst%s_slip(j,of) = c_SlipSlip * left_SlipSlip(j) * & ! evolution of slip resistance j
|
||||
dot_product(prm%interaction_SlipSlip(j,1:prm%totalNslip),right_SlipSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor
|
||||
dot_product(prm%interaction_SlipTwin(j,1:prm%totalNtwin),gdot_twin) ! dot gamma_twin modulated by right-side twin factor
|
||||
enddo
|
||||
enddo hardeningSlip
|
||||
dst%sumGamma(of) = dst%sumGamma(of) + sum(abs(gdot_slip))
|
||||
dst%accshear_slip(1:prm%totalNslip,of) = abs(gdot_slip)
|
||||
|
||||
do j = 1_pInt, prm%totalNtwin
|
||||
hardeningTwin: do j = 1_pInt, prm%totalNtwin
|
||||
dst%s_twin(j,of) = & ! evolution of twin resistance j
|
||||
c_TwinSlip * dot_product(prm%interaction_TwinSlip(j,1:prm%totalNslip),abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor
|
||||
c_TwinTwin * dot_product(prm%interaction_TwinTwin(j,1:prm%totalNtwin),gdot_twin) ! dot gamma_twin modulated by right-side twin factor
|
||||
if (stt%sumF(of) < 0.98_pReal) & ! ensure twin volume fractions stays below 1.0
|
||||
dst%sumF(of) = dst%sumF(of) + gdot_twin(j)/prm%shear_twin(j)
|
||||
dst%accshear_twin(j,of) = abs(gdot_twin(j))
|
||||
enddo
|
||||
enddo hardeningTwin
|
||||
|
||||
end associate
|
||||
|
||||
end subroutine plastic_phenopowerlaw_dotState
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates shear rates on slip systems
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine shearRates_slip(prm,stt,of,tau_slip_pos,tau_slip_neg,gdot_slip_pos,gdot_slip_neg)
|
||||
|
||||
implicit none
|
||||
type(tParameters), intent(in) :: &
|
||||
prm
|
||||
type(tPhenopowerlawState), intent(in) :: &
|
||||
stt
|
||||
integer(pInt), intent(in) :: &
|
||||
of
|
||||
real, dimension(prm%totalNslip), intent(in) :: &
|
||||
tau_slip_pos, &
|
||||
tau_slip_neg
|
||||
real, dimension(prm%totalNslip), intent(out) :: &
|
||||
gdot_slip_pos, &
|
||||
gdot_slip_neg
|
||||
|
||||
integer(pInt) :: j
|
||||
|
||||
gdot_slip_pos = 0.5_pReal*prm%gdot0_slip &
|
||||
* sign(abs(tau_slip_pos/stt%s_slip(:,of))**prm%n_slip, tau_slip_pos)
|
||||
gdot_slip_neg = 0.5_pReal*prm%gdot0_slip &
|
||||
* sign(abs(tau_slip_neg/stt%s_slip(:,of))**prm%n_slip, tau_slip_neg)
|
||||
|
||||
end subroutine shearRates_slip
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates shear rates on twin systems
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine shearRates_twin(prm,stt,of,tau_twin,gdot_twin)
|
||||
|
||||
implicit none
|
||||
type(tParameters), intent(in) :: &
|
||||
prm
|
||||
type(tPhenopowerlawState), intent(in) :: &
|
||||
stt
|
||||
integer(pInt), intent(in) :: &
|
||||
of
|
||||
real, dimension(prm%totalNtwin), intent(in) :: &
|
||||
tau_twin
|
||||
real, dimension(prm%totalNtwin), intent(out) :: &
|
||||
gdot_twin
|
||||
|
||||
gdot_twin = merge((1.0_pReal-stt%sumF(of))*prm%gdot0_twin * &
|
||||
(abs(tau_twin)/stt%s_twin(:,of))**prm%n_twin, &
|
||||
0.0_pReal, tau_twin>0.0_pReal)
|
||||
end subroutine shearRates_twin
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates resolved stress on slip systems
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine resolvedStress_slip(prm,S,tau_slip_pos,tau_slip_neg)
|
||||
use math, only: &
|
||||
math_mul33xx33
|
||||
|
||||
implicit none
|
||||
type(tParameters), intent(in) :: &
|
||||
prm
|
||||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
S
|
||||
real, dimension(prm%totalNslip), intent(out) :: &
|
||||
tau_slip_pos, &
|
||||
tau_slip_neg
|
||||
|
||||
integer(pInt) :: j, k
|
||||
|
||||
do j = 1_pInt, prm%totalNslip
|
||||
tau_slip_pos = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
tau_slip_neg = tau_slip_pos
|
||||
do k = 1,size(prm%nonSchmidCoeff)
|
||||
tau_slip_pos = tau_slip_pos + math_mul33xx33(S,prm%nonSchmid_pos(1:3,1:3,k,j))
|
||||
tau_slip_neg = tau_slip_neg + math_mul33xx33(S,prm%nonSchmid_neg(1:3,1:3,k,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine resolvedStress_slip
