introduced non schmid tensor calculation in dot state, also not active yet
This commit is contained in:
parent
c66fc95dda
commit
c2799585d9
|
@ -1206,7 +1206,8 @@ subroutine constitutive_dislokmc_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperatu
|
|||
dLp_dTstar3333 = 0.0_pReal
|
||||
dLp_dTstar = 0.0_pReal
|
||||
|
||||
!* Dislocation glide part
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Dislocation glide part
|
||||
gdot_slip_pos = 0.0_pReal
|
||||
gdot_slip_neg = 0.0_pReal
|
||||
dgdot_dtauslip_pos = 0.0_pReal
|
||||
|
@ -1297,8 +1298,8 @@ subroutine constitutive_dislokmc_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperatu
|
|||
enddo slipSystems
|
||||
enddo slipFamilies
|
||||
|
||||
|
||||
!* Mechanical twinning part
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Mechanical twinning part
|
||||
gdot_twin = 0.0_pReal
|
||||
dgdot_dtautwin = 0.0_pReal
|
||||
j = 0_pInt
|
||||
|
@ -1421,7 +1422,7 @@ subroutine constitutive_dislokmc_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
DotRhoEdgeDipClimb, &
|
||||
DotRhoDipFormation
|
||||
real(pReal), dimension(constitutive_dislokmc_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
gdot_slip_pos
|
||||
gdot_slip_pos, tau_slip_neg
|
||||
real(pReal), dimension(constitutive_dislokmc_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
tau_twin
|
||||
|
||||
|
@ -1439,104 +1440,118 @@ subroutine constitutive_dislokmc_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Dislocation density evolution
|
||||
gdot_slip_pos = 0.0_pReal
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,lattice_maxNslipFamily
|
||||
slipFamilies: do f = 1_pInt,lattice_maxNslipFamily
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_dislokmc_Nslip(f,instance) ! process each (active) slip system in family
|
||||
j = j+1_pInt
|
||||
slipSystems: do i = 1_pInt,constitutive_dislokmc_Nslip(f,instance)
|
||||
j = j+1_pInt
|
||||
|
||||
tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
||||
tau_slip_neg = tau_slip_pos
|
||||
nonSchmid_tensor(1:3,1:3,1) = lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph)
|
||||
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1)
|
||||
|
||||
!* Resolved shear stress on slip system
|
||||
tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
nonSchmidSystems: do k = 1,lattice_NnonSchmid(ph)
|
||||
tau_slip_pos = tau_slip_pos + constitutive_dislokmc_nonSchmidCoeff(k,instance)* &
|
||||
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph))
|
||||
tau_slip_neg = tau_slip_neg + constitutive_dislokmc_nonSchmidCoeff(k,instance)* &
|
||||
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
|
||||
nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + constitutive_dislokmc_nonSchmidCoeff(k,instance)*&
|
||||
lattice_Sslip(1:3,1:3,2*k,index_myFamily+i,ph)
|
||||
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + constitutive_dislokmc_nonSchmidCoeff(k,instance)*&
|
||||
lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,ph)
|
||||
enddo nonSchmidSystems
|
||||
|
||||
if((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
||||
(constitutive_dislokmc_SolidSolutionStrength(instance)+constitutive_dislokmc_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislokmc_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
||||
(constitutive_dislokmc_SolidSolutionStrength(instance)+constitutive_dislokmc_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislokmc_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
||||
StressRatio_u = ((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
||||
