no pInt
This commit is contained in:
parent
81cfa31b31
commit
c7f33f4696
358
src/math.f90
358
src/math.f90
|
@ -7,8 +7,7 @@
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
module math
|
||||
use prec, only: &
|
||||
pReal, &
|
||||
pInt
|
||||
pReal
|
||||
|
||||
implicit none
|
||||
private
|
||||
|
@ -34,37 +33,37 @@ module math
|
|||
1.0_pReal, 1.0_pReal, 1.0_pReal, &
|
||||
1.0_pReal/sqrt(2.0_pReal), 1.0_pReal/sqrt(2.0_pReal), 1.0_pReal/sqrt(2.0_pReal) ] !< weighting for Mandel notation (backward)
|
||||
|
||||
integer(pInt), dimension (2,6), parameter, private :: &
|
||||
integer, dimension (2,6), parameter, private :: &
|
||||
mapNye = reshape([&
|
||||
1_pInt,1_pInt, &
|
||||
2_pInt,2_pInt, &
|
||||
3_pInt,3_pInt, &
|
||||
1_pInt,2_pInt, &
|
||||
2_pInt,3_pInt, &
|
||||
1_pInt,3_pInt &
|
||||
1,1, &
|
||||
2,2, &
|
||||
3,3, &
|
||||
1,2, &
|
||||
2,3, &
|
||||
1,3 &
|
||||
],[2,6]) !< arrangement in Nye notation.
|
||||
|
||||
integer(pInt), dimension (2,6), parameter, private :: &
|
||||
integer, dimension (2,6), parameter, private :: &
|
||||
mapVoigt = reshape([&
|
||||
1_pInt,1_pInt, &
|
||||
2_pInt,2_pInt, &
|
||||
3_pInt,3_pInt, &
|
||||
2_pInt,3_pInt, &
|
||||
1_pInt,3_pInt, &
|
||||
1_pInt,2_pInt &
|
||||
1,1, &
|
||||
2,2, &
|
||||
3,3, &
|
||||
2,3, &
|
||||
1,3, &
|
||||
1,2 &
|
||||
],[2,6]) !< arrangement in Voigt notation
|
||||
|
||||
integer(pInt), dimension (2,9), parameter, private :: &
|
||||
integer, dimension (2,9), parameter, private :: &
|
||||
mapPlain = reshape([&
|
||||
1_pInt,1_pInt, &
|
||||
1_pInt,2_pInt, &
|
||||
1_pInt,3_pInt, &
|
||||
2_pInt,1_pInt, &
|
||||
2_pInt,2_pInt, &
|
||||
2_pInt,3_pInt, &
|
||||
3_pInt,1_pInt, &
|
||||
3_pInt,2_pInt, &
|
||||
3_pInt,3_pInt &
|
||||
1,1, &
|
||||
1,2, &
|
||||
1,3, &
|
||||
2,1, &
|
||||
2,2, &
|
||||
2,3, &
|
||||
3,1, &
|
||||
3,2, &
|
||||
3,3 &
|
||||
],[2,9]) !< arrangement in Plain notation
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -184,7 +183,7 @@ subroutine math_init
|
|||
randomSeed
|
||||
|
||||
implicit none
|
||||
integer(pInt) :: i
|
||||
integer :: i
|
||||
real(pReal), dimension(4) :: randTest
|
||||
integer :: randSize
|
||||
integer, dimension(:), allocatable :: randInit
|
||||
|
@ -192,10 +191,9 @@ subroutine math_init
|
|||
write(6,'(/,a)') ' <<<+- math init -+>>>'
|
||||
|
||||
call random_seed(size=randSize)
|
||||
if (allocated(randInit)) deallocate(randInit)
|
||||
allocate(randInit(randSize))
|
||||
if (randomSeed > 0_pInt) then
|
||||
randInit(1:randSize) = int(randomSeed) ! randomSeed is of type pInt, randInit not
|
||||
if (randomSeed > 0) then
|
||||
randInit = randomSeed
|
||||
call random_seed(put=randInit)
|
||||
else
|
||||
call random_seed()
|
||||
|
@ -204,12 +202,12 @@ subroutine math_init
|
|||
call random_seed(put = randInit)
|
||||
endif
|
||||
|
||||
do i = 1_pInt, 4_pInt
|
||||
do i = 1, 4
|
||||
call random_number(randTest(i))
|
||||
enddo
|
||||
|
||||
write(6,'(a,I2)') ' size of random seed: ', randSize
|
||||
do i = 1_pInt,randSize
|
||||
do i = 1,randSize
|
||||
write(6,'(a,I2,I14)') ' value of random seed: ', i, randInit(i)
|
||||
enddo
|
||||
write(6,'(a,4(/,26x,f17.14),/)') ' start of random sequence: ', randTest
|
||||
|
@ -244,7 +242,7 @@ subroutine math_check
|
|||
any(abs(-q-q2) > tol_math_check) ) then
|
||||
write (error_msg, '(a,e14.6)' ) &
|
||||
'quat -> axisAngle -> quat maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
|
||||
call IO_error(401_pInt,ext_msg=error_msg)
|
||||
call IO_error(401,ext_msg=error_msg)
|
||||
endif
|
||||
|
||||
! +++ q -> R -> q +++
|
||||
|
@ -254,7 +252,7 @@ subroutine math_check
|
|||
any(abs(-q-q2) > tol_math_check) ) then
|
||||
write (error_msg, '(a,e14.6)' ) &
|
||||
'quat -> R -> quat maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
|
||||
call IO_error(401_pInt,ext_msg=error_msg)
|
||||
call IO_error(401,ext_msg=error_msg)
|
||||
endif
|
||||
|
||||
! +++ q -> euler -> q +++
|
||||
|
@ -264,7 +262,7 @@ subroutine math_check
|
|||
any(abs(-q-q2) > tol_math_check) ) then
|
||||
write (error_msg, '(a,e14.6)' ) &
|
||||
'quat -> euler -> quat maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
|
||||
call IO_error(401_pInt,ext_msg=error_msg)
|
||||
call IO_error(401,ext_msg=error_msg)
|
||||
endif
|
||||
|
||||
! +++ R -> euler -> R +++
|
||||
|
@ -273,32 +271,32 @@ subroutine math_check
|
|||
if ( any(abs( R-R2) > tol_math_check) ) then
|
||||
write (error_msg, '(a,e14.6)' ) &
|
||||
'R -> euler -> R maximum deviation ',maxval(abs( R-R2))
|
||||
call IO_error(401_pInt,ext_msg=error_msg)
