forestprojection can be calculated centrally

This commit is contained in:
Martin Diehl 2018-12-11 23:00:56 +01:00
parent ef23095332
commit c29240c1c8
2 changed files with 141 additions and 110 deletions

View File

@ -865,6 +865,7 @@ module lattice
lattice_interaction_SlipTwin, &
lattice_interaction_SlipTrans, &
lattice_interaction_TwinSlip, &
lattice_forestProjection, &
lattice_characteristicShear_Twin, &
lattice_C66_twin
@ -1065,85 +1066,7 @@ end subroutine lattice_init
!--------------------------------------------------------------------------------------------------
!> @brief xxx
!--------------------------------------------------------------------------------------------------
subroutine lattice_Trans(Q,S,Ntrans,cOverA,a_fcc,a_bcc)
use math, only: &
math_crossproduct, &
math_tensorproduct33, &
math_mul33x33, &
math_mul33x3, &
math_axisAngleToR, &
INRAD, &
MATH_I3
use IO, only: &
IO_error
implicit none
integer(pInt), dimension(:), intent(in) :: &
Ntrans
real(pReal), dimension(3,3,sum(Ntrans)), intent(out) :: &
S, Q
real(pReal), intent(in), optional :: &
cOverA, &
a_fcc, &
a_bcc
real(pReal), dimension(3,3) :: &
R, &
U, & ! Bain deformation
B, &
ss, sd
real(pReal), dimension(3) :: &
x, y, z
integer(pInt) :: &
i
if (size(Ntrans) < 1_pInt .or. size(Ntrans) > 1_pInt) print*, 'mist'
if (present(a_fcc) .and. present(a_bcc)) then ! fcc -> bcc transformation
if ( a_fcc <= 0.0_pReal .or. a_bcc <= 0.0_pReal) print*, 'mist'
do i = 1_pInt,sum(Ntrans)
R = math_axisAngleToR(lattice_fccTobcc_systemTrans(1:3,i), & ! Pitsch rotation
lattice_fccTobcc_systemTrans(4,i)*INRAD)
B = math_axisAngleToR(lattice_fccTobcc_bainRot(1:3,i), & ! Rotation of fcc to Bain coordinate system
lattice_fccTobcc_bainRot(4,i)*INRAD)
x = real(LATTICE_fccTobcc_bainVariant(1:3,i),pReal)
y = real(LATTICE_fccTobcc_bainVariant(4:6,i),pReal)
z = real(LATTICE_fccTobcc_bainVariant(7:9,i),pReal)
U = (a_bcc/a_fcc)*math_tensorproduct33(x,x) &
+ (a_bcc/a_fcc)*math_tensorproduct33(y,y) * sqrt(2.0_pReal) &
+ (a_bcc/a_fcc)*math_tensorproduct33(z,z) * sqrt(2.0_pReal)
Q(1:3,1:3,i) = math_mul33x33(R,B)
S(1:3,1:3,i) = math_mul33x33(R,U) - MATH_I3
enddo
elseif (present(cOverA)) then
ss = MATH_I3
sd = MATH_I3
ss(1,3) = sqrt(2.0_pReal)/4.0_pReal
if (cOverA > 1.0_pReal .and. cOverA < 2.0_pReal) &
sd(3,3) = cOverA/sqrt(8.0_pReal/3.0_pReal)
do i = 1_pInt,sum(Ntrans)
x = lattice_fccTohex_systemTrans(1:3,i)/norm2(lattice_fccTohex_systemTrans(1:3,i))
z = lattice_fccTohex_systemTrans(4:6,i)/norm2(lattice_fccTohex_systemTrans(4:6,i))
y = -math_crossproduct(x,z)
Q(1:3,1,i) = x
Q(1:3,2,i) = y
Q(1:3,3,i) = z
S(1:3,1:3,i) = math_mul33x33(Q(1:3,1:3,i), math_mul33x33(math_mul33x33(sd,ss), transpose(Q(1:3,1:3,i)))) - MATH_I3
enddo
endif
end subroutine lattice_Trans
!--------------------------------------------------------------------------------------------------
!> @brief Calculation of Schmid matrices, etc.
!> @brief !!!!!!!DEPRECTATED!!!!!!