(constitutive_dislokmc_SolidSolutionStrength(instance)+constitutive_dislokmc_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislokmc_uPerSlipFamily(f,instance)
|
||||
StressRatio_uminus1 = ((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j,of))/&
|
||||
(constitutive_dislokmc_SolidSolutionStrength(instance)+constitutive_dislokmc_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislokmc_uPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
||||
!* Boltzmann ratio
|
||||
BoltzmannRatio = constitutive_dislokmc_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
!* Boltzmann ratio
|
||||
BoltzmannRatio = constitutive_dislokmc_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
plasticState(ph)%state(j, of)*constitutive_dislokmc_burgersPerSlipSystem(j,instance)*&
|
||||
constitutive_dislokmc_v0PerSlipSystem(j,instance)
|
||||
|
||||
significantPostitiveSlip: if((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
||||
(constitutive_dislokmc_SolidSolutionStrength(instance)+constitutive_dislokmc_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislokmc_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
||||
(constitutive_dislokmc_SolidSolutionStrength(instance)+constitutive_dislokmc_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislokmc_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
||||
StressRatio_u = ((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
||||
(constitutive_dislokmc_SolidSolutionStrength(instance)+constitutive_dislokmc_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislokmc_uPerSlipFamily(f,instance)
|
||||
StressRatio_uminus1 = ((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j,of))/&
|
||||
(constitutive_dislokmc_SolidSolutionStrength(instance)+constitutive_dislokmc_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislokmc_uPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
||||
|
||||
!* Shear rates due to slip
|
||||
gdot_slip_pos(j) = DotGamma0*exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p)** &
|
||||
gdot_slip_pos(j) = DotGamma0*exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p)** &
|
||||
constitutive_dislokmc_qPerSlipFamily(f,instance))*sign(1.0_pReal,tau_slip_pos) &
|
||||
* (1.0_pReal-constitutive_dislokmc_sPerSlipFamily(f,instance) &
|
||||
* exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p) ** constitutive_dislokmc_qPerSlipFamily(f,instance))) &
|
||||
* StressRatio_u
|
||||
endif
|
||||
endif significantPostitiveSlip
|
||||
|
||||
!* Multiplication
|
||||
DotRhoMultiplication = abs(gdot_slip_pos(j))/&
|
||||
(constitutive_dislokmc_burgersPerSlipSystem(j,instance)* &
|
||||
!* Multiplication
|
||||
DotRhoMultiplication = abs(gdot_slip_pos(j))/&
|
||||
(constitutive_dislokmc_burgersPerSlipSystem(j,instance)* &
|
||||
plasticState(ph)%state(5*ns+3*nt+j, of))
|
||||
|
||||
!* Dipole formation
|
||||
EdgeDipMinDistance = &
|
||||
constitutive_dislokmc_CEdgeDipMinDistance(instance)*constitutive_dislokmc_burgersPerSlipSystem(j,instance)
|
||||
if (tau_slip_pos == 0.0_pReal) then
|
||||
DotRhoDipFormation = 0.0_pReal
|
||||
else
|
||||
EdgeDipDistance = &
|
||||
(3.0_pReal*lattice_mu(ph)*constitutive_dislokmc_burgersPerSlipSystem(j,instance))/&
|
||||
(16.0_pReal*pi*abs(tau_slip_pos))
|
||||
if (EdgeDipDistance>plasticState(ph)%state(5*ns+3*nt+j, of)) EdgeDipDistance=plasticState(ph)%state(5*ns+3*nt+j, of)
|
||||
if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance
|
||||
DotRhoDipFormation = &
|
||||
((2.0_pReal*EdgeDipDistance)/constitutive_dislokmc_burgersPerSlipSystem(j,instance))*&
|
||||
