tried to implement an inverse reconstruction, meaning to calculate an average deformation gradient from the 8 cornes of a node in reference and current configuration. Not working yet.
polishing, mainly in fft reconstruction. added fftw library file and fortran file for type specification added folder references with literature for visualization/geometry reconstruction
This commit is contained in:
parent
8dd1a694a3
commit
c399a06c97
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
File diff suppressed because one or more lines are too long
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,126 @@
|
||||||
|
\documentclass[a4paper,12pt]{article}
|
||||||
|
\usepackage{bm}
|
||||||
|
\usepackage{mathbbol} %poor substitute for mathbb. Changed to mathbbg to have an option for greek bb
|
||||||
|
\usepackage{amssymb}
|
||||||
|
\usepackage{amsmath}
|
||||||
|
\usepackage{amsfonts}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
|
||||||
|
\newcommand{\term}[1]{\textsc{#1}}
|
||||||
|
\newcommand{\eref}[1]{eq.~\eqref{#1}}
|
||||||
|
\newcommand{\Eref}[1]{Eq.~\eqref{#1}}
|
||||||
|
\newcommand{\fref}[1]{fig.~\ref{#1}}
|
||||||
|
\newcommand{\Fref}[1]{Fig.~\ref{#1}}
|
||||||
|
\newcommand{\tref}[1]{tab.~\ref{#1}}
|
||||||
|
\newcommand{\Tref}[1]{Tab.~\ref{#1}}
|
||||||
|
\newcommand{\cref}[1]{chapter~\ref{#1}}
|
||||||
|
\newcommand{\Cref}[1]{Chapter~\ref{#1}}
|
||||||
|
\newcommand{\sref}[1]{section~\ref{#1}}
|
||||||
|
\newcommand{\Sref}[1]{Section~\ref{#1}}
|
||||||
|
\newcommand{\lref}[1]{listing~\ref{#1}}
|
||||||
|
\newcommand{\Lref}[1]{Listing~\ref{#1}}
|
||||||
|
|
||||||
|
\newcommand{\ie}{i.e.}
|
||||||
|
\newcommand{\eg}{e.g.}
|
||||||
|
\newcommand{\cf}{cf.}
|
||||||
|
|
||||||
|
\newcommand{\field}[1]{\ensuremath{\mathcal{#1}}}
|
||||||
|
\newcommand{\tnsr}[1]{\ensuremath{\bm{{#1}}}}
|
||||||
|
\newcommand{\tnsrfour}[1]{\ensuremath{\mathbb{#1}}}
|
||||||
|
\newcommand{\gammaop}{\ensuremath{\mathbbg{\Gamma}}}
|
||||||
|
\newcommand{\abs}[1]{\ensuremath{\left|{#1}\right|}}
|
||||||
|
\newcommand{\norm}[1]{\ensuremath{\left|\left|{#1}\right|\right|}}
|
||||||
|
\newcommand{\vctr}[1]{\ensuremath{\bm{#1}}}
|
||||||
|
\newcommand{\inc}[1]{\ensuremath{{\rm d}{#1}}}
|
||||||
|
\newcommand{\sign}[1]{\ensuremath{\operatorname{sign}\left({#1}\right)}}
|
||||||
|
\newcommand{\grad}[1][]{\ensuremath{\operatorname{grad}{#1}}}
|
||||||
|
\newcommand{\divergence}[1][]{\ensuremath{\operatorname{div}{#1}}}
|
||||||
|
\newcommand{\totalder}[2]{\ensuremath{\frac{\inc{#1}}{\inc{#2}}}}
|
||||||
|
\newcommand{\partialder}[2]{\ensuremath{\frac{\partial{#1}}{\partial{#2}}}}
|
||||||
|
|
||||||
|
\newcommand{\identity}{\ensuremath{\tnsr I}}
|
||||||
|
\newcommand{\F}[1][]{\ensuremath{\tnsr F^{{\rm #1}}}}
|
||||||
|
\newcommand{\Favg}{{\ensuremath{\overline{\F}^{(n)}}}}
|
||||||
|
\newcommand{\Fp}[1][]{\ensuremath{\tnsr F_\text{p}^{#1}}}
|
||||||
|
\newcommand{\Fe}[1][]{\ensuremath{\tnsr F_\text{e}^{#1}}}
|
||||||
|
\newcommand{\Lp}{\ensuremath{\tnsr L_\text{p}}}
|
||||||
|
%\newcommand{\Q}[1]{\ensuremath{\tnsr Q^{(#1)}}}
|
||||||
|
%\newcommand{\x}[2][]{\ensuremath{\vctr x^{(#2)}_\text{#1}}}
|
||||||
|
%\newcommand{\y}[2][]{\ensuremath{\vctr x^{(#2)}_\text{#1}}}
|
||||||
|
\newcommand{\dg}[2][]{\ensuremath{\Delta\vctr g^{(#2)}_\text{#1}}}
|
||||||
|
\newcommand{\g}[1][]{\ensuremath{\vctr g_\text{#1}}}
|
||||||
|
%\newcommand{\A}[2][]{\ensuremath{A^{(#2)}_\text{#1}}}
|
||||||
|
\newcommand{\N}[2]{\ensuremath{\varrho^{(#1)}_\text{#2}}}
|
||||||
|
\newcommand{\Burgers}[1]{\ensuremath{\vctr s^{(#1)}}}
|
||||||
|
\newcommand{\n}[1]{\ensuremath{\vctr n^{(#1)}}}
|
||||||
|
\newcommand{\m}[2]{\ensuremath{\vctr m^{(#1)}_{#2}}}
|
||||||
|
\newcommand{\ld}[1]{\ensuremath{\vctr p^{(#1)}}}
|
||||||
|
\newcommand{\velocity}[2]{\ensuremath{v^{(#1)}_\text{#2}}}
|
||||||
|
\newcommand{\avgvelocity}[2]{\ensuremath{{\overline v}^{(#1)}_ \text{#2}}}
|
||||||
|
\newcommand{\flux}[2]{\ensuremath{\vctr f^{(#1)}_ \text{#2}}}
|
||||||
|
\newcommand{\averageflux}[2]{\ensuremath{\overline{\vctr f}^{(#1)}_ \text{#2}}}
|
||||||
|
\newcommand{\interfaceflux}[2]{\ensuremath{\tilde{\vctr f}^{(#1)}_ \text{#2}}}
|
||||||
|
\newcommand{\transmissivity}[1]{\ensuremath{\chi^{(#1)}}}
|
||||||
|
\newcommand{\galpha}{\ensuremath{\gamma^{(\alpha)}}}
|
||||||
|
\newcommand{\dotgalpha}{\ensuremath{\dot{\gamma}^{(\alpha)}}}
|
||||||
|
\newcommand{\taualpha}{\ensuremath{\tau^{(\alpha)}}}
|
||||||
|
\newcommand{\taualphamax}{\ensuremath{\hat\tau^{(\alpha)}}}
|
||||||
|
\newcommand{\density}[2]{\ensuremath{\varrho^{(#1)}_ \text{#2}}}
|
||||||
|
\newcommand{\densityfunc}[2]{\ensuremath{{\tilde\varrho}^{(#1)}_ \text{#2}}}
|
||||||
|
\newcommand{\avgdensity}[2]{\ensuremath{{\overline\varrho}^{(#1)}_ \text{#2}}}
|
||||||
|
\newcommand{\dotdensity}[2]{\ensuremath{\dot{\varrho}^{(#1)}_ \text{#2}}}
|
||||||
|
\newcommand{\densityexcess}[2]{\ensuremath{\Delta\varrho^{(#1)}_ \text{#2}}}
|
||||||
|
\newcommand{\cs}[2][]{\ensuremath{\sigma^{(#1)}_ \text{#2}}}
|
||||||
|
\title{Geometry reconstruction using Fast Fourier transform}
|
||||||
|
\date{\today}
|
||||||
|
|
||||||
|
\author{Martin Diehl}
|
||||||
|
\begin{document}
|
||||||
|
\maketitle
|
||||||
|
|
||||||
|
The presented method allows the shape reconstruction of a volume element with periodic boundary conditions.
