no 'dangling' functions
@staticmethod is what we need here
This commit is contained in:
parent
1e1cb3f151
commit
c84a6e90c9
|
@ -4,6 +4,13 @@ from . import Lambert
|
||||||
|
|
||||||
P = -1
|
P = -1
|
||||||
|
|
||||||
|
def isone(a):
|
||||||
|
return np.isclose(a,1.0,atol=1.0e-7,rtol=0.0)
|
||||||
|
|
||||||
|
def iszero(a):
|
||||||
|
return np.isclose(a,0.0,atol=1.0e-12,rtol=0.0)
|
||||||
|
|
||||||
|
|
||||||
####################################################################################################
|
####################################################################################################
|
||||||
class Rotation:
|
class Rotation:
|
||||||
u"""
|
u"""
|
||||||
|
@ -183,7 +190,7 @@ class Rotation:
|
||||||
return angles in degrees.
|
return angles in degrees.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
eu = qu2eu(self.quaternion)
|
eu = Rotation.qu2eu(self.quaternion)
|
||||||
if degrees: eu = np.degrees(eu)
|
if degrees: eu = np.degrees(eu)
|
||||||
return eu
|
return eu
|
||||||
|
|
||||||
|
@ -201,13 +208,13 @@ class Rotation:
|
||||||
return tuple of axis and angle.
|
return tuple of axis and angle.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
ax = qu2ax(self.quaternion)
|
ax = Rotation.qu2ax(self.quaternion)
|
||||||
if degrees: ax[3] = np.degrees(ax[3])
|
if degrees: ax[3] = np.degrees(ax[3])
|
||||||
return (ax[:3],np.degrees(ax[3])) if pair else ax
|
return (ax[:3],np.degrees(ax[3])) if pair else ax
|
||||||
|
|
||||||
def asMatrix(self):
|
def asMatrix(self):
|
||||||
"""Rotation matrix."""
|
"""Rotation matrix."""
|
||||||
return qu2om(self.quaternion)
|
return Rotation.qu2om(self.quaternion)
|
||||||
|
|
||||||
def asRodrigues(self,
|
def asRodrigues(self,
|
||||||
vector = False):
|
vector = False):
|
||||||
|
@ -221,16 +228,16 @@ class Rotation:
|
||||||
return as actual Rodrigues--Frank vector, i.e. rotation axis scaled by tan(ω/2).
|
return as actual Rodrigues--Frank vector, i.e. rotation axis scaled by tan(ω/2).
|
||||||
|
|
||||||
"""
|
"""
|
||||||
ro = qu2ro(self.quaternion)
|
ro = Rotation.qu2ro(self.quaternion)
|
||||||
return ro[:3]*ro[3] if vector else ro
|
return ro[:3]*ro[3] if vector else ro
|
||||||
|
|
||||||
def asHomochoric(self):
|
def asHomochoric(self):
|
||||||
"""Homochoric vector: (h_1, h_2, h_3)."""
|
"""Homochoric vector: (h_1, h_2, h_3)."""
|
||||||
return qu2ho(self.quaternion)
|
return Rotation.qu2ho(self.quaternion)
|
||||||
|
|
||||||
def asCubochoric(self):
|
def asCubochoric(self):
|
||||||
"""Cubochoric vector: (c_1, c_2, c_3)."""
|
"""Cubochoric vector: (c_1, c_2, c_3)."""
|
||||||
return qu2cu(self.quaternion)
|
return Rotation.qu2cu(self.quaternion)
|
||||||
|
|
||||||
def asM(self):
|
def asM(self):
|
||||||
"""
|
"""
|
||||||
|
@ -276,7 +283,7 @@ class Rotation:
|
||||||
if np.any(eu < 0.0) or np.any(eu > 2.0*np.pi) or eu[1] > np.pi:
|
if np.any(eu < 0.0) or np.any(eu > 2.0*np.pi) or eu[1] > np.pi:
|
||||||
raise ValueError('Euler angles outside of [0..2π],[0..π],[0..2π].\n{} {} {}.'.format(*eu))
|
raise ValueError('Euler angles outside of [0..2π],[0..π],[0..2π].\n{} {} {}.'.format(*eu))
|
||||||
|
|
||||||
return Rotation(eu2qu(eu))
|
return Rotation(Rotation.eu2qu(eu))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def fromAxisAngle(angleAxis,
|
def fromAxisAngle(angleAxis,
|
||||||
|
@ -294,7 +301,7 @@ class Rotation:
|
||||||
if not np.isclose(np.linalg.norm(ax[0:3]), 1.0):
|
if not np.isclose(np.linalg.norm(ax[0:3]), 1.0):
|
||||||
raise ValueError('Axis angle rotation axis is not of unit length.\n{} {} {}'.format(*ax[0:3]))
|
raise ValueError('Axis angle rotation axis is not of unit length.\n{} {} {}'.format(*ax[0:3]))
|
||||||
|
|
||||||
return Rotation(ax2qu(ax))
|
return Rotation(Rotation.ax2qu(ax))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def fromBasis(basis,
|
def fromBasis(basis,
|
||||||
|