|
||||
call IO_error(401,ext_msg=error_msg)
|
||||
endif
|
||||
|
||||
! +++ check rotation sense of q and R +++
|
||||
v = halton([2_pInt,8_pInt,5_pInt]) ! random vector
|
||||
v = halton([2,8,5]) ! random vector
|
||||
R = math_qToR(q)
|
||||
if (any(abs(math_mul33x3(R,v) - math_qRot(q,v)) > tol_math_check)) then
|
||||
write (error_msg, '(a)' ) 'R(q)*v has different sense than q*v'
|
||||
call IO_error(401_pInt,ext_msg=error_msg)
|
||||
call IO_error(401,ext_msg=error_msg)
|
||||
endif
|
||||
|
||||
! +++ check vector expansion +++
|
||||
if (any(abs([1.0_pReal,2.0_pReal,2.0_pReal,3.0_pReal,3.0_pReal,3.0_pReal] - &
|
||||
math_expand([1.0_pReal,2.0_pReal,3.0_pReal],[1_pInt,2_pInt,3_pInt,0_pInt])) > tol_math_check)) then
|
||||
math_expand([1.0_pReal,2.0_pReal,3.0_pReal],[1,2,3,0])) > tol_math_check)) then
|
||||
write (error_msg, '(a)' ) 'math_expand [1,2,3] by [1,2,3,0] => [1,2,2,3,3,3]'
|
||||
call IO_error(401_pInt,ext_msg=error_msg)
|
||||
call IO_error(401,ext_msg=error_msg)
|
||||
endif
|
||||
if (any(abs([1.0_pReal,2.0_pReal,2.0_pReal] - &
|
||||
math_expand([1.0_pReal,2.0_pReal,3.0_pReal],[1_pInt,2_pInt])) > tol_math_check)) then
|
||||
math_expand([1.0_pReal,2.0_pReal,3.0_pReal],[1,2])) > tol_math_check)) then
|
||||
write (error_msg, '(a)' ) 'math_expand [1,2,3] by [1,2] => [1,2,2]'
|
||||
call IO_error(401_pInt,ext_msg=error_msg)
|
||||
call IO_error(401,ext_msg=error_msg)
|
||||
endif
|
||||
if (any(abs([1.0_pReal,2.0_pReal,2.0_pReal,1.0_pReal,1.0_pReal,1.0_pReal] - &
|
||||
math_expand([1.0_pReal,2.0_pReal],[1_pInt,2_pInt,3_pInt])) > tol_math_check)) then
|
||||
math_expand([1.0_pReal,2.0_pReal],[1,2,3])) > tol_math_check)) then
|
||||
write (error_msg, '(a)' ) 'math_expand [1,2] by [1,2,3] => [1,2,2,1,1,1]'
|
||||
call IO_error(401_pInt,ext_msg=error_msg)
|
||||
call IO_error(401,ext_msg=error_msg)
|
||||
endif
|
||||
|
||||
end subroutine math_check
|
||||
|
@ -312,9 +310,9 @@ end subroutine math_check
|
|||
recursive subroutine math_qsort(a, istart, iend, sortDim)
|
||||
|
||||
implicit none
|
||||
integer(pInt), dimension(:,:), intent(inout) :: a
|
||||
integer(pInt), intent(in),optional :: istart,iend, sortDim
|
||||
integer(pInt) :: ipivot,s,e,d
|
||||
integer, dimension(:,:), intent(inout) :: a
|
||||
integer, intent(in),optional :: istart,iend, sortDim
|
||||
integer :: ipivot,s,e,d
|
||||
|
||||
if(present(istart)) then
|
||||
s = istart
|
||||
|
@ -336,8 +334,8 @@ recursive subroutine math_qsort(a, istart, iend, sortDim)
|
|||
|
||||
if (s < e) then
|
||||
ipivot = qsort_partition(a,s, e, d)
|
||||
call math_qsort(a, s, ipivot-1_pInt, d)
|
||||
call math_qsort(a, ipivot+1_pInt, e, d)
|
||||
call math_qsort(a, s, ipivot-1, d)
|
||||
call math_qsort(a, ipivot+1, e, d)
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -346,17 +344,17 @@ recursive subroutine math_qsort(a, istart, iend, sortDim)
|
|||
!-------------------------------------------------------------------------------------------------
|
||||
!> @brief Partitioning required for quicksort
|
||||
!-------------------------------------------------------------------------------------------------
|
||||
integer(pInt) function qsort_partition(a, istart, iend, sort)
|
||||
integer function qsort_partition(a, istart, iend, sort)
|
||||
|
||||
implicit none
|
||||
integer(pInt), dimension(:,:), intent(inout) :: a
|
||||
integer(pInt), intent(in) :: istart,iend,sort
|
||||
integer(pInt), dimension(size(a,1)) :: tmp
|
||||
integer(pInt) :: i,j
|
||||
integer, dimension(:,:), intent(inout) :: a
|
||||
integer, intent(in) :: istart,iend,sort
|
||||
integer, dimension(size(a,1)) :: tmp
|
||||
integer :: i,j
|
||||
|
||||
do
|
||||
! find the first element on the right side less than or equal to the pivot point
|
||||
do j = iend, istart, -1_pInt
|
||||
do j = iend, istart, -1
|
||||
if (a(sort,j) <= a(sort,istart)) exit
|
||||
enddo
|
||||
! find the first element on the left side greater than the pivot point
|
||||
|
@ -390,15 +388,15 @@ pure function math_expand(what,how)
|
|||
|
||||
implicit none
|
||||
real(pReal), dimension(:), intent(in) :: what
|
||||
integer(pInt), dimension(:), intent(in) :: how
|
||||
integer, dimension(:), intent(in) :: how
|
||||
real(pReal), dimension(sum(how)) :: math_expand
|
||||
integer(pInt) :: i
|
||||
integer :: i
|
||||
|
||||
if (sum(how) == 0_pInt) &
|
||||
if (sum(how) == 0) &
|
||||
return
|
||||
|
||||
do i = 1_pInt, size(how)
|
||||
math_expand(sum(how(1:i-1))+1:sum(how(1:i))) = what(mod(i-1_pInt,size(what))+1_pInt)
|
||||
do i = 1, size(how)
|
||||