!--------------------------------------------------------------------------------------------------
subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
use prec, only: &
@ -1385,7 +1308,7 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
lattice_interactionSlipSlip(1:myNslip,1:myNslip,myPhase) = lattice_hex_interactionSlipSlip
lattice_Scleavage(1:3,1:3,1:3,1:myNcleavage,myPhase) = &
lattice_SchmidMatrix_cleavage(lattice_fcc_ncleavagesystem,'hex',covera)
lattice_SchmidMatrix_cleavage(lattice_hex_ncleavagesystem,'hex',covera)
do i = 1_pInt,myNslip ! assign slip system vectors
sd(1,i) = lattice_hex_systemSlip(1,i)*1.5_pReal ! direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(c/a)]
@ -1453,8 +1376,6 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
lattice_Sslip_v(1:6,j,i,myPhase) = &
math_Mandel33to6(math_symmetric33(lattice_Sslip(1:3,1:3,j,i,myPhase)))
enddo
if (abs(math_trace33(lattice_Sslip(1:3,1:3,1,i,myPhase))) > tol_math_check) &
call IO_error(0_pInt,myPhase,i,0_pInt,ext_msg = 'dilatational slip Schmid matrix')
enddo
do i = 1_pInt,myNtrans
lattice_Qtrans(1:3,1:3,i,myPhase) = Qtr(1:3,1:3,i)
@ -1852,7 +1773,8 @@ end function lattice_C66_twin
!> ToDo: Completely untested and incomplete
!--------------------------------------------------------------------------------------------------
function lattice_C66_trans(Ntrans,C_parent66,structure_parent, &
C_target66,structure_target)
C_target66,structure_target, &
CoverA_trans,a_bcc,a_fcc)
use prec, only: &
tol_math_check
use IO, only: &
@ -1910,7 +1832,7 @@ function lattice_C66_trans(Ntrans,C_parent66,structure_parent, &
if (abs(C_target_unrotated66(i,i))<tol_math_check) &
call IO_error(135_pInt,el=i,ext_msg='matrix diagonal "el"ement in transformation')
enddo
lattice_C66_trans = 0.0_pReal
do i = 1, sum(Ntrans)
! R = math_axisAngleToR(coordinateSystem(1:3,2,i), 180.0_pReal * INRAD) ! ToDo: Why always 180 deg?
! lattice_C66_trans(1:6,1:6,i) = math_Mandel3333to66(math_rotate_forward3333(math_Mandel66to3333(C66),R))
@ -2464,8 +2386,8 @@ function lattice_SchmidMatrix_slip(Nslip,structure,cOverA) result(SchmidMatrix)
implicit none
integer(pInt), dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=*), intent(in) :: structure !< lattice structure
real(pReal), dimension(3,3,sum(Nslip)) :: SchmidMatrix
real(pReal), intent(in) :: cOverA
real(pReal), dimension(3,3,sum(Nslip)) :: SchmidMatrix
real(pReal), dimension(3,3,sum(Nslip)) :: coordinateSystem
real(pReal), dimension(:,:), allocatable :: slipSystems
@ -2520,8 +2442,8 @@ function lattice_SchmidMatrix_twin(Ntwin,structure,cOverA) result(SchmidMatrix)
implicit none
integer(pInt), dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
character(len=*), intent(in) :: structure !< lattice structure
real(pReal), dimension(3,3,sum(Ntwin)) :: SchmidMatrix
real(pReal), intent(in) :: cOverA
real(pReal), dimension(3,3,sum(Ntwin)) :: SchmidMatrix
real(pReal), dimension(3,3,sum(Ntwin)) :: coordinateSystem
real(pReal), dimension(:,:), allocatable :: twinSystems
@ -2562,19 +2484,16 @@ end function lattice_SchmidMatrix_twin
!> @brief Calculates Schmid matrix for active cleavage systems
!--------------------------------------------------------------------------------------------------
function lattice_SchmidMatrix_cleavage(Ncleavage,structure,cOverA) result(SchmidMatrix)
use prec, only: &
tol_math_check
use math, only: &
math_tensorproduct33
use IO, only: &
IO_error
use math, only: &