|
||||||
|
The deformation gradient on each point of a regular, three-dimensional lattice in undeformed configuration must be known.
|
||||||
|
|
||||||
|
The deformation gradient maps each point (or a line in the infinitesimal neighborhood of the point) into the current configuration.
|
||||||
|
It is defined as:
|
||||||
|
\begin{equation}
|
||||||
|
\F(\vctr x) = \left(
|
||||||
|
\begin{array}{ccc}
|
||||||
|
\frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\
|
||||||
|
\frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \\
|
||||||
|
\frac{\partial y_3}{\partial x_1} & \frac{\partial y_3}{\partial x_2} & \frac{\partial y_3}{\partial x_3} \\
|
||||||
|
\end{array}
|
||||||
|
\right)
|
||||||
|
\end{equation}
|
||||||
|
with \vctr y\ are the coordinates in current configuration and \vctr x\ are the coordinates in reference configuration.
|
||||||
|
|
||||||
|
The three-dimensional field of second order tensors is transformed to the Fourier space, giving three-dimensional field of second order tensors that depend on the three dimensional wave vector and not on the vector of spatial coordinates:
|
||||||
|
\begin{equation}
|
||||||
|
\mathcal F \left( \F(\vctr x) \right)= \hat{\F}(\vctr k)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
Integration in Fourier space works is defined for the one dimensional case as:
|
||||||
|
\begin{equation}
|
||||||
|
\mathcal{F} \left( \int_{-\infty}^{x} g (\tau) d \tau \right) = \frac{\mathcal{F}{g(x)}}{i2 \pi k} + c \delta(k)
|
||||||
|
\end{equation}
|
||||||
|
where the last term is the integration constant.
|
||||||
|
Constant (or linear after integration) terms cannot properly handled when using the integration property of the Fourier domain, as a division by the ``constant wave'' ($k=0$) is not possible.
|
||||||
|
Thus, to carry out the integration the function is separated into an average and a locally fluctuating part.
|
||||||
|
The locally fluctuating part is integrated in Fourier space, while the integration of the constant part is easier in the real domain.
|
||||||
|
|
||||||
|
The fluctuation field of the position vector in deformed configuration in Fourier space reads as:
|
||||||
|
\begin{equation}
|
||||||
|
\hat{\tilde{y}}_{\rm j}(\vctr k) = \hat{F_{\rm ji}}(\vctr k) \left(k_{\rm i} i 2 \pi \right)^{-1} \forall k_i \neq 0
|
||||||
|
\end{equation}
|
||||||
|
The average part is set to zero in Fourier space.
|
||||||
|
|
||||||
|
The inverse Fourier transform gives the locally fluctuating part of each position in current configuration:
|
||||||
|
\begin{equation}
|
||||||
|
\mathcal{F}^{-1}\left(\hat{\tilde{\vctr y}}(\vctr k) \right) = \tilde{\vctr y}(\vctr x)
|
||||||
|
\end{equation}
|
||||||
|
and the position vector in undeformed configuration is given as:
|
||||||
|
\begin{equation}
|
||||||
|
\vctr y(\vctr x) = \overline{\F}: \vctr x + \tilde{\vctr y}(\vctr x)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end{document}
|
|
@ -0,0 +1,72 @@
|
||||||
|
INTEGER FFTW_R2HC
|
||||||
|
PARAMETER (FFTW_R2HC=0)
|
||||||
|
INTEGER FFTW_HC2R
|
||||||
|
PARAMETER (FFTW_HC2R=1)
|
||||||
|
INTEGER FFTW_DHT
|
||||||
|
PARAMETER (FFTW_DHT=2)
|
||||||
|
INTEGER FFTW_REDFT00
|
||||||
|
PARAMETER (FFTW_REDFT00=3)
|
||||||
|
INTEGER FFTW_REDFT01
|
||||||
|
PARAMETER (FFTW_REDFT01=4)
|
||||||
|
INTEGER FFTW_REDFT10
|
||||||
|
PARAMETER (FFTW_REDFT10=5)
|
||||||
|
INTEGER FFTW_REDFT11
|
||||||
|
PARAMETER (FFTW_REDFT11=6)
|
||||||
|
INTEGER FFTW_RODFT00
|
||||||
|
PARAMETER (FFTW_RODFT00=7)
|
||||||
|
INTEGER FFTW_RODFT01
|
||||||
|
PARAMETER (FFTW_RODFT01=8)
|
||||||
|
INTEGER FFTW_RODFT10
|
||||||
|
PARAMETER (FFTW_RODFT10=9)
|
||||||
|
INTEGER FFTW_RODFT11
|
||||||
|
PARAMETER (FFTW_RODFT11=10)
|
||||||
|
INTEGER FFTW_FORWARD
|
||||||
|
PARAMETER (FFTW_FORWARD=-1)
|
||||||
|
INTEGER FFTW_BACKWARD
|
||||||
|
PARAMETER (FFTW_BACKWARD=+1)
|
||||||
|
INTEGER FFTW_MEASURE
|
||||||
|
PARAMETER (FFTW_MEASURE=0)
|
||||||
|
INTEGER FFTW_DESTROY_INPUT
|
||||||
|
PARAMETER (FFTW_DESTROY_INPUT=1)
|
||||||
|
INTEGER FFTW_UNALIGNED
|
||||||
|
PARAMETER (FFTW_UNALIGNED=2)
|
||||||
|
INTEGER FFTW_CONSERVE_MEMORY
|
||||||
|
PARAMETER (FFTW_CONSERVE_MEMORY=4)
|
||||||
|
INTEGER FFTW_EXHAUSTIVE
|
||||||
|
PARAMETER (FFTW_EXHAUSTIVE=8)