math_expand(sum(how(1:i-1))+1:sum(how(1:i))) = what(mod(i-1,size(what))+1)
|
||||
enddo
|
||||
|
||||
end function math_expand
|
||||
|
@ -410,11 +408,11 @@ end function math_expand
|
|||
pure function math_range(N)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: N !< length of range
|
||||
integer(pInt) :: i
|
||||
integer(pInt), dimension(N) :: math_range
|
||||
integer, intent(in) :: N !< length of range
|
||||
integer :: i
|
||||
integer, dimension(N) :: math_range
|
||||
|
||||
math_range = [(i,i=1_pInt,N)]
|
||||
math_range = [(i,i=1,N)]
|
||||
|
||||
end function math_range
|
||||
|
||||
|
@ -425,12 +423,12 @@ end function math_range
|
|||
pure function math_identity2nd(dimen)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: dimen !< tensor dimension
|
||||
integer(pInt) :: i
|
||||
integer, intent(in) :: dimen !< tensor dimension
|
||||
integer :: i
|
||||
real(pReal), dimension(dimen,dimen) :: math_identity2nd
|
||||
|
||||
math_identity2nd = 0.0_pReal
|
||||
forall(i=1_pInt:dimen) math_identity2nd(i,i) = 1.0_pReal
|
||||
forall(i=1:dimen) math_identity2nd(i,i) = 1.0_pReal
|
||||
|
||||
end function math_identity2nd
|
||||
|
||||
|
@ -441,13 +439,13 @@ end function math_identity2nd
|
|||
pure function math_identity4th(dimen)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: dimen !< tensor dimension
|
||||
integer(pInt) :: i,j,k,l
|
||||
integer, intent(in) :: dimen !< tensor dimension
|
||||
integer :: i,j,k,l
|
||||
real(pReal), dimension(dimen,dimen,dimen,dimen) :: math_identity4th
|
||||
real(pReal), dimension(dimen,dimen) :: identity2nd
|
||||
|
||||
identity2nd = math_identity2nd(dimen)
|
||||
forall(i=1_pInt:dimen,j=1_pInt:dimen,k=1_pInt:dimen,l=1_pInt:dimen) &
|
||||
forall(i=1:dimen,j=1:dimen,k=1:dimen,l=1:dimen) &
|
||||
math_identity4th(i,j,k,l) = 0.5_pReal*(identity2nd(i,k)*identity2nd(j,l)+identity2nd(i,l)*identity2nd(j,k))
|
||||
|
||||
end function math_identity4th
|
||||
|
@ -462,15 +460,15 @@ end function math_identity4th
|
|||
real(pReal) pure function math_civita(i,j,k)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: i,j,k
|
||||
integer, intent(in) :: i,j,k
|
||||
|
||||
math_civita = 0.0_pReal
|
||||
if (((i == 1_pInt).and.(j == 2_pInt).and.(k == 3_pInt)) .or. &
|
||||
((i == 2_pInt).and.(j == 3_pInt).and.(k == 1_pInt)) .or. &
|
||||
((i == 3_pInt).and.(j == 1_pInt).and.(k == 2_pInt))) math_civita = 1.0_pReal
|
||||
if (((i == 1_pInt).and.(j == 3_pInt).and.(k == 2_pInt)) .or. &
|
||||
((i == 2_pInt).and.(j == 1_pInt).and.(k == 3_pInt)) .or. &
|
||||
((i == 3_pInt).and.(j == 2_pInt).and.(k == 1_pInt))) math_civita = -1.0_pReal
|
||||
if (((i == 1).and.(j == 2).and.(k == 3)) .or. &
|
||||
((i == 2).and.(j == 3).and.(k == 1)) .or. &
|
||||
((i == 3).and.(j == 1).and.(k == 2))) math_civita = 1.0_pReal
|
||||
if (((i == 1).and.(j == 3).and.(k == 2)) .or. &
|
||||
((i == 2).and.(j == 1).and.(k == 3)) .or. &
|
||||
((i == 3).and.(j == 2).and.(k == 1))) math_civita = -1.0_pReal
|
||||
|
||||
end function math_civita
|
||||
|
||||
|
@ -484,7 +482,7 @@ end function math_civita
|
|||
real(pReal) pure function math_delta(i,j)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent (in) :: i,j
|
||||
integer, intent (in) :: i,j
|
||||
|
||||
math_delta = merge(0.0_pReal, 1.0_pReal, i /= j)
|
||||
|
||||
|
@ -515,9 +513,9 @@ pure function math_outer(A,B)
|
|||
implicit none
|
||||
real(pReal), dimension(:), intent(in) :: A,B
|
||||
real(pReal), dimension(size(A,1),size(B,1)) :: math_outer
|
||||
integer(pInt) :: i,j
|
||||
integer :: i,j
|
||||
|
||||
forall(i=1_pInt:size(A,1),j=1_pInt:size(B,1)) math_outer(i,j) = A(i)*B(j)
|
||||
forall(i=1:size(A,1),j=1:size(B,1)) math_outer(i,j) = A(i)*B(j)
|
||||
|
||||
end function math_outer
|
||||
|
||||
|
@ -543,10 +541,10 @@ real(pReal) pure function math_mul33xx33(A,B)
|
|||
|
||||
implicit none
|
||||
real(pReal), dimension(3,3), intent(in) :: A,B
|
||||
integer(pInt) :: i,j
|
||||
integer :: i,j
|
||||
real(pReal), dimension(3,3) :: C
|
||||
|
||||
forall(i=1_pInt:3_pInt,j=1_pInt:3_pInt) C(i,j) = A(i,j) * B(i,j)
|
||||
forall(i=1:3,j=1:3) C(i,j) = A(i,j) * B(i,j)
|
||||
math_mul33xx33 = sum(C)
|
||||
|
||||
end function math_mul33xx33
|
||||
|
@ -561,9 +559,9 @@ pure function math_mul3333xx33(A,B)
|
|||
real(pReal), dimension(3,3) :: math_mul3333xx33
|
||||
real(pReal), dimension(3,3,3,3), intent(in) :: A
|
||||
real(pReal), dimension(3,3), intent(in) :: B
|
||||
integer(pInt) :: i,j
|
||||
integer :: i,j
|
||||
|
||||
forall(i = 1_pInt:3_pInt,j = 1_pInt:3_pInt) math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
|