@ -316,7 +323,7 @@ class Rotation:
|
||||||
or not np.isclose(np.dot(om[2],om[0]), 0.0):
|
or not np.isclose(np.dot(om[2],om[0]), 0.0):
|
||||||
raise ValueError('matrix is not orthogonal.\n{}'.format(om))
|
raise ValueError('matrix is not orthogonal.\n{}'.format(om))
|
||||||
|
|
||||||
return Rotation(om2qu(om))
|
return Rotation(Rotation.om2qu(om))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def fromMatrix(om,
|
def fromMatrix(om,
|
||||||
|
@ -338,7 +345,7 @@ class Rotation:
|
||||||
if ro[3] < 0.0:
|
if ro[3] < 0.0:
|
||||||
raise ValueError('Rodriques rotation angle not positive.\n'.format(ro[3]))
|
raise ValueError('Rodriques rotation angle not positive.\n'.format(ro[3]))
|
||||||
|
|
||||||
return Rotation(ro2qu(ro))
|
return Rotation(Rotation.ro2qu(ro))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def fromHomochoric(homochoric,
|
def fromHomochoric(homochoric,
|
||||||
|
@ -348,7 +355,7 @@ class Rotation:
|
||||||
else np.array(homochoric,dtype=float)
|
else np.array(homochoric,dtype=float)
|
||||||
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
||||||
|
|
||||||
return Rotation(ho2qu(ho))
|
return Rotation(Rotation.ho2qu(ho))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def fromCubochoric(cubochoric,
|
def fromCubochoric(cubochoric,
|
||||||
|
@ -356,10 +363,10 @@ class Rotation:
|
||||||
|
|
||||||
cu = cubochoric if isinstance(cubochoric, np.ndarray) and cubochoric.dtype == np.dtype(float) \
|
cu = cubochoric if isinstance(cubochoric, np.ndarray) and cubochoric.dtype == np.dtype(float) \
|
||||||
else np.array(cubochoric,dtype=float)
|
else np.array(cubochoric,dtype=float)
|
||||||
ho = cu2ho(cu)
|
ho = Rotation.cu2ho(cu)
|
||||||
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
||||||
|
|
||||||
return Rotation(ho2qu(ho))
|
return Rotation(Rotation.ho2qu(ho))
|
||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
|
@ -437,417 +444,410 @@ class Rotation:
|
||||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||||
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
####################################################################################################
|
####################################################################################################
|
||||||
|
#---------- Quaternion ----------
|
||||||
def isone(a):
|
@staticmethod
|
||||||
return np.isclose(a,1.0,atol=1.0e-7,rtol=0.0)
|
def qu2om(qu):
|
||||||
|
"""Quaternion to rotation matrix."""
|
||||||
def iszero(a):
|
qq = qu[0]**2-(qu[1]**2 + qu[2]**2 + qu[3]**2)
|
||||||
return np.isclose(a,0.0,atol=1.0e-12,rtol=0.0)
|
om = np.diag(qq + 2.0*np.array([qu[1],qu[2],qu[3]])**2)
|
||||||
|
|
||||||
#---------- Quaternion ----------
|
om[1,0] = 2.0*(qu[2]*qu[1]+qu[0]*qu[3])
|
||||||
|
om[0,1] = 2.0*(qu[1]*qu[2]-qu[0]*qu[3])
|
||||||
def qu2om(qu):
|
om[2,1] = 2.0*(qu[3]*qu[2]+qu[0]*qu[1])
|
||||||
"""Quaternion to rotation matrix."""
|
om[1,2] = 2.0*(qu[2]*qu[3]-qu[0]*qu[1])
|
||||||
qq = qu[0]**2-(qu[1]**2 + qu[2]**2 + qu[3]**2)
|
om[0,2] = 2.0*(qu[1]*qu[3]+qu[0]*qu[2])
|
||||||
om = np.diag(qq + 2.0*np.array([qu[1],qu[2],qu[3]])**2)
|
om[2,0] = 2.0*(qu[3]*qu[1]-qu[0]*qu[2])
|
||||||
|
return om if P > 0.0 else om.T
|
||||||
om[1,0] = 2.0*(qu[2]*qu[1]+qu[0]*qu[3])
|
|
||||||
om[0,1] = 2.0*(qu[1]*qu[2]-qu[0]*qu[3])
|
@staticmethod
|
||||||
om[2,1] = 2.0*(qu[3]*qu[2]+qu[0]*qu[1])
|
def qu2eu(qu):
|
||||||
om[1,2] = 2.0*(qu[2]*qu[3]-qu[0]*qu[1])
|
"""Quaternion to Bunge-Euler angles."""
|
||||||
om[0,2] = 2.0*(qu[1]*qu[3]+qu[0]*qu[2])
|
q03 = qu[0]**2+qu[3]**2
|
||||||
om[2,0] = 2.0*(qu[3]*qu[1]-qu[0]*qu[2])
|
q12 = qu[1]**2+qu[2]**2
|
||||||
return om if P > 0.0 else om.T
|
chi = np.sqrt(q03*q12)
|
||||||
|
|
||||||
|
if iszero(chi):
|
||||||
def qu2eu(qu):
|
eu = np.array([np.arctan2(-P*2.0*qu[0]*qu[3],qu[0]**2-qu[3]**2), 0.0, 0.0]) if iszero(q12) else \
|
||||||
"""Quaternion to Bunge-Euler angles."""
