added option to skip data points along x,y,z in case they are periodic images. relevant for vertex-centered data for which outer surface data is doubled, i.e. data(0,0,0) == data(Nx,Ny,Nz)

This commit is contained in:
Philip Eisenlohr 2011-10-20 12:28:39 +00:00
parent 64499328d1
commit c78227cec1
1 changed files with 15 additions and 8 deletions
processing/post

View File

@ -74,6 +74,8 @@ parser.add_option('-d','--dimension', dest='dim', type='float', nargs=3, \
help='physical dimension of data set in x (fast) y z (slow) [%default]') help='physical dimension of data set in x (fast) y z (slow) [%default]')
parser.add_option('-r','--resolution', dest='res', type='int', nargs=3, \ parser.add_option('-r','--resolution', dest='res', type='int', nargs=3, \
help='resolution of data set in x (fast) y z (slow)') help='resolution of data set in x (fast) y z (slow)')
parser.add_option('-s','--skip', dest='skip', type='int', nargs=3, \
help='items skipped due to periodicity in x (fast) y z (slow)')
parser.set_defaults(accuracy = []) parser.set_defaults(accuracy = [])
parser.set_defaults(memory = False) parser.set_defaults(memory = False)
@ -81,6 +83,7 @@ parser.set_defaults(fft = False)
parser.set_defaults(vector = []) parser.set_defaults(vector = [])
parser.set_defaults(tensor = []) parser.set_defaults(tensor = [])
parser.set_defaults(dim = []) parser.set_defaults(dim = [])
parser.set_defaults(skip = [0,0,0])
accuracyChoices = [2,4,6,8] accuracyChoices = [2,4,6,8]
(options,filenames) = parser.parse_args() (options,filenames) = parser.parse_args()
@ -96,6 +99,7 @@ for choice in options.accuracy:
parser.error('accuracy must be chosen from %s...'%(', '.join(accuracyChoices))) parser.error('accuracy must be chosen from %s...'%(', '.join(accuracyChoices)))
if options.fft: options.accuracy.append('fft') if options.fft: options.accuracy.append('fft')
resSkip = [lambda a,b: a+b for a,b in zip(options.res,options.skip)]
datainfo = { # list of requested labels per datatype datainfo = { # list of requested labels per datatype
'vector': {'len':3, 'vector': {'len':3,
'label':[]}, 'label':[]},
@ -158,7 +162,7 @@ for file in files:
if datatype not in div_field: div_field[datatype] = {} if datatype not in div_field: div_field[datatype] = {}
active[datatype].append(label) active[datatype].append(label)
column[datatype][label] = headers.index(key) column[datatype][label] = headers.index(key)
values[datatype][label] = numpy.array([0.0 for i in range(datainfo[datatype]['len']*\ values[datatype][label] = numpy.array([0.0 for i in xrange(datainfo[datatype]['len']*\
options.res[0]*options.res[1]*options.res[2])]).\ options.res[0]*options.res[1]*options.res[2])]).\
reshape((options.res[0],options.res[1],options.res[2],\ reshape((options.res[0],options.res[1],options.res[2],\
3,datainfo[datatype]['len']//3)) 3,datainfo[datatype]['len']//3))
@ -180,12 +184,15 @@ for file in files:
idx = 0 idx = 0
for line in data: for line in data:
items = line.split()[:len(headers)] items = line.split()[:len(headers)]
if len(items) < len(headers): if len(items) < len(headers): # skip too short lines (probably comments or invalid)
continue continue
locSkip = location(idx,resSkip)
if ( locSkip[0] < options.res[0]
and locSkip[1] < options.res[1]
and locSkip[2] < options.res[2] ): # only take values that are not periodic images
for datatype,labels in active.items(): for datatype,labels in active.items():
for label in labels: for label in labels:
values[datatype][label][location(idx,options.res)[0]][location(idx,options.res)[1]][location(idx,options.res)[2]]\ values[datatype][label][locSkip[0]][locSkip[1]][locSkip[2]]\
= numpy.reshape(items[column[datatype][label]: = numpy.reshape(items[column[datatype][label]:
column[datatype][label]+datainfo[datatype]['len']],(3,datainfo[datatype]['len']//3)) column[datatype][label]+datainfo[datatype]['len']],(3,datainfo[datatype]['len']//3))
idx += 1 idx += 1