||||
forall(i = 1:3,j = 1:3) math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
|
||||
|
||||
end function math_mul3333xx33
|
||||
|
||||
|
@ -574,12 +572,12 @@ end function math_mul3333xx33
|
|||
pure function math_mul3333xx3333(A,B)
|
||||
|
||||
implicit none
|
||||
integer(pInt) :: i,j,k,l
|
||||
integer :: i,j,k,l
|
||||
real(pReal), dimension(3,3,3,3), intent(in) :: A
|
||||
real(pReal), dimension(3,3,3,3), intent(in) :: B
|
||||
real(pReal), dimension(3,3,3,3) :: math_mul3333xx3333
|
||||
|
||||
forall(i = 1_pInt:3_pInt,j = 1_pInt:3_pInt, k = 1_pInt:3_pInt, l= 1_pInt:3_pInt) &
|
||||
forall(i = 1:3,j = 1:3, k = 1:3, l= 1:3) &
|
||||
math_mul3333xx3333(i,j,k,l) = sum(A(i,j,1:3,1:3)*B(1:3,1:3,k,l))
|
||||
|
||||
end function math_mul3333xx3333
|
||||
|
@ -593,9 +591,9 @@ pure function math_mul33x33(A,B)
|
|||
implicit none
|
||||
real(pReal), dimension(3,3) :: math_mul33x33
|
||||
real(pReal), dimension(3,3), intent(in) :: A,B
|
||||
integer(pInt) :: i,j
|
||||
integer :: i,j
|
||||
|
||||
forall(i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_mul33x33(i,j) = A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
|
||||
forall(i=1:3,j=1:3) math_mul33x33(i,j) = A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
|
||||
|
||||
end function math_mul33x33
|
||||
|
||||
|
@ -608,9 +606,9 @@ pure function math_mul66x66(A,B)
|
|||
implicit none
|
||||
real(pReal), dimension(6,6) :: math_mul66x66
|
||||
real(pReal), dimension(6,6), intent(in) :: A,B
|
||||
integer(pInt) :: i,j
|
||||
integer :: i,j
|
||||
|
||||
forall(i=1_pInt:6_pInt,j=1_pInt:6_pInt) &
|
||||
forall(i=1:6,j=1:6) &
|
||||
math_mul66x66(i,j) = A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) &
|
||||
+ A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j)
|
||||
|
||||
|
@ -625,9 +623,9 @@ pure function math_mul99x99(A,B)
|
|||
implicit none
|
||||
real(pReal), dimension(9,9) :: math_mul99x99
|
||||
real(pReal), dimension(9,9), intent(in) :: A,B
|
||||
integer(pInt) i,j
|
||||
integer i,j
|
||||
|
||||
forall(i=1_pInt:9_pInt,j=1_pInt:9_pInt) &
|
||||
forall(i=1:9,j=1:9) &
|
||||
math_mul99x99(i,j) = A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) &
|
||||
+ A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j) &
|
||||
+ A(i,7)*B(7,j) + A(i,8)*B(8,j) + A(i,9)*B(9,j)
|
||||
|
@ -644,9 +642,9 @@ pure function math_mul33x3(A,B)
|
|||
real(pReal), dimension(3) :: math_mul33x3
|
||||
real(pReal), dimension(3,3), intent(in) :: A
|
||||
real(pReal), dimension(3), intent(in) :: B
|
||||
integer(pInt) :: i
|
||||
integer :: i
|
||||
|
||||
forall (i=1_pInt:3_pInt) math_mul33x3(i) = sum(A(i,1:3)*B)
|
||||
forall (i=1:3) math_mul33x3(i) = sum(A(i,1:3)*B)
|
||||
|
||||
end function math_mul33x3
|
||||
|
||||
|
@ -660,9 +658,9 @@ pure function math_mul33x3_complex(A,B)
|
|||
complex(pReal), dimension(3) :: math_mul33x3_complex
|
||||
complex(pReal), dimension(3,3), intent(in) :: A
|
||||
real(pReal), dimension(3), intent(in) :: B
|
||||
integer(pInt) :: i
|
||||
integer :: i
|
||||
|
||||
forall (i=1_pInt:3_pInt) math_mul33x3_complex(i) = sum(A(i,1:3)*cmplx(B,0.0_pReal,pReal))
|
||||
forall (i=1:3) math_mul33x3_complex(i) = sum(A(i,1:3)*cmplx(B,0.0_pReal,pReal))
|
||||
|
||||
end function math_mul33x3_complex
|
||||
|
||||
|
@ -676,9 +674,9 @@ pure function math_mul66x6(A,B)
|
|||
real(pReal), dimension(6) :: math_mul66x6
|
||||
real(pReal), dimension(6,6), intent(in) :: A
|
||||
real(pReal), dimension(6), intent(in) :: B
|
||||
integer(pInt) :: i
|
||||
integer :: i
|
||||
|
||||
forall (i=1_pInt:6_pInt) math_mul66x6(i) = A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3) &
|
||||
forall (i=1:6) math_mul66x6(i) = A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3) &
|
||||
+ A(i,4)*B(4) + A(i,5)*B(5) + A(i,6)*B(6)
|
||||
|
||||
end function math_mul66x6
|
||||
|
@ -690,8 +688,8 @@ end function math_mul66x6
|
|||
pure function math_exp33(A,n)
|
||||
|
||||
implicit none
|
||||
integer(pInt) :: i
|
||||
integer(pInt), intent(in), optional :: n
|
||||
integer :: i
|
||||
integer, intent(in), optional :: n
|
||||
real(pReal), dimension(3,3), intent(in) :: A
|
||||
real(pReal), dimension(3,3) :: B, math_exp33
|
||||
real(pReal) :: invFac
|
||||
|
@ -700,7 +698,7 @@ pure function math_exp33(A,n)
|
|||
invFac = 1.0_pReal ! 0!
|
||||
math_exp33 = B ! A^0 = eye2
|
||||
|
||||
do i = 1_pInt, merge(n,5_pInt,present(n))
|
||||
do i = 1, merge(n,5,present(n))
|
||||
invFac = invFac/real(i,pReal) ! invfac = 1/i!
|
||||
B = math_mul33x33(B,A)
|
||||
math_exp33 = math_exp33 + invFac*B ! exp = SUM (A^i)/i!