|
np.array([np.arctan2(2.0*qu[1]*qu[2],qu[1]**2-qu[2]**2), np.pi, 0.0])
|
||||||
q03 = qu[0]**2+qu[3]**2
|
else:
|
||||||
q12 = qu[1]**2+qu[2]**2
|
eu = np.array([np.arctan2((-P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]-qu[2]*qu[3])*chi ),
|
||||||
chi = np.sqrt(q03*q12)
|
np.arctan2( 2.0*chi, q03-q12 ),
|
||||||
|
np.arctan2(( P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]+qu[2]*qu[3])*chi )])
|
||||||
if iszero(chi):
|
|
||||||
eu = np.array([np.arctan2(-P*2.0*qu[0]*qu[3],qu[0]**2-qu[3]**2), 0.0, 0.0]) if iszero(q12) else \
|
# reduce Euler angles to definition range, i.e a lower limit of 0.0
|
||||||
np.array([np.arctan2(2.0*qu[1]*qu[2],qu[1]**2-qu[2]**2), np.pi, 0.0])
|
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
|
||||||
else:
|
return eu
|
||||||
eu = np.array([np.arctan2((-P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]-qu[2]*qu[3])*chi ),
|
|
||||||
np.arctan2( 2.0*chi, q03-q12 ),
|
@staticmethod
|
||||||
np.arctan2(( P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]+qu[2]*qu[3])*chi )])
|
def qu2ax(qu):
|
||||||
|
"""
|
||||||
# reduce Euler angles to definition range, i.e a lower limit of 0.0
|
Quaternion to axis angle pair.
|
||||||
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
|
|
||||||
return eu
|
Modified version of the original formulation, should be numerically more stable
|
||||||
|
"""
|
||||||
|
if iszero(qu[1]**2+qu[2]**2+qu[3]**2): # set axis to [001] if the angle is 0/360
|
||||||
def qu2ax(qu):
|
ax = [ 0.0, 0.0, 1.0, 0.0 ]
|
||||||
"""
|
elif not iszero(qu[0]):
|
||||||
Quaternion to axis angle pair.
|
s = np.sign(qu[0])/np.sqrt(qu[1]**2+qu[2]**2+qu[3]**2)
|
||||||
|
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0))
|
||||||
Modified version of the original formulation, should be numerically more stable
|
ax = [ qu[1]*s, qu[2]*s, qu[3]*s, omega ]
|
||||||
"""
|
else:
|
||||||
if iszero(qu[1]**2+qu[2]**2+qu[3]**2): # set axis to [001] if the angle is 0/360
|
ax = [ qu[1], qu[2], qu[3], np.pi]
|
||||||
ax = [ 0.0, 0.0, 1.0, 0.0 ]
|
|
||||||
elif not iszero(qu[0]):
|
return np.array(ax)
|
||||||
s = np.sign(qu[0])/np.sqrt(qu[1]**2+qu[2]**2+qu[3]**2)
|
|
||||||
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0))
|
@staticmethod
|
||||||
ax = [ qu[1]*s, qu[2]*s, qu[3]*s, omega ]
|
def qu2ro(qu):
|
||||||
else:
|
"""Quaternion to Rodriques-Frank vector."""
|
||||||
ax = [ qu[1], qu[2], qu[3], np.pi]
|
if iszero(qu[0]):
|
||||||
|
ro = [qu[1], qu[2], qu[3], np.inf]
|
||||||
return np.array(ax)
|
else:
|
||||||
|
s = np.linalg.norm([qu[1],qu[2],qu[3]])
|
||||||
|
ro = [0.0,0.0,P,0.0] if iszero(s) else \
|
||||||
def qu2ro(qu):
|
[ qu[1]/s, qu[2]/s, qu[3]/s, np.tan(np.arccos(np.clip(qu[0],-1.0,1.0)))] # avoid numerical difficulties
|
||||||
"""Quaternion to Rodriques-Frank vector."""
|
|
||||||
if iszero(qu[0]):
|
return np.array(ro)
|
||||||
ro = [qu[1], qu[2], qu[3], np.inf]
|
|
||||||
else:
|
@staticmethod
|
||||||
s = np.linalg.norm([qu[1],qu[2],qu[3]])
|
def qu2ho(qu):
|
||||||
ro = [0.0,0.0,P,0.0] if iszero(s) else \
|
"""Quaternion to homochoric vector."""
|
||||||
[ qu[1]/s, qu[2]/s, qu[3]/s, np.tan(np.arccos(np.clip(qu[0],-1.0,1.0)))] # avoid numerical difficulties
|
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0)) # avoid numerical difficulties
|
||||||
|
|
||||||
return np.array(ro)
|
if iszero(omega):
|
||||||
|
ho = np.array([ 0.0, 0.0, 0.0 ])
|
||||||
|
else:
|
||||||
def qu2ho(qu):
|
ho = np.array([qu[1], qu[2], qu[3]])
|
||||||
"""Quaternion to homochoric vector."""
|
f = 0.75 * ( omega - np.sin(omega) )
|
||||||
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0)) # avoid numerical difficulties
|
ho = ho/np.linalg.norm(ho) * f**(1./3.)
|
||||||
|
|
||||||
if iszero(omega):
|
return ho
|
||||||
ho = np.array([ 0.0, 0.0, 0.0 ])
|
|
||||||
else:
|
@staticmethod
|
||||||
ho = np.array([qu[1], qu[2], qu[3]])
|
def qu2cu(qu):
|
||||||
f = 0.75 * ( omega - np.sin(omega) )
|
"""Quaternion to cubochoric vector."""
|
||||||
ho = ho/np.linalg.norm(ho) * f**(1./3.)
|
return Rotation.ho2cu(Rotation.qu2ho(qu))
|
||||||
|
|
||||||
return ho
|
|
||||||
|
#---------- Rotation matrix ----------
|
||||||
|
@staticmethod
|
||||||
def qu2cu(qu):
|
def om2qu(om):
|
||||||
"""Quaternion to cubochoric vector."""
|
"""
|
||||||
return ho2cu(qu2ho(qu))
|
Rotation matrix to quaternion.