|
||||||
|
INTEGER FFTW_PRESERVE_INPUT
|
||||||
|
PARAMETER (FFTW_PRESERVE_INPUT=16)
|
||||||
|
INTEGER FFTW_PATIENT
|
||||||
|
PARAMETER (FFTW_PATIENT=32)
|
||||||
|
INTEGER FFTW_ESTIMATE
|
||||||
|
PARAMETER (FFTW_ESTIMATE=64)
|
||||||
|
INTEGER FFTW_ESTIMATE_PATIENT
|
||||||
|
PARAMETER (FFTW_ESTIMATE_PATIENT=128)
|
||||||
|
INTEGER FFTW_BELIEVE_PCOST
|
||||||
|
PARAMETER (FFTW_BELIEVE_PCOST=256)
|
||||||
|
INTEGER FFTW_NO_DFT_R2HC
|
||||||
|
PARAMETER (FFTW_NO_DFT_R2HC=512)
|
||||||
|
INTEGER FFTW_NO_NONTHREADED
|
||||||
|
PARAMETER (FFTW_NO_NONTHREADED=1024)
|
||||||
|
INTEGER FFTW_NO_BUFFERING
|
||||||
|
PARAMETER (FFTW_NO_BUFFERING=2048)
|
||||||
|
INTEGER FFTW_NO_INDIRECT_OP
|
||||||
|
PARAMETER (FFTW_NO_INDIRECT_OP=4096)
|
||||||
|
INTEGER FFTW_ALLOW_LARGE_GENERIC
|
||||||
|
PARAMETER (FFTW_ALLOW_LARGE_GENERIC=8192)
|
||||||
|
INTEGER FFTW_NO_RANK_SPLITS
|
||||||
|
PARAMETER (FFTW_NO_RANK_SPLITS=16384)
|
||||||
|
INTEGER FFTW_NO_VRANK_SPLITS
|
||||||
|
PARAMETER (FFTW_NO_VRANK_SPLITS=32768)
|
||||||
|
INTEGER FFTW_NO_VRECURSE
|
||||||
|
PARAMETER (FFTW_NO_VRECURSE=65536)
|
||||||
|
INTEGER FFTW_NO_SIMD
|
||||||
|
PARAMETER (FFTW_NO_SIMD=131072)
|
||||||
|
INTEGER FFTW_NO_SLOW
|
||||||
|
PARAMETER (FFTW_NO_SLOW=262144)
|
||||||
|
INTEGER FFTW_NO_FIXED_RADIX_LARGE_N
|
||||||
|
PARAMETER (FFTW_NO_FIXED_RADIX_LARGE_N=524288)
|
||||||
|
INTEGER FFTW_ALLOW_PRUNING
|
||||||
|
PARAMETER (FFTW_ALLOW_PRUNING=1048576)
|
||||||
|
INTEGER FFTW_WISDOM_ONLY
|
||||||
|
PARAMETER (FFTW_WISDOM_ONLY=2097152)
|
Binary file not shown.
|
@ -75,6 +75,7 @@ class MPIEspectral_result: # mimic py_post result object
|
||||||
dimension = [0.0,0.0,0.0]
|
dimension = [0.0,0.0,0.0]
|
||||||
theTitle = ''
|
theTitle = ''
|
||||||
wd = ''
|
wd = ''
|
||||||
|
geometry = ''
|
||||||
extrapolate = ''
|
extrapolate = ''
|
||||||
N_increments = 0
|
N_increments = 0
|
||||||
increment = 0
|
increment = 0
|
||||||
|
@ -123,6 +124,7 @@ class MPIEspectral_result: # mimic py_post result object
|
||||||
return '\n'.join([
|
return '\n'.join([
|
||||||
'title: %s'%self.theTitle,
|
'title: %s'%self.theTitle,
|
||||||
'workdir: %s'%self.wd,
|
'workdir: %s'%self.wd,
|
||||||
|
'geometry: %s'%self.geometry,
|
||||||
'extrapolation: %s'%self.extrapolate,
|
'extrapolation: %s'%self.extrapolate,
|
||||||
'increments: %i'%self.N_increments,
|
'increments: %i'%self.N_increments,
|
||||||
'increment: %i'%self.increment,
|
'increment: %i'%self.increment,
|
||||||
|
|
|
@ -435,37 +435,19 @@ subroutine deformed_fft(res_x,res_y,res_z,geomdim,defgrad,defgrad_av,scaling,coo
|
||||||
implicit none
|
implicit none
|
||||||
integer res_x, res_y, res_z
|
integer res_x, res_y, res_z
|
||||||
real*8 geomdim(3)
|
real*8 geomdim(3)
|
||||||
real*8 defgrad(res_x,res_y,res_z,3,3)
|
real*8 defgrad(res_x,res_y,res_z,3,3)
|
||||||
complex*16 defgrad_fft(res_x,res_y,res_z,3,3)
|
|
||||||
real*8 defgrad_av(3,3)
|
real*8 defgrad_av(3,3)
|
||||||
real*8 scaling
|
real*8 scaling
|
||||||
real*8 coords(res_x, res_y,res_z,3)
|
real*8 coords(res_x,res_y,res_z,3)
|
||||||
complex*16 coords_fft(res_x/2+1,res_y,res_z,3)
|
complex*16 coords_fft(res_x/2+1,res_y,res_z,3)
|
||||||
real*8 waves(res_x/2+1,res_y,res_z,3)
|
complex*16 defgrad_fft(res_x,res_y,res_z,3,3)
|
||||||
include 'fftw3.f' !header file for fftw3 (declaring variables). Library files are also needed
|
integer i, j, k
|
||||||
integer*8 :: plan_fft(2)
|
integer k_s(3)
|
||||||
real*8, parameter :: pi = 3.14159265358979323846264338327950288419716939937510
|
|
||||||
|
|
||||||
real*8 zero
|
|
||||||
real*8 temp33_Real(3,3)
|
|
||||||
integer i, j, k, ierr
|
|
||||||
integer k_s(3)
|
|
||||||
real*8 step(3)
|
real*8 step(3)
|
||||||
complex*16 img
|
real*8 offset_coords(3)
|
||||||
|
real*8, parameter :: pi = 3.14159265358979323846264338327950288419716939937510
|
||||||
img = cmplx(0.0,1.0)
|
integer*8 :: plan_fft(2)
|
||||||
|
include 'fftw3.f' !header file for fftw3 (declaring variables). Library files are also needed
|
||||||
do k = 1, res_z
|
|
||||||
k_s(3) = k-1
|
|
||||||
if(k > res_z/2+1) k_s(3) = k_s(3)-res_z
|
|
||||||
do j = 1, res_y
|
|
||||||
k_s(2) = j-1
|
|
||||||
if(j > res_y/2+1) k_s(2) = k_s(2)-res_y
|
|
||||||
do i = 1, res_x/2+1
|
|
||||||
k_s(1) = i-1
|
|
||||||