|
||||
|
@ -717,9 +715,9 @@ pure function math_transpose33(A)
|
|||
implicit none
|
||||
real(pReal),dimension(3,3) :: math_transpose33
|
||||
real(pReal),dimension(3,3),intent(in) :: A
|
||||
integer(pInt) :: i,j
|
||||
integer :: i,j
|
||||
|
||||
forall(i=1_pInt:3_pInt, j=1_pInt:3_pInt) math_transpose33(i,j) = A(j,i)
|
||||
forall(i=1:3, j=1:3) math_transpose33(i,j) = A(j,i)
|
||||
|
||||
end function math_transpose33
|
||||
|
||||
|
@ -814,8 +812,8 @@ function math_invSym3333(A)
|
|||
|
||||
real(pReal),dimension(3,3,3,3),intent(in) :: A
|
||||
|
||||
integer(pInt) :: ierr
|
||||
integer(pInt), dimension(6) :: ipiv6
|
||||
integer :: ierr
|
||||
integer, dimension(6) :: ipiv6
|
||||
real(pReal), dimension(6,6) :: temp66_Real
|
||||
real(pReal), dimension(6) :: work6
|
||||
external :: &
|
||||
|
@ -825,10 +823,10 @@ function math_invSym3333(A)
|
|||
temp66_real = math_sym3333to66(A)
|
||||
call dgetrf(6,6,temp66_real,6,ipiv6,ierr)
|
||||
call dgetri(6,temp66_real,6,ipiv6,work6,6,ierr)
|
||||
if (ierr == 0_pInt) then
|
||||
if (ierr == 0) then
|
||||
math_invSym3333 = math_66toSym3333(temp66_real)
|
||||
else
|
||||
call IO_error(400_pInt, ext_msg = 'math_invSym3333')
|
||||
call IO_error(400, ext_msg = 'math_invSym3333')
|
||||
endif
|
||||
|
||||
end function math_invSym3333
|
||||
|
@ -859,12 +857,12 @@ end subroutine math_invert2
|
|||
subroutine math_invert(myDim,A, InvA, error)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: myDim
|
||||
integer, intent(in) :: myDim
|
||||
real(pReal), dimension(myDim,myDim), intent(in) :: A
|
||||
|
||||
|
||||
integer(pInt) :: ierr
|
||||
integer(pInt), dimension(myDim) :: ipiv
|
||||
integer :: ierr
|
||||
integer, dimension(myDim) :: ipiv
|
||||
real(pReal), dimension(myDim) :: work
|
||||
|
||||
real(pReal), dimension(myDim,myDim), intent(out) :: invA
|
||||
|
@ -876,7 +874,7 @@ subroutine math_invert(myDim,A, InvA, error)
|
|||
invA = A
|
||||
call dgetrf(myDim,myDim,invA,myDim,ipiv,ierr)
|
||||
call dgetri(myDim,InvA,myDim,ipiv,work,myDim,ierr)
|
||||
error = merge(.true.,.false., ierr /= 0_pInt)
|
||||
error = merge(.true.,.false., ierr /= 0)
|
||||
|
||||
end subroutine math_invert
|
||||
|
||||
|
@ -1029,7 +1027,7 @@ real(pReal) pure function math_detSym33(m)
|
|||
implicit none
|
||||
real(pReal), dimension(3,3), intent(in) :: m
|
||||
|
||||
math_detSym33 = -(m(1,1)*m(2,3)**2_pInt + m(2,2)*m(1,3)**2_pInt + m(3,3)*m(1,2)**2_pInt) &
|
||||
math_detSym33 = -(m(1,1)*m(2,3)**2 + m(2,2)*m(1,3)**2 + m(3,3)*m(1,2)**2) &
|
||||
+ m(1,1)*m(2,2)*m(3,3) + 2.0_pReal * m(1,2)*m(1,3)*m(2,3)
|
||||
|
||||
end function math_detSym33
|
||||
|
@ -1044,9 +1042,9 @@ pure function math_33to9(m33)
|
|||
real(pReal), dimension(9) :: math_33to9
|
||||
real(pReal), dimension(3,3), intent(in) :: m33
|
||||
|
||||
integer(pInt) :: i
|
||||
integer :: i
|
||||
|
||||
forall(i=1_pInt:9_pInt) math_33to9(i) = m33(mapPlain(1,i),mapPlain(2,i))
|
||||
forall(i=1:9) math_33to9(i) = m33(mapPlain(1,i),mapPlain(2,i))
|
||||
|
||||
end function math_33to9
|
||||
|
||||
|
@ -1060,9 +1058,9 @@ pure function math_9to33(v9)
|
|||
real(pReal), dimension(3,3) :: math_9to33
|
||||
real(pReal), dimension(9), intent(in) :: v9
|
||||
|
||||
integer(pInt) :: i
|
||||
integer :: i
|
||||
|
||||
forall(i=1_pInt:9_pInt) math_9to33(mapPlain(1,i),mapPlain(2,i)) = v9(i)
|
||||
forall(i=1:9) math_9to33(mapPlain(1,i),mapPlain(2,i)) = v9(i)
|
||||
|
||||
end function math_9to33
|
||||
|
||||
|
@ -1081,7 +1079,7 @@ pure function math_sym33to6(m33,weighted)
|
|||
logical, optional, intent(in) :: weighted
|
||||
|
||||
real(pReal), dimension(6) :: w
|
||||
integer(pInt) :: i
|
||||
integer :: i
|
||||
|
||||
if(present(weighted)) then
|
||||
w = merge(nrmMandel,1.0_pReal,weighted)
|
||||
|
@ -1089,7 +1087,7 @@ pure function math_sym33to6(m33,weighted)
|
|||
w = nrmMandel
|
||||
endif
|
||||
|
||||
forall(i=1_pInt:6_pInt) math_sym33to6(i) = w(i)*m33(mapNye(1,i),mapNye(2,i))
|
||||
forall(i=1:6) math_sym33to6(i) = w(i)*m33(mapNye(1,i),mapNye(2,i))
|
||||
|
||||
end function math_sym33to6
|
||||
|
||||
|
@ -1108,7 +1106,7 @@ pure function math_6toSym33(v6,weighted)
|
|||
logical, optional, intent(in) :: weighted
|
||||
|
||||
real(pReal), dimension(6) :: w
|
||||
integer(pInt) :: i
|
||||
integer :: i
|
||||
|
||||
if(present(weighted)) then
|
||||
w = merge(invnrmMandel,1.0_pReal,weighted)
|
||||
|
@ -1116,7 +1114,7 @@ pure function math_6toSym33(v6,weighted)
|
|||
w = invnrmMandel
|
||||
endif
|
||||
|
||||
do i=1_pInt,6_pInt
|
||||
do i=1,6
|
||||
math_6toSym33(mapNye(1,i),mapNye(2,i)) = w(i)*v6(i)
|
||||
math_6toSym33(mapNye(2,i),mapNye(1,i)) = w(i)*v6(i)
|
||||
enddo
|
||||
|
@ -1133,9 +1131,9 @@ pure function math_3333to99(m3333)
|
|||
real(pReal), dimension(9,9) :: math_3333to99
|
||||
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
|
||||
|
||||
integer(pInt) :: i,j
|
||||
integer :: i,j
|
||||
|
||||
forall(i=1_pInt:9_pInt,j=1_pInt:9_pInt) &
|
||||
forall(i=1:9,j=1:9) &
|
||||
math_3333to99(i,j) = m3333(mapPlain(1,i),mapPlain(2,i),mapPlain(1,j),mapPlain(2,j))
|
||||
|
||||
