replaced all remaining occurrences of state indices
This commit is contained in:
parent
e2d970ce57
commit
c0539d2383
|
@ -46,29 +46,29 @@ CONSTITUTIVE_NONLOCAL_LABEL = 'nonlocal'
|
|||
|
||||
character(len=22), dimension(11), parameter, private :: &
|
||||
BASICSTATES = (/'rhoSglEdgePosMobile ', &
|
||||
'rhoSglEdgeNegMobile ', &
|
||||
'rhoSglScrewPosMobile ', &
|
||||
'rhoSglScrewNegMobile ', &
|
||||
'rhoSglEdgePosImmobile ', &
|
||||
'rhoSglEdgeNegImmobile ', &
|
||||
'rhoSglScrewPosImmobile', &
|
||||
'rhoSglScrewNegImmobile', &
|
||||
'rhoDipEdge ', &
|
||||
'rhoDipScrew ', &
|
||||
'accumulatedshear ' /) !< list of "basic" microstructural state variables that are independent from other state variables
|
||||
'rhoSglEdgeNegMobile ', &
|
||||
'rhoSglScrewPosMobile ', &
|
||||
'rhoSglScrewNegMobile ', &
|
||||
'rhoSglEdgePosImmobile ', &
|
||||
'rhoSglEdgeNegImmobile ', &
|
||||
'rhoSglScrewPosImmobile', &
|
||||
'rhoSglScrewNegImmobile', &
|
||||
'rhoDipEdge ', &
|
||||
'rhoDipScrew ', &
|
||||
'accumulatedshear ' /) !< list of "basic" microstructural state variables that are independent from other state variables
|
||||
|
||||
character(len=16), dimension(3), parameter, private :: &
|
||||
DEPENDENTSTATES = (/'rhoForest ', &
|
||||
'tauThreshold ', &
|
||||
'tauBack ' /) !< list of microstructural state variables that depend on other state variables
|
||||
'tauThreshold ', &
|
||||
'tauBack ' /) !< list of microstructural state variables that depend on other state variables
|
||||
|
||||
character(len=20), dimension(6), parameter, private :: &
|
||||
OTHERSTATES = (/'velocityEdgePos ', &
|
||||
'velocityEdgeNeg ', &
|
||||
'velocityScrewPos ', &
|
||||
'velocityScrewNeg ', &
|
||||
'maxDipoleHeightEdge ', &
|
||||
'maxDipoleHeightScrew' /) !< list of other dependent state variables that are not updated by microstructure
|
||||
'velocityEdgeNeg ', &
|
||||
'velocityScrewPos ', &
|
||||
'velocityScrewNeg ', &
|
||||
'maxDipoleHeightEdge ', &
|
||||
'maxDipoleHeightScrew' /) !< list of other dependent state variables that are not updated by microstructure
|
||||
|
||||
real(pReal), parameter, private :: &
|
||||
KB = 1.38e-23_pReal !< Physical parameter, Boltzmann constant in J/Kelvin
|
||||
|
@ -1422,14 +1422,14 @@ if (.not. phase_localPlasticity(phase) .and. shortRangeStressCorrection(instance
|
|||
nRealNeighbors = nRealNeighbors + 1_pInt
|
||||
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt)
|
||||
neighboring_rhoExcess(c,s,n) = &
|
||||
max(state(gr,neighboring_ip,neighboring_el)%p(iRhoU(s,c,neighboring_instance)), 0.0_pReal) &! positive mobiles
|
||||
- max(state(gr,neighboring_ip,neighboring_el)%p(iRhoU(s,c,neighboring_instance)), 0.0_pReal) ! negative mobiles
|
||||
max(state(gr,neighboring_ip,neighboring_el)%p(iRhoU(s,2*c-1,neighboring_instance)), 0.0_pReal) &! positive mobiles
|
||||
- max(state(gr,neighboring_ip,neighboring_el)%p(iRhoU(s,2*c,neighboring_instance)), 0.0_pReal) ! negative mobiles
|
||||
neighboring_rhoTotal(c,s,n) = &
|
||||
max(state(gr,neighboring_ip,neighboring_el)%p(iRhoU(s,c,neighboring_instance)), 0.0_pReal) &! positive mobiles
|
||||
+ max(state(gr,neighboring_ip,neighboring_el)%p(iRhoU(s,c,neighboring_instance)), 0.0_pReal) &! negative mobiles
|
||||
+ abs(state(gr,neighboring_ip,neighboring_el)%p(iRhoB(s,c,neighboring_instance))) & ! positive deads
|
||||
+ abs(state(gr,neighboring_ip,neighboring_el)%p(iRhoB(s,c,neighboring_instance))) & ! negative deads
|
||||
+ max(state(gr,neighboring_ip,neighboring_el)%p(iRhoD(s,c,neighboring_instance)), 0.0_pReal) ! dipoles
|
||||