waves(i,j,k,:) = real(k_s)/geomdim
|
|
||||||
enddo; enddo; enddo
|
|
||||||
|
|
||||||
|
|
||||||
call dfftw_plan_many_dft(plan_fft(1),3,(/res_x,res_y,res_z/),9,&
|
call dfftw_plan_many_dft(plan_fft(1),3,(/res_x,res_y,res_z/),9,&
|
||||||
defgrad_fft,(/res_x,res_y,res_z/),1,res_x*res_y*res_z,&
|
defgrad_fft,(/res_x,res_y,res_z/),1,res_x*res_y*res_z,&
|
||||||
|
@ -475,68 +457,142 @@ subroutine deformed_fft(res_x,res_y,res_z,geomdim,defgrad,defgrad_av,scaling,coo
|
||||||
coords_fft,(/res_x/2+1,res_y,res_z/),1,(res_x/2+1)*res_y*res_z,&
|
coords_fft,(/res_x/2+1,res_y,res_z/),1,(res_x/2+1)*res_y*res_z,&
|
||||||
coords, (/res_x, res_y,res_z/),1, res_x* res_y*res_z,FFTW_PATIENT)
|
coords, (/res_x, res_y,res_z/),1, res_x* res_y*res_z,FFTW_PATIENT)
|
||||||
|
|
||||||
coords_fft=0.0
|
coords_fft = 0.0
|
||||||
defgrad_fft = defgrad
|
defgrad_fft = defgrad
|
||||||
|
|
||||||
call dfftw_execute_dft(plan_fft(1), defgrad_fft, defgrad_fft)
|
|
||||||
|
|
||||||
do k = 1, res_z; do j = 1, res_y; do i = 1, res_x/2+1
|
|
||||||
if(i/=1) then
|
|
||||||
coords_fft(i,j,k,1) = defgrad_fft(i,j,k,1,1)/(waves(i,j,k,1)*img)
|
|
||||||
coords_fft(i,j,k,2) = defgrad_fft(i,j,k,2,1)/(waves(i,j,k,1)*img)
|
|
||||||
coords_fft(i,j,k,3) = defgrad_fft(i,j,k,3,1)/(waves(i,j,k,1)*img)
|
|
||||||
endif
|
|
||||||
if(j/=1) then
|
|
||||||
coords_fft(i,j,k,1) = coords_fft(i,j,k,1) + defgrad_fft(i,j,k,1,2)/(waves(i,j,k,2)*img)
|
|
||||||
coords_fft(i,j,k,2) = coords_fft(i,j,k,2) + defgrad_fft(i,j,k,2,2)/(waves(i,j,k,2)*img)
|
|
||||||
coords_fft(i,j,k,3) = coords_fft(i,j,k,3) + defgrad_fft(i,j,k,3,2)/(waves(i,j,k,2)*img)
|
|
||||||
endif
|
|
||||||
if(k/=1) then
|
|
||||||
coords_fft(i,j,k,1) = coords_fft(i,j,k,1) + defgrad_fft(i,j,k,1,3)/(waves(i,j,k,3)*img)
|
|
||||||
coords_fft(i,j,k,2) = coords_fft(i,j,k,2) + defgrad_fft(i,j,k,2,3)/(waves(i,j,k,3)*img)
|
|
||||||
coords_fft(i,j,k,3) = coords_fft(i,j,k,3) + defgrad_fft(i,j,k,3,3)/(waves(i,j,k,3)*img)
|
|
||||||
endif
|
|
||||||
enddo; enddo; enddo
|
|
||||||
|
|
||||||
call dfftw_execute_dft_c2r(plan_fft(2), coords_fft, coords)
|
|
||||||
|
|
||||||
coords = coords/real(res_x*res_y*res_z)
|
|
||||||
|
|
||||||
do k = 1, res_z; do j = 1, res_y; do i = 1, res_x
|
|
||||||
coords(i,j,k,:) = coords(i,j,k,:)/(geomdim*2.0*pi)
|
|
||||||
enddo; enddo; enddo
|
|
||||||
|
|
||||||
step(1) = geomdim(1)/real(res_x)
|
step(1) = geomdim(1)/real(res_x)
|
||||||
step(2) = geomdim(2)/real(res_y)
|
step(2) = geomdim(2)/real(res_y)
|
||||||
step(3) = geomdim(3)/real(res_z)
|
step(3) = geomdim(3)/real(res_z)
|
||||||
|
|
||||||
|
call dfftw_execute_dft(plan_fft(1), defgrad_fft, defgrad_fft)
|
||||||
|
|
||||||
temp33_Real(1,:) = matmul(defgrad_av,step/2.0) &
|
do k = 1, res_z
|
||||||
- matmul(defgrad_av,(/zero,zero,step(3)/)) ! start below origin
|
k_s(3) = k-1
|
||||||
|
if(k > res_z/2+1) k_s(3) = k_s(3)-res_z
|
||||||
do k = 1, res_z; do j = 1, res_y; do i = 1, res_x
|
do j = 1, res_y
|
||||||
if((j==1).and.(i==1)) then
|
k_s(2) = j-1
|
||||||
temp33_Real(1,:) = temp33_Real(1,:) + matmul(defgrad_av,&
|
if(j > res_y/2+1) k_s(2) = k_s(2)-res_y
|
||||||
(/zero,zero,step(3)/))
|
do i = 1, res_x/2+1
|
||||||
temp33_Real(2,:) = temp33_Real(1,:)
|
k_s(1) = i-1
|
||||||
temp33_Real(3,:) = temp33_Real(1,:)
|
if(i/=1) coords_fft(i,j,k,:) = coords_fft(i,j,k,:)&
|
||||||
coords(i,j,k,:) = coords(i,j,k,:) + temp33_Real(1,:)
|
+ defgrad_fft(i,j,k,:,1)*geomdim(1)/(real(k_s(1))*cmplx(0.0,1.0)*pi*2.0)
|
||||||
else
|
if(j/=1) coords_fft(i,j,k,:) = coords_fft(i,j,k,:)&
|
||||||
if(i==1) then
|
+ defgrad_fft(i,j,k,:,2)*geomdim(2)/(real(k_s(2))*cmplx(0.0,1.0)*pi*2.0)
|
||||||
temp33_Real(2,:) = temp33_Real(2,:) + matmul(defgrad_av,&
|
if(k/=1) coords_fft(i,j,k,:) = coords_fft(i,j,k,:)&
|
||||||
(/zero,step(2),zero/))
|
+ defgrad_fft(i,j,k,:,3)*geomdim(3)/(real(k_s(3))*cmplx(0.0,1.0)*pi*2.0)
|
||||||
temp33_Real(3,:) = temp33_Real(2,:)
|
|
||||||
coords(i,j,k,:) = coords(i,j,k,:) + temp33_Real(2,:)
|
|
||||||
else
|
|
||||||
temp33_Real(3,:) = temp33_Real(3,:) + matmul(defgrad_av,&
|
|
||||||
(/step(1),zero,zero/))
|
|
||||||
coords(i,j,k,:) = coords(i,j,k,:) + temp33_Real(3,:)
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
enddo; enddo; enddo
|
enddo; enddo; enddo
|
||||||
|
|