end function math_3333to99
|
||||
|
@ -1150,9 +1148,9 @@ pure function math_99to3333(m99)
|
|||
real(pReal), dimension(3,3,3,3) :: math_99to3333
|
||||
real(pReal), dimension(9,9), intent(in) :: m99
|
||||
|
||||
integer(pInt) :: i,j
|
||||
integer :: i,j
|
||||
|
||||
forall(i=1_pInt:9_pInt,j=1_pInt:9_pInt) &
|
||||
forall(i=1:9,j=1:9) &
|
||||
math_99to3333(mapPlain(1,i),mapPlain(2,i),mapPlain(1,j),mapPlain(2,j)) = m99(i,j)
|
||||
|
||||
end function math_99to3333
|
||||
|
@ -1172,7 +1170,7 @@ pure function math_sym3333to66(m3333,weighted)
|
|||
logical, optional, intent(in) :: weighted
|
||||
|
||||
real(pReal), dimension(6) :: w
|
||||
integer(pInt) :: i,j
|
||||
integer :: i,j
|
||||
|
||||
if(present(weighted)) then
|
||||
w = merge(nrmMandel,1.0_pReal,weighted)
|
||||
|
@ -1180,7 +1178,7 @@ pure function math_sym3333to66(m3333,weighted)
|
|||
w = nrmMandel
|
||||
endif
|
||||
|
||||
forall(i=1_pInt:6_pInt,j=1_pInt:6_pInt) &
|
||||
forall(i=1:6,j=1:6) &
|
||||
math_sym3333to66(i,j) = w(i)*w(j)*m3333(mapNye(1,i),mapNye(2,i),mapNye(1,j),mapNye(2,j))
|
||||
|
||||
end function math_sym3333to66
|
||||
|
@ -1200,7 +1198,7 @@ pure function math_66toSym3333(m66,weighted)
|
|||
logical, optional, intent(in) :: weighted
|
||||
|
||||
real(pReal), dimension(6) :: w
|
||||
integer(pInt) :: i,j
|
||||
integer :: i,j
|
||||
|
||||
if(present(weighted)) then
|
||||
w = merge(invnrmMandel,1.0_pReal,weighted)
|
||||
|
@ -1208,7 +1206,7 @@ pure function math_66toSym3333(m66,weighted)
|
|||
w = invnrmMandel
|
||||
endif
|
||||
|
||||
do i=1_pInt,6_pInt; do j=1_pInt, 6_pInt
|
||||
do i=1,6; do j=1, 6
|
||||
math_66toSym3333(mapNye(1,i),mapNye(2,i),mapNye(1,j),mapNye(2,j)) = w(i)*w(j)*m66(i,j)
|
||||
math_66toSym3333(mapNye(2,i),mapNye(1,i),mapNye(1,j),mapNye(2,j)) = w(i)*w(j)*m66(i,j)
|
||||
math_66toSym3333(mapNye(1,i),mapNye(2,i),mapNye(2,j),mapNye(1,j)) = w(i)*w(j)*m66(i,j)
|
||||
|
@ -1226,9 +1224,9 @@ pure function math_Voigt66to3333(m66)
|
|||
implicit none
|
||||
real(pReal), dimension(3,3,3,3) :: math_Voigt66to3333
|
||||
real(pReal), dimension(6,6), intent(in) :: m66
|
||||
integer(pInt) :: i,j
|
||||
integer :: i,j
|
||||
|
||||
do i=1_pInt,6_pInt; do j=1_pInt, 6_pInt
|
||||
do i=1,6; do j=1, 6
|
||||
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(1,j),mapVoigt(2,j)) = m66(i,j)
|
||||
math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(1,j),mapVoigt(2,j)) = m66(i,j)
|
||||
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(2,j),mapVoigt(1,j)) = m66(i,j)
|
||||
|
@ -1250,7 +1248,7 @@ function math_qRand()
|
|||
real(pReal), dimension(4) :: math_qRand
|
||||
real(pReal), dimension(3) :: rnd
|
||||
|
||||
rnd = halton([8_pInt,4_pInt,9_pInt])
|
||||
rnd = halton([8,4,9])
|
||||
math_qRand = [cos(2.0_pReal*PI*rnd(1))*sqrt(rnd(3)), &
|
||||
sin(2.0_pReal*PI*rnd(2))*sqrt(1.0_pReal-rnd(3)), &
|
||||
cos(2.0_pReal*PI*rnd(2))*sqrt(1.0_pReal-rnd(3)), &
|
||||
|
@ -1346,10 +1344,10 @@ pure function math_qRot(Q,v)
|
|||
real(pReal), dimension(3), intent(in) :: v
|
||||
real(pReal), dimension(3) :: math_qRot
|
||||
real(pReal), dimension(4,4) :: T
|
||||
integer(pInt) :: i, j
|
||||
integer :: i, j
|
||||
|
||||
do i = 1_pInt,4_pInt
|
||||
do j = 1_pInt,i
|
||||
do i = 1,4
|
||||
do j = 1,i
|
||||
T(i,j) = Q(i) * Q(j)
|
||||
enddo
|
||||
enddo
|
||||
|
@ -1408,7 +1406,7 @@ pure function math_RtoQ(R)
|
|||
real(pReal), dimension(3,3), intent(in) :: R
|
||||
real(pReal), dimension(4) :: absQ, math_RtoQ
|
||||
real(pReal) :: max_absQ
|
||||
integer, dimension(1) :: largest !no pInt, maxloc returns integer default
|
||||
integer, dimension(1) :: largest
|
||||
|
||||
math_RtoQ = 0.0_pReal
|
||||
|
||||
|
@ -1639,9 +1637,9 @@ pure function math_qToR(q)
|
|||
implicit none
|
||||
real(pReal), dimension(4), intent(in) :: q
|
||||
real(pReal), dimension(3,3) :: math_qToR, T,S
|
||||
integer(pInt) :: i, j
|
||||
integer :: i, j
|
||||
|
||||
forall(i = 1_pInt:3_pInt, j = 1_pInt:3_pInt) T(i,j) = q(i+1_pInt) * q(j+1_pInt)
|
||||
forall(i = 1:3, j = 1:3) T(i,j) = q(i+1) * q(j+1)
|
||||
|
||||
S = reshape( [0.0_pReal, -q(4), q(3), &
|
||||
q(4), 0.0_pReal, -q(2), &
|
||||
|
@ -1772,7 +1770,7 @@ function math_sampleRandomOri()
|
|||
implicit none
|
||||
real(pReal), dimension(3) :: math_sampleRandomOri, rnd
|
||||
|
||||
rnd = halton([1_pInt,7_pInt,3_pInt])
|
||||
rnd = halton([1,7,3])
|
||||
math_sampleRandomOri = [rnd(1)*2.0_pReal*PI, &
|
||||
acos(2.0_pReal*rnd(2)-1.0_pReal), &
|
||||
rnd(3)*2.0_pReal*PI]
|
||||
|
@ -1800,7 +1798,7 @@ function math_sampleGaussOri(center,FWHM)
|
|||
math_sampleGaussOri = center
|
||||
else
|
||||
GaussConvolution: do
|
||||
rnd = halton([8_pInt,3_pInt,6_pInt,11_pInt])
|
||||
rnd = halton([8,3,6,11])
|
||||
axis(1) = rnd(1)*2.0_pReal-1.0_pReal ! uniform on [-1,1]
|
||||
axis(2:3) = [sqrt(1.0-axis(1)**2.0_pReal)*cos(rnd(2)*2.0*PI),&
|
||||
sqrt(1.0-axis(1)**2.0_pReal)*sin(rnd(2)*2.0*PI)] ! random axis
|
||||
|
@ -1830,10 +1828,10 @@ function math_sampleFiberOri(alpha,beta,FWHM)
|
|||
u
|
||||
real(pReal), dimension(3) :: rnd
|
||||
real(pReal), dimension(:),allocatable :: a !< 2D vector to tilt