|
||||||
|
|
||||||
|
The original formulation (direct conversion) had (numerical?) issues
|
||||||
#---------- Rotation matrix ----------
|
"""
|
||||||
|
return Rotation.eu2qu(Rotation.om2eu(om))
|
||||||
def om2qu(om):
|
|
||||||
"""
|
@staticmethod
|
||||||
Rotation matrix to quaternion.
|
def om2eu(om):
|
||||||
|
"""Rotation matrix to Bunge-Euler angles."""
|
||||||
The original formulation (direct conversion) had (numerical?) issues
|
if abs(om[2,2]) < 1.0:
|
||||||
"""
|
zeta = 1.0/np.sqrt(1.0-om[2,2]**2)
|
||||||
return eu2qu(om2eu(om))
|
eu = np.array([np.arctan2(om[2,0]*zeta,-om[2,1]*zeta),
|
||||||
|
np.arccos(om[2,2]),
|
||||||
|
np.arctan2(om[0,2]*zeta, om[1,2]*zeta)])
|
||||||
def om2eu(om):
|
else:
|
||||||
"""Rotation matrix to Bunge-Euler angles."""
|
eu = np.array([np.arctan2( om[0,1],om[0,0]), np.pi*0.5*(1-om[2,2]),0.0]) # following the paper, not the reference implementation
|
||||||
if abs(om[2,2]) < 1.0:
|
|
||||||
zeta = 1.0/np.sqrt(1.0-om[2,2]**2)
|
# reduce Euler angles to definition range, i.e a lower limit of 0.0
|
||||||
eu = np.array([np.arctan2(om[2,0]*zeta,-om[2,1]*zeta),
|
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
|
||||||
np.arccos(om[2,2]),
|
return eu
|
||||||
np.arctan2(om[0,2]*zeta, om[1,2]*zeta)])
|
|
||||||
else:
|
@staticmethod
|
||||||
eu = np.array([np.arctan2( om[0,1],om[0,0]), np.pi*0.5*(1-om[2,2]),0.0]) # following the paper, not the reference implementation
|
def om2ax(om):
|
||||||
|
"""Rotation matrix to axis angle pair."""
|
||||||
# reduce Euler angles to definition range, i.e a lower limit of 0.0
|
ax=np.empty(4)
|
||||||
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
|
|
||||||
return eu
|
# first get the rotation angle
|
||||||
|
t = 0.5*(om.trace() -1.0)
|
||||||
|
ax[3] = np.arccos(np.clip(t,-1.0,1.0))
|
||||||
def om2ax(om):
|
|
||||||
"""Rotation matrix to axis angle pair."""
|
if iszero(ax[3]):
|
||||||
ax=np.empty(4)
|
ax = [ 0.0, 0.0, 1.0, 0.0]
|
||||||
|
else:
|
||||||
# first get the rotation angle
|
w,vr = np.linalg.eig(om)
|
||||||
t = 0.5*(om.trace() -1.0)
|
# next, find the eigenvalue (1,0j)
|
||||||
ax[3] = np.arccos(np.clip(t,-1.0,1.0))
|
i = np.where(np.isclose(w,1.0+0.0j))[0][0]
|
||||||
|
ax[0:3] = np.real(vr[0:3,i])
|
||||||
if iszero(ax[3]):
|
diagDelta = np.array([om[1,2]-om[2,1],om[2,0]-om[0,2],om[0,1]-om[1,0]])
|
||||||
ax = [ 0.0, 0.0, 1.0, 0.0]
|
ax[0:3] = np.where(iszero(diagDelta), ax[0:3],np.abs(ax[0:3])*np.sign(-P*diagDelta))
|
||||||
else:
|
|
||||||
w,vr = np.linalg.eig(om)
|
return np.array(ax)
|
||||||
# next, find the eigenvalue (1,0j)
|
|
||||||
i = np.where(np.isclose(w,1.0+0.0j))[0][0]
|
@staticmethod
|
||||||
ax[0:3] = np.real(vr[0:3,i])
|
def om2ro(om):
|
||||||
diagDelta = np.array([om[1,2]-om[2,1],om[2,0]-om[0,2],om[0,1]-om[1,0]])
|
"""Rotation matrix to Rodriques-Frank vector."""
|
||||||
ax[0:3] = np.where(iszero(diagDelta), ax[0:3],np.abs(ax[0:3])*np.sign(-P*diagDelta))
|
return Rotation.eu2ro(Rotation.om2eu(om))
|
||||||
|
|
||||||
return np.array(ax)
|
@staticmethod
|
||||||
|
def om2ho(om):
|
||||||
|
"""Rotation matrix to homochoric vector."""
|
||||||
def om2ro(om):
|
return Rotation.ax2ho(Rotation.om2ax(om))
|
||||||
"""Rotation matrix to Rodriques-Frank vector."""
|
|
||||||
return eu2ro(om2eu(om))
|
@staticmethod
|
||||||
|
def om2cu(om):
|
||||||
|
"""Rotation matrix to cubochoric vector."""
|
||||||
def om2ho(om):
|
return Rotation.ho2cu(Rotation.om2ho(om))
|
||||||
"""Rotation matrix to homochoric vector."""
|
|
||||||
return ax2ho(om2ax(om))
|
|
||||||
|
#---------- Bunge-Euler angles ----------
|
||||||
|
@staticmethod
|
||||||
def om2cu(om):
|
def eu2qu(eu):
|
||||||
"""Rotation matrix to cubochoric vector."""
|
"""Bunge-Euler angles to quaternion."""