||||||
|
call dfftw_execute_dft_c2r(plan_fft(2), coords_fft, coords)
|
||||||
|
coords = coords/real(res_x*res_y*res_z)
|
||||||
|
|
||||||
|
offset_coords = matmul(defgrad(1,1,1,:,:),step/2.0) - scaling*coords(1,1,1,:)
|
||||||
|
do k = 1, res_z; do j = 1, res_y; do i = 1, res_x
|
||||||
|
coords(i,j,k,:) = scaling*coords(i,j,k,:) + offset_coords + matmul(defgrad_av,&
|
||||||
|
(/step(1)*real(i-1),&
|
||||||
|
step(2)*real(j-1),&
|
||||||
|
step(3)*real(k-1)/))
|
||||||
|
|
||||||
|
enddo; enddo; enddo
|
||||||
end subroutine deformed_fft
|
end subroutine deformed_fft
|
||||||
|
|
||||||
|
!++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||||
|
subroutine inverse_reconstruction(res_x,res_y,res_z,reference_configuration,current_configuration,defgrad)
|
||||||
|
!++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||||
|
use math
|
||||||
|
implicit none
|
||||||
|
integer res_x, res_y, res_z
|
||||||
|
real*8 reference_configuration(res_x+1,res_y+1,res_z+1,3)
|
||||||
|
real*8 current_configuration(res_x+1,res_y+1,res_z+1,3)
|
||||||
|
real*8 defgrad(res_x,res_y,res_z,3,3)
|
||||||
|
real*8 delta, tolerance, res, res_center
|
||||||
|
real*8 reference(8,3)
|
||||||
|
real*8 current(8,3)
|
||||||
|
real*8 defgrad_temp(3,3)
|
||||||
|
real*8 dres_dF(3,3)
|
||||||
|
real*8 identity(3,3)
|
||||||
|
real*8 ref_bar(3)
|
||||||
|
real*8 current_bar(3)
|
||||||
|
real*8 r(8)
|
||||||
|
real*8 differentiate(9,3,3)
|
||||||
|
integer i, j, k, m, l, x, y, o
|
||||||
|
|
||||||
|
identity = 0.0
|
||||||
|
identity(1,1) = 1.0
|
||||||
|
identity(2,2) = 1.0
|
||||||
|
identity(3,3) = 1.0
|
||||||
|
|
||||||
|
differentiate = 0.0
|
||||||
|
|
||||||
|
tolerance = 1e-10
|
||||||
|
delta = 1e-9
|
||||||
|
|
||||||
|
k = 0
|
||||||
|
do j = 1, 3; do i = 1, 3
|
||||||
|
k = k+1
|
||||||
|
differentiate(k,i,j) = 1.0
|
||||||
|
enddo; enddo
|
||||||
|
|
||||||
|
do k = 1, res_z
|
||||||
|
do j = 1, res_y
|
||||||
|
do i = 1, res_x
|
||||||
|
reference(1,:) = reference_configuration(i ,j ,k ,:)
|
||||||
|
reference(2,:) = reference_configuration(i+1,j ,k ,:)
|
||||||
|
reference(3,:) = reference_configuration(i+1,j+1,k ,:)
|
||||||
|
reference(4,:) = reference_configuration(i ,j+1,k ,:)
|
||||||
|
reference(5,:) = reference_configuration(i ,j ,k+1,:)
|
||||||
|
reference(6,:) = reference_configuration(i+1,j ,k+1,:)
|
||||||
|
reference(7,:) = reference_configuration(i+1,j+1,k+1,:)
|
||||||
|
reference(8,:) = reference_configuration(i ,j+1,k+1,:)
|
||||||
|
current(1,:) = current_configuration(i ,j ,k ,:)
|
||||||
|
current(2,:) = current_configuration(i+1,j ,k ,:)
|
||||||
|
current(3,:) = current_configuration(i+1,j+1,k ,:)
|
||||||
|
current(4,:) = current_configuration(i ,j+1,k ,:)
|
||||||
|
current(5,:) = current_configuration(i ,j ,k+1,:)
|
||||||
|
current(6,:) = current_configuration(i+1,j ,k+1,:)
|
||||||
|
current(7,:) = current_configuration(i+1,j+1,k+1,:)
|
||||||
|
current(8,:) = current_configuration(i ,j+1,k+1,:)
|
||||||
|
|
||||||
|
do o=1,3
|
||||||
|
ref_bar(o) = sum(reference(:,o))/8.0
|
||||||
|
current_bar(o) = sum(current(:,o))/8.0
|
||||||
|
enddo
|
||||||
|
|
||||||
|
do o=1,8
|
||||||
|
reference(o,:) = reference(o,:) -ref_bar
|
||||||
|
current(o,:) = current(o,:) -current_bar
|
||||||
|
enddo
|
||||||
|
|
||||||
|
defgrad_temp = identity
|
||||||
|
res_center = 2.0*tolerance
|
||||||
|
o=0
|
||||||
|
do while(res_center >= tolerance)
|
||||||
|
o = o + 1
|
||||||
|
do l = 1,8 ! loop over corners
|
||||||
|
r(l) = sqrt(sum((current(l,:)-matmul(defgrad_temp,reference(l,:)))**2)) ! corner distance
|
||||||
|
enddo
|
||||||
|
res_center = sum(r*r) ! current residuum
|
||||||
|
print*, 'res_center', res_center
|
||||||
|
m=0
|
||||||
|
do y=1,3; do x=1,3 ! numerical differentiation
|
||||||
|
m = m+1
|
||||||
|
do l = 1,8
|
||||||
|
r(l) = sqrt(sum((current(l,:)-matmul((defgrad_temp+differentiate(m,:,:)*delta),reference(l,:)))**2)) ! corner distance
|
||||||
|
enddo
|
||||||
|
res = sum(r*r)
|
||||||
|
print*,'res step', m, res
|
||||||
|
dres_dF(x,y) = (res-res_center)/delta
|
||||||
|
enddo; enddo
|
||||||
|
print*, 'dres_dF', dres_dF
|
||||||
|
print*, 'deltadef', math_inv3x3(dres_dF)*res_center
|
||||||
|
defgrad_temp = defgrad_temp - math_inv3x3(dres_dF)*res_center ! Newton--Raphson