|
||||
integer(pInt), dimension(:),allocatable :: idx !< components of 2D vector
|
||||
integer, dimension(:),allocatable :: idx !< components of 2D vector
|
||||
real(pReal), dimension(3,3) :: R !< Rotation matrix (composed of three components)
|
||||
real(pReal):: angle,c
|
||||
integer(pInt):: j,& !< index of smallest component
|
||||
integer:: j,& !< index of smallest component
|
||||
i
|
||||
|
||||
allocate(a(0))
|
||||
|
@ -1843,11 +1841,11 @@ function math_sampleFiberOri(alpha,beta,FWHM)
|
|||
|
||||
R = math_EulerAxisAngleToR(math_crossproduct(fInC,fInS),-acos(dot_product(fInC,fInS))) !< rotation to align fiber axis in crystal and sample system
|
||||
|
||||
rnd = halton([7_pInt,10_pInt,3_pInt])
|
||||
rnd = halton([7,10,3])
|
||||
R = math_mul33x33(R,math_EulerAxisAngleToR(fInS,rnd(1)*2.0_pReal*PI)) !< additional rotation (0..360deg) perpendicular to fiber axis
|
||||
|
||||
if (FWHM > 0.1_pReal*INRAD) then
|
||||
reducedTo2D: do i=1_pInt,3_pInt
|
||||
reducedTo2D: do i=1,3
|
||||
if (i /= minloc(abs(fInS),1)) then
|
||||
a=[a,fInS(i)]
|
||||
idx=[idx,i]
|
||||
|
@ -1868,7 +1866,7 @@ function math_sampleFiberOri(alpha,beta,FWHM)
|
|||
R = math_mul33x33(R,math_EulerAxisAngleToR(math_crossproduct(u,fInS),angle)) ! tilt around direction of smallest component
|
||||
exit
|
||||
endif rejectionSampling
|
||||
rnd = halton([7_pInt,10_pInt,3_pInt])
|
||||
rnd = halton([7,10,3])
|
||||
enddo GaussConvolution
|
||||
endif
|
||||
math_sampleFiberOri = math_RtoEuler(R)
|
||||
|
@ -1897,7 +1895,7 @@ real(pReal) function math_sampleGaussVar(meanvalue, stddev, width)
|
|||
myWidth = merge(width,3.0_pReal,present(width)) ! use +-3*sigma as default value for scatter if not given
|
||||
|
||||
do
|
||||
rnd = halton([6_pInt,2_pInt])
|
||||
rnd = halton([6,2])
|
||||
scatter = myWidth * (2.0_pReal * rnd(1) - 1.0_pReal)
|
||||
if (rnd(2) <= exp(-0.5_pReal * scatter ** 2.0_pReal)) exit ! test if scattered value is drawn
|
||||
enddo
|
||||
|
@ -1915,7 +1913,7 @@ end function math_sampleGaussVar
|
|||
pure function math_symmetricEulers(sym,Euler)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: sym !< symmetry Class
|
||||
integer, intent(in) :: sym !< symmetry Class
|
||||
real(pReal), dimension(3), intent(in) :: Euler
|
||||
real(pReal), dimension(3,3) :: math_symmetricEulers
|
||||
|
||||
|
@ -1926,9 +1924,9 @@ pure function math_symmetricEulers(sym,Euler)
|
|||
math_symmetricEulers = modulo(math_symmetricEulers,2.0_pReal*pi)
|
||||
|
||||
select case (sym)
|
||||
case (4_pInt) ! orthotropic: all done
|
||||
case (4) ! orthotropic: all done
|
||||
|
||||
case (2_pInt) ! monoclinic: return only first
|
||||
case (2) ! monoclinic: return only first
|
||||
math_symmetricEulers(1:3,2:3) = 0.0_pReal
|
||||
|
||||
case default ! triclinic: return blank
|
||||
|
@ -1949,14 +1947,14 @@ subroutine math_eigenValuesVectorsSym(m,values,vectors,error)
|
|||
real(pReal), dimension(size(m,1)), intent(out) :: values
|
||||
real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: vectors
|
||||
logical, intent(out) :: error
|
||||
integer(pInt) :: info
|
||||
integer :: info
|
||||
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
||||
external :: &
|
||||
dsyev
|
||||
|
||||
vectors = m ! copy matrix to input (doubles as output) array
|
||||
call dsyev('V','U',size(m,1),vectors,size(m,1),values,work,(64+2)*size(m,1),info)
|
||||
error = (info == 0_pInt)
|
||||
error = (info == 0)
|
||||
|
||||
end subroutine math_eigenValuesVectorsSym
|
||||
|
||||
|
@ -1982,11 +1980,11 @@ subroutine math_eigenValuesVectorsSym33(m,values,vectors)
|
|||
|
||||
vectors(1:3,2) = [ m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2), &
|
||||
m(1, 3) * m(1, 2) - m(2, 3) * m(1, 1), &
|
||||
m(1, 2)**2_pInt]
|
||||
m(1, 2)**2]
|
||||
|
||||
T = maxval(abs(values))
|
||||
U = max(T, T**2_pInt)
|
||||
threshold = sqrt(5.68e-14_pReal * U**2_pInt)
|
||||
U = max(T, T**2)
|
||||
threshold = sqrt(5.68e-14_pReal * U**2)
|
||||
|
||||
! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2
|
||||
vectors(1:3,1) = [ vectors(1,2) + m(1, 3) * values(1), &
|
||||
|
@ -2030,13 +2028,13 @@ function math_eigenvectorBasisSym(m)
|
|||
real(pReal), dimension(size(m,1),size(m,1)) :: vectors
|
||||
real(pReal), dimension(size(m,1),size(m,1)) :: math_eigenvectorBasisSym
|
||||
logical :: error
|
||||
integer(pInt) :: i
|
||||
integer :: i
|
||||
|
||||
math_eigenvectorBasisSym = 0.0_pReal
|
||||
call math_eigenValuesVectorsSym(m,values,vectors,error)
|
||||
if(error) return
|
||||
|
||||
do i=1_pInt, size(m,1)
|
||||
do i=1, size(m,1)
|
||||
math_eigenvectorBasisSym = math_eigenvectorBasisSym &
|
||||
+ sqrt(values(i)) * math_outer(vectors(:,i),vectors(:,i))
|
||||
enddo
|
||||
|
@ -2193,7 +2191,7 @@ function math_rotationalPart33(m)
|
|||
|
||||
inversionFailed: if (all(dEq0(Uinv))) then
|
||||
math_rotationalPart33 = math_I3
|
||||
call IO_warning(650_pInt)
|
||||
call IO_warning(650)
|
||||
else inversionFailed
|
||||
math_rotationalPart33 = math_mul33x33(m,Uinv)
|
||||
endif inversionFailed
|
||||
|
@ -2213,14 +2211,14 @@ function math_eigenvaluesSym(m)