|
||||||
return ho2cu(om2ho(om))
|
ee = 0.5*eu
|
||||||
|
cPhi = np.cos(ee[1])
|
||||||
|
sPhi = np.sin(ee[1])
|
||||||
#---------- Bunge-Euler angles ----------
|
qu = np.array([ cPhi*np.cos(ee[0]+ee[2]),
|
||||||
|
-P*sPhi*np.cos(ee[0]-ee[2]),
|
||||||
def eu2qu(eu):
|
-P*sPhi*np.sin(ee[0]-ee[2]),
|
||||||
"""Bunge-Euler angles to quaternion."""
|
-P*cPhi*np.sin(ee[0]+ee[2]) ])
|
||||||
ee = 0.5*eu
|
if qu[0] < 0.0: qu*=-1
|
||||||
cPhi = np.cos(ee[1])
|
return qu
|
||||||
sPhi = np.sin(ee[1])
|
|
||||||
qu = np.array([ cPhi*np.cos(ee[0]+ee[2]),
|
@staticmethod
|
||||||
-P*sPhi*np.cos(ee[0]-ee[2]),
|
def eu2om(eu):
|
||||||
-P*sPhi*np.sin(ee[0]-ee[2]),
|
"""Bunge-Euler angles to rotation matrix."""
|
||||||
-P*cPhi*np.sin(ee[0]+ee[2]) ])
|
c = np.cos(eu)
|
||||||
if qu[0] < 0.0: qu*=-1
|
s = np.sin(eu)
|
||||||
return qu
|
|
||||||
|
om = np.array([[+c[0]*c[2]-s[0]*s[2]*c[1], +s[0]*c[2]+c[0]*s[2]*c[1], +s[2]*s[1]],
|
||||||
|
[-c[0]*s[2]-s[0]*c[2]*c[1], -s[0]*s[2]+c[0]*c[2]*c[1], +c[2]*s[1]],
|
||||||
def eu2om(eu):
|
[+s[0]*s[1], -c[0]*s[1], +c[1] ]])
|
||||||
"""Bunge-Euler angles to rotation matrix."""
|
|
||||||
c = np.cos(eu)
|
om[np.where(iszero(om))] = 0.0
|
||||||
s = np.sin(eu)
|
return om
|
||||||
|
|
||||||
om = np.array([[+c[0]*c[2]-s[0]*s[2]*c[1], +s[0]*c[2]+c[0]*s[2]*c[1], +s[2]*s[1]],
|
@staticmethod
|
||||||
[-c[0]*s[2]-s[0]*c[2]*c[1], -s[0]*s[2]+c[0]*c[2]*c[1], +c[2]*s[1]],
|
def eu2ax(eu):
|
||||||
[+s[0]*s[1], -c[0]*s[1], +c[1] ]])
|
"""Bunge-Euler angles to axis angle pair."""
|
||||||
|
t = np.tan(eu[1]*0.5)
|
||||||
om[np.where(iszero(om))] = 0.0
|
sigma = 0.5*(eu[0]+eu[2])
|
||||||
return om
|
delta = 0.5*(eu[0]-eu[2])
|
||||||
|
tau = np.linalg.norm([t,np.sin(sigma)])
|
||||||
|
alpha = np.pi if iszero(np.cos(sigma)) else \
|
||||||
def eu2ax(eu):
|
2.0*np.arctan(tau/np.cos(sigma))
|
||||||
"""Bunge-Euler angles to axis angle pair."""
|
|
||||||
t = np.tan(eu[1]*0.5)
|
if iszero(alpha):
|
||||||
sigma = 0.5*(eu[0]+eu[2])
|
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
|
||||||
delta = 0.5*(eu[0]-eu[2])
|
else:
|
||||||
tau = np.linalg.norm([t,np.sin(sigma)])
|
ax = -P/tau * np.array([ t*np.cos(delta), t*np.sin(delta), np.sin(sigma) ]) # passive axis angle pair so a minus sign in front
|
||||||
alpha = np.pi if iszero(np.cos(sigma)) else \
|
ax = np.append(ax,alpha)
|
||||||
2.0*np.arctan(tau/np.cos(sigma))
|
if alpha < 0.0: ax *= -1.0 # ensure alpha is positive
|
||||||
|
|
||||||
if iszero(alpha):
|
return ax
|
||||||
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
|
|
||||||
else:
|
@staticmethod
|
||||||
ax = -P/tau * np.array([ t*np.cos(delta), t*np.sin(delta), np.sin(sigma) ]) # passive axis angle pair so a minus sign in front
|
def eu2ro(eu):
|
||||||
ax = np.append(ax,alpha)
|
"""Bunge-Euler angles to Rodriques-Frank vector."""
|
||||||
if alpha < 0.0: ax *= -1.0 # ensure alpha is positive
|
ro = eu2ax(eu) # convert to axis angle pair representation
|
||||||
|
if ro[3] >= np.pi: # Differs from original implementation. check convention 5
|
||||||
return ax
|
ro[3] = np.inf
|
||||||
|
elif iszero(ro[3]):
|
||||||
|
ro = np.array([ 0.0, 0.0, P, 0.0 ])
|
||||||
def eu2ro(eu):
|
else:
|
||||||
"""Bunge-Euler angles to Rodriques-Frank vector."""
|
ro[3] = np.tan(ro[3]*0.5)
|
||||||
ro = eu2ax(eu) # convert to axis angle pair representation
|
|
||||||
if ro[3] >= np.pi: # Differs from original implementation. check convention 5
|
return ro
|
||||||
ro[3] = np.inf
|
|
||||||
elif iszero(ro[3]):
|
@staticmethod
|
||||||
ro = np.array([ 0.0, 0.0, P, 0.0 ])
|
def eu2ho(eu):
|
||||||
else:
|
"""Bunge-Euler angles to homochoric vector."""