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates resolved stress on twin systems
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine resolvedStress_twin(prm,S,tau_twin)
|
||||
use math, only: &
|
||||
math_mul33xx33
|
||||
|
||||
implicit none
|
||||
type(tParameters), intent(in) :: &
|
||||
prm
|
||||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
S
|
||||
real, dimension(prm%totalNtwin), intent(out) :: &
|
||||
tau_twin
|
||||
|
||||
integer(pInt) :: j
|
||||
|
||||
do j = 1_pInt, prm%totalNtwin
|
||||
tau_twin(j) = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||
enddo
|
||||
end subroutine resolvedStress_twin
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief return array of constitutive results
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -726,8 +817,11 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el) result(postResults)
|
|||
integer(pInt) :: &
|
||||
of, &
|
||||
o,c,j,k
|
||||
real(pReal) :: &
|
||||
tau_slip_pos,tau_slip_neg,tau_twin
|
||||
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: &
|
||||
tau_slip_pos,tau_slip_neg, &
|
||||
gdot_slip_pos,gdot_slip_neg
|
||||
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNtwin) :: &
|
||||
gdot_twin,tau_twin
|
||||
|
||||
type(tParameters) :: prm
|
||||
type(tPhenopowerlawState) :: stt
|
||||
|
@ -751,23 +845,14 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el) result(postResults)
|
|||
c = c + prm%totalNslip
|
||||
|
||||
case (shearrate_slip_ID)
|
||||
do j = 1_pInt, prm%totalNslip
|
||||
tau_slip_pos = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
tau_slip_neg = tau_slip_pos
|
||||
nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
|
||||
tau_slip_pos = tau_slip_pos + math_mul33xx33(S,prm%nonSchmid_pos(1:3,1:3,k,j))
|
||||
tau_slip_neg = tau_slip_neg + math_mul33xx33(S,prm%nonSchmid_neg(1:3,1:3,k,j))
|
||||
enddo nonSchmidSystems
|
||||
postResults(c+j) = prm%gdot0_slip*0.5_pReal* &
|
||||
( sign(abs(tau_slip_pos/stt%s_slip(j,of))**prm%n_slip, tau_slip_pos) &
|
||||
+sign(abs(tau_slip_neg/stt%s_slip(j,of))**prm%n_slip, tau_slip_neg))
|
||||
enddo
|
||||
call resolvedStress_slip(prm,S,tau_slip_pos,tau_slip_neg)
|
||||
call shearRates_slip(prm,stt,of,tau_slip_pos,tau_slip_neg,gdot_slip_pos,gdot_slip_neg)
|
||||
postResults(c+1_pInt:c+prm%totalNslip) = gdot_slip_pos+gdot_slip_neg
|
||||
c = c + prm%totalNslip
|
||||
|
||||
case (resolvedstress_slip_ID)
|
||||
do j = 1_pInt, prm%totalNslip
|
||||
postResults(c+j) = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
enddo
|
||||
call resolvedStress_slip(prm,S,tau_slip_pos,tau_slip_neg)
|
||||
postResults(c+1_pInt:c+prm%totalNslip) = 0.5_pReal*(tau_slip_pos+tau_slip_neg)
|
||||
c = c + prm%totalNslip
|
||||
|
||||
case (totalshear_ID)
|
||||
|
@ -783,18 +868,14 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el) result(postResults)
|
|||
c = c + prm%totalNtwin
|
||||
|
||||
case (shearrate_twin_ID)
|
||||
do j = 1_pInt, prm%totalNtwin
|
||||
tau_twin = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||
postResults(c+j) = merge((1.0_pReal-stt%sumF(of))*prm%gdot0_twin * &
|
||||
(abs(tau_twin)/stt%s_twin(j,of))**prm%n_twin, &
|
||||
0.0_pReal, tau_twin>0.0_pReal)
|
||||
enddo
|
||||
call resolvedStress_twin(prm,S,tau_twin)
|
||||
call shearRates_twin(prm,stt,of,tau_twin,gdot_twin)
|
||||
postResults(c+1_pInt:c+prm%totalNtwin) = gdot_twin
|
||||
c = c + prm%totalNtwin
|
||||
|
||||
case (resolvedstress_twin_ID)
|
||||
do j = 1_pInt, prm%totalNtwin
|
||||
postResults(c+j) = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||
enddo
|
||||
call resolvedStress_twin(prm,S,tau_twin)
|
||||
postResults(c+1_pInt:c+prm%totalNtwin) = tau_twin
|
||||
c = c + prm%totalNtwin
|
||||
|
||||
case (totalvolfrac_twin_ID)
|
||||
|
|
Loading…
Reference in New Issue