|
|||
real(pReal), dimension(:,:), intent(in) :: m
|
||||
real(pReal), dimension(size(m,1)) :: math_eigenvaluesSym
|
||||
real(pReal), dimension(size(m,1),size(m,1)) :: vectors
|
||||
integer(pInt) :: info
|
||||
integer :: info
|
||||
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
||||
external :: &
|
||||
dsyev
|
||||
|
||||
vectors = m ! copy matrix to input (doubles as output) array
|
||||
call dsyev('N','U',size(m,1),vectors,size(m,1),math_eigenvaluesSym,work,(64+2)*size(m,1),info)
|
||||
if (info /= 0_pInt) math_eigenvaluesSym = IEEE_value(1.0_pReal,IEEE_quiet_NaN)
|
||||
if (info /= 0) math_eigenvaluesSym = IEEE_value(1.0_pReal,IEEE_quiet_NaN)
|
||||
|
||||
end function math_eigenvaluesSym
|
||||
|
||||
|
@ -2294,19 +2292,19 @@ end function math_invariantsSym33
|
|||
function halton(bases)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in), dimension(:):: &
|
||||
integer, intent(in), dimension(:):: &
|
||||
bases !< bases (prime number ID)
|
||||
real(pReal), dimension(size(bases)) :: &
|
||||
halton
|
||||
integer(pInt), save :: &
|
||||
current = 1_pInt
|
||||
integer, save :: &
|
||||
current = 1
|
||||
real(pReal), dimension(size(bases)) :: &
|
||||
base_inv
|
||||
integer(pInt), dimension(size(bases)) :: &
|
||||
integer, dimension(size(bases)) :: &
|
||||
base, &
|
||||
t
|
||||
integer(pInt), dimension(0:1600), parameter :: &
|
||||
prime = int([&
|
||||
integer, dimension(0:1600), parameter :: &
|
||||
prime = [&
|
||||
1, &
|
||||
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, &
|
||||
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, &
|
||||
|
@ -2482,9 +2480,9 @@ function halton(bases)
|
|||
13121, 13127, 13147, 13151, 13159, 13163, 13171, 13177, 13183, 13187, &
|
||||
13217, 13219, 13229, 13241, 13249, 13259, 13267, 13291, 13297, 13309, &
|
||||
13313, 13327, 13331, 13337, 13339, 13367, 13381, 13397, 13399, 13411, &
|
||||
13417, 13421, 13441, 13451, 13457, 13463, 13469, 13477, 13487, 13499],pInt)
|
||||
13417, 13421, 13441, 13451, 13457, 13463, 13469, 13477, 13487, 13499]
|
||||
|
||||
current = current + 1_pInt
|
||||
current = current + 1
|
||||
|
||||
base = prime(bases)
|
||||
base_inv = 1.0_pReal/real(base,pReal)
|
||||
|
@ -2492,7 +2490,7 @@ function halton(bases)
|
|||
halton = 0.0_pReal
|
||||
t = current
|
||||
|
||||
do while (any( t /= 0_pInt) )
|
||||
do while (any( t /= 0) )
|
||||
halton = halton + real(mod(t,base), pReal) * base_inv
|
||||
base_inv = base_inv / real(base, pReal)
|
||||
t = t / base
|
||||
|
@ -2504,11 +2502,11 @@ end function halton
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief factorial
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
integer(pInt) pure function math_factorial(n)
|
||||
integer pure function math_factorial(n)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: n
|
||||
integer(pInt) :: i
|
||||
integer, intent(in) :: n
|
||||
integer :: i
|
||||
|
||||
math_factorial = product([(i, i=1,n)])
|
||||
|
||||
|
@ -2518,11 +2516,11 @@ end function math_factorial
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief binomial coefficient
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
integer(pInt) pure function math_binomial(n,k)
|
||||
integer pure function math_binomial(n,k)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: n, k
|
||||
integer(pInt) :: i, j
|
||||
integer, intent(in) :: n, k
|
||||
integer :: i, j
|
||||
|
||||
j = min(k,n-k)
|
||||
math_binomial = product([(i, i=n, n-j+1, -1)])/math_factorial(j)
|
||||
|
@ -2533,13 +2531,13 @@ end function math_binomial
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief multinomial coefficient
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
integer(pInt) pure function math_multinomial(alpha)
|
||||
integer pure function math_multinomial(alpha)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in), dimension(:) :: alpha
|
||||
integer(pInt) :: i
|
||||
integer, intent(in), dimension(:) :: alpha
|
||||
integer :: i
|
||||
|
||||
math_multinomial = 1_pInt
|
||||
math_multinomial = 1
|
||||
do i = 1, size(alpha)
|
||||
math_multinomial = math_multinomial*math_binomial(sum(alpha(1:i)),alpha(i))
|
||||
enddo
|
||||
|
@ -2616,11 +2614,11 @@ pure function math_rotate_forward3333(tensor,rot_tensor)
|
|||
real(pReal), dimension(3,3,3,3) :: math_rotate_forward3333
|
||||
real(pReal), dimension(3,3), intent(in) :: rot_tensor
|
||||
real(pReal), dimension(3,3,3,3), intent(in) :: tensor
|
||||
integer(pInt) :: i,j,k,l,m,n,o,p
|
||||
integer :: i,j,k,l,m,n,o,p
|
||||
|
||||
math_rotate_forward3333 = 0.0_pReal
|
||||
do i = 1_pInt,3_pInt;do j = 1_pInt,3_pInt;do k = 1_pInt,3_pInt;do l = 1_pInt,3_pInt
|
||||
do m = 1_pInt,3_pInt;do n = 1_pInt,3_pInt;do o = 1_pInt,3_pInt;do p = 1_pInt,3_pInt
|
||||
do i = 1,3;do j = 1,3;do k = 1,3;do l = 1,3
|
||||
do m = 1,3;do n = 1,3;do o = 1,3;do p = 1,3
|
||||
math_rotate_forward3333(i,j,k,l) &
|
||||
= math_rotate_forward3333(i,j,k,l) &
|
||||
+ rot_tensor(i,m) * rot_tensor(j,n) * rot_tensor(k,o) * rot_tensor(l,p) * tensor(m,n,o,p)
|
||||
|
|
Loading…
Reference in New Issue