|
||||||
|
print*, o, res_center
|
||||||
|
pause
|
||||||
|
enddo
|
||||||
|
defgrad(i,j,k,:,:) = defgrad_temp
|
||||||
|
enddo; enddo; enddo
|
||||||
|
|
||||||
|
end subroutine inverse_reconstruction
|
||||||
|
|
||||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||||
subroutine tensor_avg(res_x,res_y,res_z,tensor,avg)
|
subroutine tensor_avg(res_x,res_y,res_z,tensor,avg)
|
||||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||||
|
|
|
@ -3,6 +3,50 @@
|
||||||
|
|
||||||
python module postprocessingMath ! in
|
python module postprocessingMath ! in
|
||||||
interface ! in :postprocessingMath
|
interface ! in :postprocessingMath
|
||||||
|
module math ! in :postprocessingMath:postprocessingMath.f90
|
||||||
|
real*8 parameter,optional,dimension(3,3) :: math_i3=reshape((/1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0/),(/3,3/))
|
||||||
|
real*8 parameter,optional :: pi=3.14159265359
|
||||||
|
function math_mul33x33(a,b) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||||
|
real*8 dimension(3,3),intent(in) :: a
|
||||||
|
real*8 dimension(3,3),intent(in) :: b
|
||||||
|
real*8 dimension(3,3) :: math_mul33x33
|
||||||
|
end function math_mul33x33
|
||||||
|
subroutine math_invert3x3(a,inva,deta,error) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||||
|
real*8 dimension(3,3),intent(in) :: a
|
||||||
|
real*8 dimension(3,3),intent(out) :: inva
|
||||||
|
real*8 intent(out) :: deta
|
||||||
|
logical intent(out) :: error
|
||||||
|
end subroutine math_invert3x3
|
||||||
|
function math_det3x3(m) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||||
|
real*8 dimension(3,3),intent(in) :: m
|
||||||
|
real*8 :: math_det3x3
|
||||||
|
end function math_det3x3
|
||||||
|
subroutine math_pdecomposition(fe,u,r,error) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||||
|
real*8 dimension(3,3),intent(in) :: fe
|
||||||
|
real*8 dimension(3,3),intent(out) :: u
|
||||||
|
real*8 dimension(3,3),intent(out) :: r
|
||||||
|
logical intent(out) :: error
|
||||||
|
end subroutine math_pdecomposition
|
||||||
|
function math_inv3x3(a) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||||
|
real*8 dimension(3,3),intent(in) :: a
|
||||||
|
real*8 dimension(3,3) :: math_inv3x3
|
||||||
|
end function math_inv3x3
|
||||||
|
subroutine math_hi(m,hi1m,hi2m,hi3m) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||||
|
real*8 dimension(3,3),intent(in) :: m
|
||||||
|
real*8 intent(out) :: hi1m
|
||||||
|
real*8 intent(out) :: hi2m
|
||||||
|
real*8 intent(out) :: hi3m
|
||||||
|
end subroutine math_hi
|
||||||
|
subroutine math_spectral1(m,ew1,ew2,ew3,eb1,eb2,eb3) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||||
|
real*8 dimension(3,3),intent(in) :: m
|
||||||
|
real*8 intent(out) :: ew1
|
||||||
|
real*8 intent(out) :: ew2
|
||||||
|
real*8 intent(out) :: ew3
|
||||||
|
real*8 dimension(3,3),intent(out) :: eb1
|
||||||
|
real*8 dimension(3,3),intent(out) :: eb2
|
||||||
|
real*8 dimension(3,3),intent(out) :: eb3
|
||||||
|
end subroutine math_spectral1
|
||||||
|
end module math
|
||||||
subroutine mesh(res_x,res_y,res_z,geomdim,defgrad_av,centroids,nodes) ! in :postprocessingMath:postprocessingMath.f90
|
subroutine mesh(res_x,res_y,res_z,geomdim,defgrad_av,centroids,nodes) ! in :postprocessingMath:postprocessingMath.f90
|
||||||
integer intent(in) :: res_x
|
integer intent(in) :: res_x
|
||||||
integer intent(in) :: res_y
|
integer intent(in) :: res_y
|
||||||
|
@ -35,8 +79,16 @@ python module postprocessingMath ! in
|
||||||
complex*16 dimension(res_x/2+1,res_y,res_z,3),depend(res_x,res_y,res_z) :: coords_fft
|
complex*16 dimension(res_x/2+1,res_y,res_z,3),depend(res_x,res_y,res_z) :: coords_fft
|
||||||
real*8 dimension(res_x,res_y,res_z,3,3),intent(in),depend(res_x,res_y,res_z) :: defgrad
|
real*8 dimension(res_x,res_y,res_z,3,3),intent(in),depend(res_x,res_y,res_z) :: defgrad
|
||||||
complex*16 dimension(res_x,res_y,res_z,3,3),depend(res_x,res_y,res_z) :: defgrad_fft
|
complex*16 dimension(res_x,res_y,res_z,3,3),depend(res_x,res_y,res_z) :: defgrad_fft
|
||||||
real*8 dimension(res_x/2+1,res_y,res_z,3),depend(res_x,res_y,res_z) :: waves
|
complex*16 dimension(res_x/2+1,res_y,res_z,3),depend(res_x,res_y,res_z) :: integrator