math_trace33, &
math_tensorproduct33
implicit none
integer(pInt), dimension(:), intent(in) :: Ncleavage !< number of active cleavage systems per family
character(len=*), intent(in) :: structure !< lattice structure
real(pReal), dimension(3,3,3,sum(Ncleavage)) :: SchmidMatrix
real(pReal), intent(in) :: cOverA
real(pReal), dimension(3,3,3,sum(Ncleavage)) :: SchmidMatrix
real(pReal), dimension(3,3,sum(Ncleavage)) :: coordinateSystem
real(pReal), dimension(:,:), allocatable :: cleavageSystems
@ -2617,6 +2536,57 @@ function lattice_SchmidMatrix_cleavage(Ncleavage,structure,cOverA) result(Schmid
end function lattice_SchmidMatrix_cleavage
!--------------------------------------------------------------------------------------------------
!> @brief Calculates forest projection (for edge dislocations)
!--------------------------------------------------------------------------------------------------
function lattice_forestProjection(Nslip,structure,cOverA) result(projection)
use math, only: &
math_mul3x3
use IO, only: &
IO_error
implicit none
integer(pInt), dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=*), intent(in) :: structure !< lattice structure
real(pReal), intent(in) :: cOverA
real(pReal), dimension(sum(Nslip),sum(Nslip)) :: projection
real(pReal), dimension(3,3,sum(Nslip)) :: coordinateSystem
real(pReal), dimension(:,:), allocatable :: slipSystems
integer(pInt), dimension(:), allocatable :: NslipMax
integer(pInt) :: i, j
select case(structure)
case('fcc')
NslipMax = LATTICE_FCC_NSLIPSYSTEM
slipSystems = LATTICE_FCC_SYSTEMSLIP
case('bcc')
NslipMax = LATTICE_BCC_NSLIPSYSTEM
slipSystems = LATTICE_BCC_SYSTEMSLIP
case('hex','hexagonal') ! ToDo: "No alias policy": long or short?
NslipMax = LATTICE_HEX_NSLIPSYSTEM
slipSystems = LATTICE_HEX_SYSTEMSLIP
case('bct')
NslipMax = LATTICE_BCT_NSLIPSYSTEM
slipSystems = LATTICE_BCT_SYSTEMSLIP
case default
call IO_error(130_pInt,ext_msg=trim(structure)//' (lattice_forrestProjection)')
end select
if (any(NslipMax(1:size(Nslip)) - Nslip < 0_pInt)) &
call IO_error(145_pInt,ext_msg='Nslip '//trim(structure))
if (any(Nslip < 0_pInt)) &
call IO_error(144_pInt,ext_msg='Nslip '//trim(structure))
coordinateSystem = buildCoordinateSystem(Nslip,NslipMax,slipSystems,structure,cOverA)
do i=1_pInt, sum(Nslip); do j=1_pInt, sum(Nslip)
projection(i,j) = abs(math_mul3x3(coordinateSystem(1:3,2,i),coordinateSystem(1:3,3,j)))
enddo; enddo
end function lattice_forestProjection
!--------------------------------------------------------------------------------------------------
!> @brief Populates reduced interaction matrix
!--------------------------------------------------------------------------------------------------
@ -2714,11 +2684,86 @@ function buildCoordinateSystem(active,maximum,system,structure,cOverA)
buildCoordinateSystem(1:3,1,i) = direction/norm2(direction)
buildCoordinateSystem(1:3,2,i) = normal/norm2(normal)
buildCoordinateSystem(1:3,3,i) = math_crossproduct(direction,normal)
buildCoordinateSystem(1:3,3,i) = math_crossproduct(buildCoordinateSystem(1:3,1,i),&
buildCoordinateSystem(1:3,2,i))
enddo activeSystems
enddo activeFamilies
end function buildCoordinateSystem
!--------------------------------------------------------------------------------------------------
!> @brief xxx
!--------------------------------------------------------------------------------------------------
subroutine lattice_Trans(Q,S,Ntrans,cOverA,a_fcc,a_bcc)
use math, only: &