|
||||||
ro[3] = np.tan(ro[3]*0.5)
|
return Rotation.ax2ho(Rotation.eu2ax(eu))
|
||||||
|
|
||||||
return ro
|
@staticmethod
|
||||||
|
def eu2cu(eu):
|
||||||
|
"""Bunge-Euler angles to cubochoric vector."""
|
||||||
def eu2ho(eu):
|
return Rotation.ho2cu(Rotation.eu2ho(eu))
|
||||||
"""Bunge-Euler angles to homochoric vector."""
|
|
||||||
return ax2ho(eu2ax(eu))
|
|
||||||
|
#---------- Axis angle pair ----------
|
||||||
|
@staticmethod
|
||||||
def eu2cu(eu):
|
def ax2qu(ax):
|
||||||
"""Bunge-Euler angles to cubochoric vector."""
|
"""Axis angle pair to quaternion."""
|
||||||
return ho2cu(eu2ho(eu))
|
if iszero(ax[3]):
|
||||||
|
qu = np.array([ 1.0, 0.0, 0.0, 0.0 ])
|
||||||
|
else:
|
||||||
#---------- Axis angle pair ----------
|
c = np.cos(ax[3]*0.5)
|
||||||
|
s = np.sin(ax[3]*0.5)
|
||||||
def ax2qu(ax):
|
qu = np.array([ c, ax[0]*s, ax[1]*s, ax[2]*s ])
|
||||||
"""Axis angle pair to quaternion."""
|
|
||||||
if iszero(ax[3]):
|
return qu
|
||||||
qu = np.array([ 1.0, 0.0, 0.0, 0.0 ])
|
|
||||||
else:
|
@staticmethod
|
||||||
c = np.cos(ax[3]*0.5)
|
def ax2om(ax):
|
||||||
s = np.sin(ax[3]*0.5)
|
"""Axis angle pair to rotation matrix."""
|
||||||
qu = np.array([ c, ax[0]*s, ax[1]*s, ax[2]*s ])
|
c = np.cos(ax[3])
|
||||||
|
s = np.sin(ax[3])
|
||||||
return qu
|
omc = 1.0-c
|
||||||
|
om=np.diag(ax[0:3]**2*omc + c)
|
||||||
|
|
||||||
def ax2om(ax):
|
for idx in [[0,1,2],[1,2,0],[2,0,1]]:
|
||||||
"""Axis angle pair to rotation matrix."""
|
q = omc*ax[idx[0]] * ax[idx[1]]
|
||||||
c = np.cos(ax[3])
|
om[idx[0],idx[1]] = q + s*ax[idx[2]]
|
||||||
s = np.sin(ax[3])
|
om[idx[1],idx[0]] = q - s*ax[idx[2]]
|
||||||
omc = 1.0-c
|
|
||||||
om=np.diag(ax[0:3]**2*omc + c)
|
return om if P < 0.0 else om.T
|
||||||
|
|
||||||
for idx in [[0,1,2],[1,2,0],[2,0,1]]:
|
@staticmethod
|
||||||
q = omc*ax[idx[0]] * ax[idx[1]]
|
def ax2eu(ax):
|
||||||
om[idx[0],idx[1]] = q + s*ax[idx[2]]
|
"""Rotation matrix to Bunge Euler angles."""
|
||||||
om[idx[1],idx[0]] = q - s*ax[idx[2]]
|
return Rotation.om2eu(Rotation.ax2om(ax))
|
||||||
|
|
||||||
return om if P < 0.0 else om.T
|
@staticmethod
|
||||||
|
def ax2ro(ax):
|
||||||
|
"""Axis angle pair to Rodriques-Frank vector."""
|
||||||
def ax2eu(ax):
|
if iszero(ax[3]):
|
||||||
"""Rotation matrix to Bunge Euler angles."""
|
ro = [ 0.0, 0.0, P, 0.0 ]
|
||||||
return om2eu(ax2om(ax))
|
else:
|
||||||
|
ro = [ax[0], ax[1], ax[2]]
|
||||||
|
# 180 degree case
|
||||||
def ax2ro(ax):
|
ro += [np.inf] if np.isclose(ax[3],np.pi,atol=1.0e-15,rtol=0.0) else \
|
||||||
"""Axis angle pair to Rodriques-Frank vector."""
|
[np.tan(ax[3]*0.5)]
|
||||||
if iszero(ax[3]):
|
|
||||||
ro = [ 0.0, 0.0, P, 0.0 ]
|
return np.array(ro)
|
||||||
else:
|
|
||||||
ro = [ax[0], ax[1], ax[2]]
|
@staticmethod
|
||||||
# 180 degree case
|
def ax2ho(ax):
|
||||||
ro += [np.inf] if np.isclose(ax[3],np.pi,atol=1.0e-15,rtol=0.0) else \
|
"""Axis angle pair to homochoric vector."""
|
||||||
[np.tan(ax[3]*0.5)]
|
f = (0.75 * ( ax[3] - np.sin(ax[3]) ))**(1.0/3.0)
|
||||||
|
ho = ax[0:3] * f
|
||||||
return np.array(ro)
|
return ho
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
def ax2ho(ax):
|
def ax2cu(ax):
|
||||||
"""Axis angle pair to homochoric vector."""
|
"""Axis angle pair to cubochoric vector."""