plasticState(ph)%state(j, of)*abs(gdot_slip_pos(j))*constitutive_dislokmc_dipoleFormationFactor(instance)
|
||||
endif
|
||||
!* Dipole formation
|
||||
EdgeDipMinDistance = &
|
||||
constitutive_dislokmc_CEdgeDipMinDistance(instance)*constitutive_dislokmc_burgersPerSlipSystem(j,instance)
|
||||
if (tau_slip_pos == 0.0_pReal) then
|
||||
DotRhoDipFormation = 0.0_pReal
|
||||
else
|
||||
EdgeDipDistance = &
|
||||
(3.0_pReal*lattice_mu(ph)*constitutive_dislokmc_burgersPerSlipSystem(j,instance))/&
|
||||
(16.0_pReal*pi*abs(tau_slip_pos))
|
||||
if (EdgeDipDistance>plasticState(ph)%state(5*ns+3*nt+j, of)) EdgeDipDistance=plasticState(ph)%state(5*ns+3*nt+j, of)
|
||||
if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance
|
||||
DotRhoDipFormation = &
|
||||
((2.0_pReal*EdgeDipDistance)/constitutive_dislokmc_burgersPerSlipSystem(j,instance))*&
|
||||
plasticState(ph)%state(j, of)*abs(gdot_slip_pos(j))*constitutive_dislokmc_dipoleFormationFactor(instance)
|
||||
endif
|
||||
|
||||
!* Spontaneous annihilation of 2 single edge dislocations
|
||||
DotRhoEdgeEdgeAnnihilation = &
|
||||
!* Spontaneous annihilation of 2 single edge dislocations
|
||||
DotRhoEdgeEdgeAnnihilation = &
|
||||
((2.0_pReal*EdgeDipMinDistance)/constitutive_dislokmc_burgersPerSlipSystem(j,instance))*&
|
||||
plasticState(ph)%state(j, of)*abs(gdot_slip_pos(j))
|
||||
|
||||
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
||||
DotRhoEdgeDipAnnihilation = &
|
||||
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
||||
DotRhoEdgeDipAnnihilation = &
|
||||
((2.0_pReal*EdgeDipMinDistance)/constitutive_dislokmc_burgersPerSlipSystem(j,instance))*&
|
||||
plasticState(ph)%state(ns+j, of)*abs(gdot_slip_pos(j))
|
||||
|
||||
!* Dislocation dipole climb
|
||||
AtomicVolume = &
|
||||
AtomicVolume = &
|
||||
constitutive_dislokmc_CAtomicVolume(instance)*constitutive_dislokmc_burgersPerSlipSystem(j,instance)**(3.0_pReal)
|
||||
VacancyDiffusion = &
|
||||
VacancyDiffusion = &
|
||||
constitutive_dislokmc_D0(instance)*exp(-constitutive_dislokmc_Qsd(instance)/(kB*Temperature))
|
||||
if (tau_slip_pos == 0.0_pReal) then
|
||||
DotRhoEdgeDipClimb = 0.0_pReal
|
||||
else
|
||||
ClimbVelocity = &
|
||||
if (tau_slip_pos == 0.0_pReal) then
|
||||
DotRhoEdgeDipClimb = 0.0_pReal
|
||||
else
|
||||
ClimbVelocity = &
|
||||
((3.0_pReal*lattice_mu(ph)*VacancyDiffusion*AtomicVolume)/(2.0_pReal*pi*kB*Temperature))*&
|
||||
(1/(EdgeDipDistance+EdgeDipMinDistance))
|
||||
DotRhoEdgeDipClimb = &
|
||||
DotRhoEdgeDipClimb = &
|
||||
(4.0_pReal*ClimbVelocity*plasticState(ph)%state(ns+j, of))/(EdgeDipDistance-EdgeDipMinDistance)
|
||||
endif
|
||||
endif
|
||||
|
||||
!* Edge dislocation density rate of change
|
||||
plasticState(ph)%dotState(j, of) = &
|
||||
!* Edge dislocation density rate of change
|
||||
plasticState(ph)%dotState(j, of) = &
|
||||
DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||||
|
||||
!* Edge dislocation dipole density rate of change
|
||||
plasticState(ph)%dotState(ns+j, of) = &
|
||||
!* Edge dislocation dipole density rate of change
|
||||
plasticState(ph)%dotState(ns+j, of) = &
|
||||
DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||||
|
||||
!* Dotstate for accumulated shear due to slip
|
||||
plasticState(ph)%dotState(2_pInt*ns+j, of) = gdot_slip_pos(j)
|
||||
!* Dotstate for accumulated shear due to slip
|
||||
plasticState(ph)%dotState(2_pInt*ns+j, of) = gdot_slip_pos(j)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo slipSystems
|
||||
enddo slipFamilies
|
||||
|
||||
!* Twin volume fraction evolution
|
||||
j = 0_pInt
|
||||
|
|
Loading…
Reference in New Issue