|
||||||
end subroutine deformed_fft
|
end subroutine deformed_fft
|
||||||
|
subroutine inverse_reconstruction(res_x,res_y,res_z,reference_configuration,current_configuration,defgrad) ! in :postprocessingMath:postprocessingMath.f90
|
||||||
|
integer intent(in) :: res_x
|
||||||
|
integer intent(in) :: res_y
|
||||||
|
integer intent(in) :: res_z
|
||||||
|
real*8 dimension(res_x+1,res_y+1,res_z+1,3),intent(in),depend(res_x,res_y,res_z) :: reference_configuration
|
||||||
|
real*8 dimension(res_x+1,res_y+1,res_z+1,3),intent(in),depend(res_x,res_y,res_z) :: current_configuration
|
||||||
|
real*8 dimension(res_x,res_y,res_z,3,3),intent(out),depend(res_x,res_y,res_z) :: defgrad
|
||||||
|
end subroutine inverse_reconstruction
|
||||||
subroutine tensor_avg(res_x,res_y,res_z,tensor,avg) ! in :postprocessingMath:postprocessingMath.f90
|
subroutine tensor_avg(res_x,res_y,res_z,tensor,avg) ! in :postprocessingMath:postprocessingMath.f90
|
||||||
integer intent(in) :: res_x
|
integer intent(in) :: res_x
|
||||||
integer intent(in) :: res_y
|
integer intent(in) :: res_y
|
||||||
|
|
|
@ -6,7 +6,7 @@
|
||||||
# computed using the FEM solvers. Until now, its capable to handle elements with one IP in a regular order
|
# computed using the FEM solvers. Until now, its capable to handle elements with one IP in a regular order
|
||||||
# written by M. Diehl, m.diehl@mpie.de
|
# written by M. Diehl, m.diehl@mpie.de
|
||||||
|
|
||||||
import os,sys,re,array,struct,numpy, time, postprocessingMath
|
import os,sys,re,array,struct,numpy, time, postprocessingMath, math
|
||||||
|
|
||||||
class vector:
|
class vector:
|
||||||
x,y,z = [None,None,None]
|
x,y,z = [None,None,None]
|
||||||
|
@ -306,7 +306,7 @@ print 'Post Processing for Material subroutine for BVP solution using spectral m
|
||||||
print '*********************************************************************************\n'
|
print '*********************************************************************************\n'
|
||||||
|
|
||||||
#reading in the header of the results file
|
#reading in the header of the results file
|
||||||
name = 'dipl10'
|
name = 'dipl32_shear'
|
||||||
p = MPIEspectral_result(name+'.spectralOut')
|
p = MPIEspectral_result(name+'.spectralOut')
|
||||||
p.extrapolation('')
|
p.extrapolation('')
|
||||||
print p
|
print p
|
||||||
|
@ -317,37 +317,50 @@ res_x=p.resolution[0]
|
||||||
res_y=p.resolution[1]
|
res_y=p.resolution[1]
|
||||||
res_z=p.resolution[2]
|
res_z=p.resolution[2]
|
||||||
|
|
||||||
# for i in range(1,3):
|
|
||||||
# print('new step')
|
|
||||||
# c_pos = p.dataOffset + i*(p.N_element_scalars*8*p.N_elements + 8) #8 accounts for header&footer
|
|
||||||
# for j in range(p.N_element_scalars):
|
|
||||||
# #def readScalar(resolution,file,distance,startingPosition,offset):
|
|
||||||
# #currentPosition = startingPosition+offset*8+4 - distance*8 # we add distance later on
|
|
||||||
# #field = numpy.zeros([resolution[0],resolution[1],resolution[2]], 'd')
|
|
||||||
# #for z in range(0,resolution[2]):
|
|
||||||
# #for y in range(0,resolution[1]):
|
|
||||||
# #for x in range(0,resolution[0]):
|
|
||||||
# currentPosition = c_pos + j*8 +4
|
|
||||||
# p.file.seek(currentPosition)
|
|
||||||
# print(struct.unpack('d',p.file.read(8)))
|
|
||||||
|
|
||||||
|
|
||||||
ms=numpy.zeros([res_x,res_y,res_z,3], 'd')
|
ms=numpy.zeros([res_x,res_y,res_z,3], 'd')
|
||||||
for i in range(249,250):
|
print 'data structure'
|
||||||
|
for i in range(p.N_element_scalars):
|
||||||
|
c_pos = p.dataOffset + i*8.0 + 4.0
|
||||||
|
p.file.seek(c_pos)
|
||||||
|
print(i, struct.unpack('d',p.file.read(8)))
|
||||||
|
for i in range(1,2):
|
||||||
c_pos = p.dataOffset + i*(p.N_element_scalars*8*p.N_elements + 8) #8 accounts for header&footer
|
c_pos = p.dataOffset + i*(p.N_element_scalars*8*p.N_elements + 8) #8 accounts for header&footer
|
||||||
defgrad = readTensor(p.resolution,p.file,p.N_element_scalars,c_pos,16)
|
defgrad = readTensor(p.resolution,p.file,p.N_element_scalars,c_pos,7)
|
||||||
logstrain = postprocessingMath.logstrain_mat(res_x,res_y,res_z,defgrad)
|
defgrad_av = postprocessingMath.tensor_avg(res_x,res_y,res_z,defgrad)
|
||||||
logstrain2 = postprocessingMath.logstrain_spat(res_x,res_y,res_z,defgrad)