|
||||||
f = (0.75 * ( ax[3] - np.sin(ax[3]) ))**(1.0/3.0)
|
return Rotation.ho2cu(Rotation.ax2ho(ax))
|
||||||
ho = ax[0:3] * f
|
|
||||||
return ho
|
|
||||||
|
#---------- Rodrigues-Frank vector ----------
|
||||||
|
@staticmethod
|
||||||
def ax2cu(ax):
|
def ro2qu(ro):
|
||||||
"""Axis angle pair to cubochoric vector."""
|
"""Rodriques-Frank vector to quaternion."""
|
||||||
return ho2cu(ax2ho(ax))
|
return Rotation.ax2qu(Rotation.ro2ax(ro))
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
#---------- Rodrigues-Frank vector ----------
|
def ro2om(ro):
|
||||||
|
"""Rodgrigues-Frank vector to rotation matrix."""
|
||||||
def ro2qu(ro):
|
return Rotation.ax2om(Rotation.ro2ax(ro))
|
||||||
"""Rodriques-Frank vector to quaternion."""
|
|
||||||
return ax2qu(ro2ax(ro))
|
@staticmethod
|
||||||
|
def ro2eu(ro):
|
||||||
|
"""Rodriques-Frank vector to Bunge-Euler angles."""
|
||||||
def ro2om(ro):
|
return Rotation.om2eu(Rotation.ro2om(ro))
|
||||||
"""Rodgrigues-Frank vector to rotation matrix."""
|
|
||||||
return ax2om(ro2ax(ro))
|
@staticmethod
|
||||||
|
def ro2ax(ro):
|
||||||
|
"""Rodriques-Frank vector to axis angle pair."""
|
||||||
def ro2eu(ro):
|
ta = ro[3]
|
||||||
"""Rodriques-Frank vector to Bunge-Euler angles."""
|
|
||||||
return om2eu(ro2om(ro))
|
if iszero(ta):
|
||||||
|
ax = [ 0.0, 0.0, 1.0, 0.0 ]
|
||||||
|
elif not np.isfinite(ta):
|
||||||
def ro2ax(ro):
|
ax = [ ro[0], ro[1], ro[2], np.pi ]
|
||||||
"""Rodriques-Frank vector to axis angle pair."""
|
else:
|
||||||
ta = ro[3]
|
angle = 2.0*np.arctan(ta)
|
||||||
|
ta = 1.0/np.linalg.norm(ro[0:3])
|
||||||
if iszero(ta):
|
ax = [ ro[0]/ta, ro[1]/ta, ro[2]/ta, angle ]
|
||||||
ax = [ 0.0, 0.0, 1.0, 0.0 ]
|
|
||||||
elif not np.isfinite(ta):
|
return np.array(ax)
|
||||||
ax = [ ro[0], ro[1], ro[2], np.pi ]
|
|
||||||
else:
|
@staticmethod
|
||||||
angle = 2.0*np.arctan(ta)
|
def ro2ho(ro):
|
||||||
ta = 1.0/np.linalg.norm(ro[0:3])
|
"""Rodriques-Frank vector to homochoric vector."""
|
||||||
ax = [ ro[0]/ta, ro[1]/ta, ro[2]/ta, angle ]
|
if iszero(np.sum(ro[0:3]**2.0)):
|
||||||
|
ho = [ 0.0, 0.0, 0.0 ]
|
||||||
return np.array(ax)
|
else:
|
||||||
|
f = 2.0*np.arctan(ro[3]) -np.sin(2.0*np.arctan(ro[3])) if np.isfinite(ro[3]) else np.pi
|
||||||
|
ho = ro[0:3] * (0.75*f)**(1.0/3.0)
|
||||||
def ro2ho(ro):
|
|
||||||
"""Rodriques-Frank vector to homochoric vector."""
|
return np.array(ho)
|
||||||
if iszero(np.sum(ro[0:3]**2.0)):
|
|
||||||
ho = [ 0.0, 0.0, 0.0 ]
|
@staticmethod
|
||||||
else:
|
def ro2cu(ro):
|
||||||
f = 2.0*np.arctan(ro[3]) -np.sin(2.0*np.arctan(ro[3])) if np.isfinite(ro[3]) else np.pi
|
"""Rodriques-Frank vector to cubochoric vector."""
|
||||||
ho = ro[0:3] * (0.75*f)**(1.0/3.0)
|
return ho2cu(ro2ho(ro))
|
||||||
|
|
||||||
return np.array(ho)
|
|
||||||
|
#---------- Homochoric vector----------
|
||||||
|
@staticmethod
|
||||||
def ro2cu(ro):
|
def ho2qu(ho):
|
||||||
"""Rodriques-Frank vector to cubochoric vector."""
|
"""Homochoric vector to quaternion."""
|
||||||
return ho2cu(ro2ho(ro))
|
return Rotation.ax2qu(Rotation.ho2ax(ho))
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
#---------- Homochoric vector----------
|
def ho2om(ho):
|
||||||
|
"""Homochoric vector to rotation matrix."""
|
||||||
def ho2qu(ho):
|
return Rotation.ax2om(Rotation.ho2ax(ho))
|
||||||
"""Homochoric vector to quaternion."""
|
|
||||||
return ax2qu(ho2ax(ho))
|
@staticmethod
|
||||||
|
def ho2eu(ho):
|
||||||
|
"""Homochoric vector to Bunge-Euler angles."""
|
||||||
def ho2om(ho):
|
return Rotation.ax2eu(Rotation.ho2ax(ho))
|
||||||
"""Homochoric vector to rotation matrix."""
|
|
||||||
return ax2om(ho2ax(ho))
|
@staticmethod
|
||||||
|
def ho2ax(ho):
|
||||||
|
"""Homochoric vector to axis angle pair."""