math_crossproduct, &
math_tensorproduct33, &
math_mul33x33, &
math_mul33x3, &
math_axisAngleToR, &
INRAD, &
MATH_I3
use IO, only: &
IO_error
implicit none
integer(pInt), dimension(:), intent(in) :: &
Ntrans
real(pReal), dimension(3,3,sum(Ntrans)), intent(out) :: &
S, Q
real(pReal), intent(in), optional :: &
cOverA, &
a_fcc, &
a_bcc
real(pReal), dimension(3,3) :: &
R, &
U, & ! Bain deformation
B, &
ss, sd
real(pReal), dimension(3) :: &
x, y, z
integer(pInt) :: &
i
if (size(Ntrans) < 1_pInt .or. size(Ntrans) > 1_pInt) print*, 'mist'
if (present(a_fcc) .and. present(a_bcc)) then ! fcc -> bcc transformation
if ( a_fcc <= 0.0_pReal .or. a_bcc <= 0.0_pReal) print*, 'mist'
do i = 1_pInt,sum(Ntrans)
R = math_axisAngleToR(lattice_fccTobcc_systemTrans(1:3,i), & ! Pitsch rotation
lattice_fccTobcc_systemTrans(4,i)*INRAD)
B = math_axisAngleToR(lattice_fccTobcc_bainRot(1:3,i), & ! Rotation of fcc to Bain coordinate system
lattice_fccTobcc_bainRot(4,i)*INRAD)
x = real(LATTICE_fccTobcc_bainVariant(1:3,i),pReal)
y = real(LATTICE_fccTobcc_bainVariant(4:6,i),pReal)
z = real(LATTICE_fccTobcc_bainVariant(7:9,i),pReal)
U = (a_bcc/a_fcc)*math_tensorproduct33(x,x) &
+ (a_bcc/a_fcc)*math_tensorproduct33(y,y) * sqrt(2.0_pReal) &
+ (a_bcc/a_fcc)*math_tensorproduct33(z,z) * sqrt(2.0_pReal)
Q(1:3,1:3,i) = math_mul33x33(R,B)
S(1:3,1:3,i) = math_mul33x33(R,U) - MATH_I3
enddo
elseif (present(cOverA)) then
ss = MATH_I3
sd = MATH_I3
ss(1,3) = sqrt(2.0_pReal)/4.0_pReal
if (cOverA > 1.0_pReal .and. cOverA < 2.0_pReal) &
sd(3,3) = cOverA/sqrt(8.0_pReal/3.0_pReal)
do i = 1_pInt,sum(Ntrans)
x = lattice_fccTohex_systemTrans(1:3,i)/norm2(lattice_fccTohex_systemTrans(1:3,i))
z = lattice_fccTohex_systemTrans(4:6,i)/norm2(lattice_fccTohex_systemTrans(4:6,i))
y = -math_crossproduct(x,z)
Q(1:3,1,i) = x
Q(1:3,2,i) = y
Q(1:3,3,i) = z
S(1:3,1:3,i) = math_mul33x33(Q(1:3,1:3,i), math_mul33x33(math_mul33x33(sd,ss), transpose(Q(1:3,1:3,i)))) - MATH_I3
enddo
endif
end subroutine lattice_Trans
end module lattice

View File

@ -302,9 +302,11 @@ subroutine plastic_dislotwin_init
if(prm%fccTwinTransNucleation) &
prm%fcc_twinNucleationSlipPair = lattice_fcc_twinNucleationSlipPair
prm%Schmid_slip = lattice_SchmidMatrix_slip(prm%Nslip,structure(1:3),&
config_phase(p)%getFloat('c/a',defaultVal=0.0_pReal))
prm%forestProjectionEdge= lattice_forestProjection (prm%Nslip,structure(1:3),&
config_phase(p)%getFloat('c/a',defaultVal=0.0_pReal))
prm%interaction_SlipSlip = lattice_interaction_SlipSlip(prm%Nslip, &
config_phase(p)%getFloats('interaction_slipslip'), &
structure(1:3))
@ -606,22 +608,6 @@ subroutine plastic_dislotwin_init
! DEPRECATED BEGIN
allocate(prm%forestProjectionEdge(prm%totalNslip,prm%totalNslip),source = 0.0_pReal)
i = 0_pInt
mySlipFamilies: do f = 1_pInt,size(prm%Nslip,1)
index_myFamily = sum(prm%Nslip(1:f-1_pInt))
slipSystemsLoop: do j = 1_pInt,prm%Nslip(f)
i = i + 1_pInt
do o = 1_pInt, size(prm%Nslip,1)
index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
do k = 1_pInt,prm%Nslip(o) ! loop over (active) systems in other family (slip)
prm%forestProjectionEdge(index_myFamily+j,index_otherFamily+k) = &
abs(math_mul3x3(lattice_sn(:,sum(lattice_NslipSystem(1:f-1,p))+j,p), &
lattice_st(:,sum(lattice_NslipSystem(1:o-1,p))+k,p)))
enddo; enddo
enddo slipSystemsLoop
enddo mySlipFamilies
allocate(prm%C66_trans(6,6,prm%totalNtrans) ,source=0.0_pReal)
allocate(prm%Schmid_trans(3,3,prm%totalNtrans),source = 0.0_pReal)
i = 0_pInt