|
centroids_coord = postprocessingMath.deformed(res_x,res_y,res_z,p.dimension,defgrad,defgrad_av)
|
||||||
p_stress = readTensor(p.resolution,p.file,p.N_element_scalars,c_pos,58)
|
undeformed = postprocessingMath.mesh(p.resolution[0],p.resolution[1],p.resolution[2],p.dimension,defgrad_av,centroids_coord)
|
||||||
c_stress = postprocessingMath.calculate_cauchy(res_x,res_y,res_z,defgrad,p_stress)
|
#writeVtkAscii(name+'-mesh-undeformed.vtk',undeformed,defgrad[:,:,:,1,2],p.resolution)
|
||||||
vm = postprocessingMath.calculate_mises(res_x,res_y,res_z,c_stress)
|
|
||||||
|
for i in range(240,241):
|
||||||
|
c_pos = p.dataOffset + i*(p.N_element_scalars*8*p.N_elements + 8) #8 accounts for header&footer
|
||||||
|
defgrad = readTensor(p.resolution,p.file,p.N_element_scalars,c_pos,7)
|
||||||
|
defgrad_av = postprocessingMath.tensor_avg(res_x,res_y,res_z,defgrad)
|
||||||
|
#defgrad = numpy.zeros([p.resolution[0],p.resolution[1],p.resolution[2],3,3], 'd')
|
||||||
|
#for z in range(p.resolution[2]):
|
||||||
|
# defgrad[:,:,z,1,2] = (2.0*z)/(p.resolution[2]-1.0)+ 3.8*math.sin(z*20.0/(p.resolution[2]-1.0)*2*math.pi)
|
||||||
|
# defgrad[:,:,z,0,2] = (2.0*z)/(p.resolution[2]-1.0)+ 5.0*math.cos(z/(p.resolution[2]-1.0)*2*math.pi)
|
||||||
|
#defgrad[:,:,:,0,0] = 1.0
|
||||||
|
#defgrad[:,:,:,1,1] = 1.0
|
||||||
|
#defgrad[:,:,:,2,2] = 1.0
|
||||||
|
#logstrain = postprocessingMath.logstrain_mat(res_x,res_y,res_z,defgrad)
|
||||||
|
#logstrain2 = postprocessingMath.logstrain_spat(res_x,res_y,res_z,defgrad)
|
||||||
|
#p_stress = readTensor(p.resolution,p.file,p.N_element_scalars,c_pos,52)
|
||||||
|
#c_stress = postprocessingMath.calculate_cauchy(res_x,res_y,res_z,defgrad,p_stress)
|
||||||
|
#vm = postprocessingMath.calculate_mises(res_x,res_y,res_z,c_stress)
|
||||||
|
#defgrad_av = postprocessingMath.tensor_avg(res_x,res_y,res_z,defgrad)
|
||||||
|
#subroutine inverse_reconstruction(res_x,res_y,res_z,reference_configuration,current_configuration,defgrad)
|
||||||
|
centroids_coord = postprocessingMath.deformed(res_x,res_y,res_z,p.dimension,defgrad,defgrad_av)
|
||||||
|
deformed = postprocessingMath.mesh(p.resolution[0],p.resolution[1],p.resolution[2],p.dimension,defgrad_av,centroids_coord)
|
||||||
|
#writeVtkAscii(name+'-mesh-deformed.vtk',deformed,defgrad[:,:,:,1,2],p.resolution)
|
||||||
|
defgrad = postprocessingMath.inverse_reconstruction(res_x,res_y,res_z,undeformed,deformed)
|
||||||
defgrad_av = postprocessingMath.tensor_avg(res_x,res_y,res_z,defgrad)
|
defgrad_av = postprocessingMath.tensor_avg(res_x,res_y,res_z,defgrad)
|
||||||
centroids_coord = postprocessingMath.deformed(res_x,res_y,res_z,p.dimension,defgrad,defgrad_av)
|
centroids_coord = postprocessingMath.deformed(res_x,res_y,res_z,p.dimension,defgrad,defgrad_av)
|
||||||
centroids_coord2 = postprocessingMath.deformed_fft(res_x,res_y,res_z,p.dimension,defgrad,defgrad_av,1.0)
|
centroids_coord2 = postprocessingMath.deformed_fft(res_x,res_y,res_z,p.dimension,defgrad,defgrad_av,1.0)
|
||||||
ms = postprocessingMath.mesh(p.resolution[0],p.resolution[1],p.resolution[2],p.dimension,defgrad_av,centroids_coord)
|
ms = postprocessingMath.mesh(p.resolution[0],p.resolution[1],p.resolution[2],p.dimension,defgrad_av,centroids_coord)
|
||||||
ms2 = postprocessingMath.mesh(p.resolution[0],p.resolution[1],p.resolution[2],p.dimension,defgrad_av,centroids_coord2)
|
ms2 = postprocessingMath.mesh(p.resolution[0],p.resolution[1],p.resolution[2],p.dimension,defgrad_av,centroids_coord2)
|
||||||
writeVtkAscii(name+'-mesh-usual-%s.vtk'%i,ms,logstrain[:,:,:,1,2],p.resolution)
|
writeVtkAscii(name+'-mesh-usual-%s.vtk'%i,ms,defgrad[:,:,:,1,2],p.resolution)
|
||||||
writeVtkAscii(name+'-mesh-fft-%s.vtk'%i,ms2,logstrain[:,:,:,1,2],p.resolution)
|
writeVtkAscii(name+'-mesh-fft-%s.vtk'%i,ms2,defgrad[:,:,:,1,2],p.resolution)
|
||||||
#writeVtkAsciidefgrad_av(name+'-box-%i.vtk'%i,p.dimension,defgrad_av)
|
#writeVtkAsciidefgrad_av(name+'-box-%i.vtk'%i,p.dimension,defgrad_av)
|
||||||
#writeVtkAsciiDots(name+'-points-%i.vtk'%i,centroids_coord,grain,p.resolution)
|
#writeVtkAsciiDots(name+'-points-%i.vtk'%i,centroids_coord,grain,p.resolution)
|
||||||
sys.stdout.flush()
|
sys.stdout.flush()
|
||||||
|
|
Loading…
Reference in New Issue