|
||||||
def ho2eu(ho):
|
tfit = np.array([+1.0000000000018852, -0.5000000002194847,
|
||||||
"""Homochoric vector to Bunge-Euler angles."""
|
-0.024999992127593126, -0.003928701544781374,
|
||||||
return ax2eu(ho2ax(ho))
|
-0.0008152701535450438, -0.0002009500426119712,
|
||||||
|
-0.00002397986776071756, -0.00008202868926605841,
|
||||||
|
+0.00012448715042090092, -0.0001749114214822577,
|
||||||
def ho2ax(ho):
|
+0.0001703481934140054, -0.00012062065004116828,
|
||||||
"""Homochoric vector to axis angle pair."""
|
+0.000059719705868660826, -0.00001980756723965647,
|
||||||
tfit = np.array([+1.0000000000018852, -0.5000000002194847,
|
+0.000003953714684212874, -0.00000036555001439719544])
|
||||||
-0.024999992127593126, -0.003928701544781374,
|
# normalize h and store the magnitude
|
||||||
-0.0008152701535450438, -0.0002009500426119712,
|
hmag_squared = np.sum(ho**2.)
|
||||||
-0.00002397986776071756, -0.00008202868926605841,
|
if iszero(hmag_squared):
|
||||||
+0.00012448715042090092, -0.0001749114214822577,
|
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
|
||||||
+0.0001703481934140054, -0.00012062065004116828,
|
else:
|
||||||
+0.000059719705868660826, -0.00001980756723965647,
|
hm = hmag_squared
|
||||||
+0.000003953714684212874, -0.00000036555001439719544])
|
|
||||||
# normalize h and store the magnitude
|
# convert the magnitude to the rotation angle
|
||||||
hmag_squared = np.sum(ho**2.)
|
s = tfit[0] + tfit[1] * hmag_squared
|
||||||
if iszero(hmag_squared):
|
for i in range(2,16):
|
||||||
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
|
hm *= hmag_squared
|
||||||
else:
|
s += tfit[i] * hm
|
||||||
hm = hmag_squared
|
ax = np.append(ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0)))
|
||||||
|
return ax
|
||||||
# convert the magnitude to the rotation angle
|
|
||||||
s = tfit[0] + tfit[1] * hmag_squared
|
@staticmethod
|
||||||
for i in range(2,16):
|
def ho2ro(ho):
|
||||||
hm *= hmag_squared
|
"""Axis angle pair to Rodriques-Frank vector."""
|
||||||
s += tfit[i] * hm
|
return Rotation.ax2ro(Rotation.ho2ax(ho))
|
||||||
ax = np.append(ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0)))
|
|
||||||
return ax
|
@staticmethod
|
||||||
|
def ho2cu(ho):
|
||||||
|
"""Homochoric vector to cubochoric vector."""
|
||||||
def ho2ro(ho):
|
return Lambert.BallToCube(ho)
|
||||||
"""Axis angle pair to Rodriques-Frank vector."""
|
|
||||||
return ax2ro(ho2ax(ho))
|
|
||||||
|
#---------- Cubochoric ----------
|
||||||
|
@staticmethod
|
||||||
def ho2cu(ho):
|
def cu2qu(cu):
|
||||||
"""Homochoric vector to cubochoric vector."""
|
"""Cubochoric vector to quaternion."""
|
||||||
return Lambert.BallToCube(ho)
|
return Rotation.ho2qu(Rotation.cu2ho(cu))
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
#---------- Cubochoric ----------
|
def cu2om(cu):
|
||||||
|
"""Cubochoric vector to rotation matrix."""
|
||||||
def cu2qu(cu):
|
return Rotation.ho2om(Rotation.cu2ho(cu))
|
||||||
"""Cubochoric vector to quaternion."""
|
|
||||||
return ho2qu(cu2ho(cu))
|
@staticmethod
|
||||||
|
def cu2eu(cu):
|
||||||
|
"""Cubochoric vector to Bunge-Euler angles."""
|
||||||
def cu2om(cu):
|
return Rotation.ho2eu(Rotation.cu2ho(cu))
|
||||||
"""Cubochoric vector to rotation matrix."""
|
|
||||||
return ho2om(cu2ho(cu))
|
@staticmethod
|
||||||
|
def cu2ax(cu):
|
||||||
|
"""Cubochoric vector to axis angle pair."""
|
||||||
def cu2eu(cu):
|
return Rotation.ho2ax(Rotation.cu2ho(cu))
|
||||||
"""Cubochoric vector to Bunge-Euler angles."""
|
|
||||||
return ho2eu(cu2ho(cu))
|
@staticmethod
|
||||||
|
def cu2ro(cu):
|
||||||
|
"""Cubochoric vector to Rodriques-Frank vector."""
|
||||||
def cu2ax(cu):
|
return Rotation.ho2ro(Rotation.cu2ho(cu))
|
||||||
"""Cubochoric vector to axis angle pair."""
|
|
||||||
return ho2ax(cu2ho(cu))
|
@staticmethod
|
||||||
|
def cu2ho(cu):
|
||||||
|
"""Cubochoric vector to homochoric vector."""
|
||||||
def cu2ro(cu):
|
return Lambert.CubeToBall(cu)
|
||||||
"""Cubochoric vector to Rodriques-Frank vector."""
|
|
||||||
return ho2ro(cu2ho(cu))
|
|
||||||
|
|
||||||
|
|
||||||
def cu2ho(cu):
|
|
||||||
"""Cubochoric vector to homochoric vector."""
|
|
||||||
return Lambert.CubeToBall(cu)
|
|
||||||
|
|
Loading…
Reference in New Issue