max(state(gr,neighboring_ip,neighboring_el)%p(iRhoU(s,2*c-1,neighboring_instance)), 0.0_pReal) &! positive mobiles
|
||||
+ max(state(gr,neighboring_ip,neighboring_el)%p(iRhoU(s,2*c,neighboring_instance)), 0.0_pReal) & ! negative mobiles
|
||||
+ abs(state(gr,neighboring_ip,neighboring_el)%p(iRhoB(s,2*c-1,neighboring_instance))) & ! positive deads
|
||||
+ abs(state(gr,neighboring_ip,neighboring_el)%p(iRhoB(s,2*c,neighboring_instance))) & ! negative deads
|
||||
+ max(state(gr,neighboring_ip,neighboring_el)%p(iRhoD(s,c,neighboring_instance)), 0.0_pReal) ! dipoles
|
||||
endforall
|
||||
connection_latticeConf(1:3,n) = &
|
||||
math_mul33x3(invFe, mesh_ipCoordinates(1:3,neighboring_ip,neighboring_el) &
|
||||
|
@ -2152,13 +2152,14 @@ real(pReal), dimension(constitutive_nonlocal_sizeDotState(phase_plasticityInstan
|
|||
|
||||
!*** local variables
|
||||
integer(pInt) myInstance, & !< current instance of this plasticity
|
||||
neighbor_instance, & !< instance of my neighbor's plasticity
|
||||
myStructure, & !< current lattice structure
|
||||
ns, & !< short notation for the total number of active slip systems
|
||||
c, & !< character of dislocation
|
||||
n, & !< index of my current neighbor
|
||||
neighboring_el, & !< element number of my neighbor
|
||||
neighboring_ip, & !< integration point of my neighbor
|
||||
neighboring_n, & !< neighbor index pointing to me when looking from my neighbor
|
||||
neighbor_el, & !< element number of my neighbor
|
||||
neighbor_ip, & !< integration point of my neighbor
|
||||
neighbor_n, & !< neighbor index pointing to me when looking from my neighbor
|
||||
opposite_neighbor, & !< index of my opposite neighbor
|
||||
opposite_ip, & !< ip of my opposite neighbor
|
||||
opposite_el, & !< element index of my opposite neighbor
|
||||
|
@ -2178,14 +2179,14 @@ real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,e
|
|||
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),8) :: &
|
||||
rhoSgl, & !< current single dislocation densities (positive/negative screw and edge without dipoles)
|
||||
rhoSglOriginal, &
|
||||
neighboring_rhoSgl, & !< current single dislocation densities of neighboring ip (positive/negative screw and edge without dipoles)
|
||||
neighbor_rhoSgl, & !< current single dislocation densities of neighboring ip (positive/negative screw and edge without dipoles)
|
||||
rhoSgl0, & !< single dislocation densities at start of cryst inc (positive/negative screw and edge without dipoles)
|
||||
rhoSglMe !< single dislocation densities of central ip (positive/negative screw and edge without dipoles)
|
||||
my_rhoSgl !< single dislocation densities of central ip (positive/negative screw and edge without dipoles)
|
||||
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),4) :: &
|
||||
v, & !< current dislocation glide velocity
|
||||
v0, & !< dislocation glide velocity at start of cryst inc
|
||||
vMe, & !< dislocation glide velocity of central ip
|
||||
neighboring_v, & !< dislocation glide velocity of enighboring ip
|
||||
my_v, & !< dislocation glide velocity of central ip
|
||||
neighbor_v, & !< dislocation glide velocity of enighboring ip
|
||||
gdot !< shear rates
|
||||
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
|
||||
rhoForest, & !< forest dislocation density
|
||||
|
@ -2202,9 +2203,9 @@ real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,e
|
|||
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),4) :: &
|
||||
m !< direction of dislocation motion
|
||||
real(pReal), dimension(3,3) :: my_F, & !< my total deformation gradient
|
||||
neighboring_F, & !< total deformation gradient of my neighbor
|
||||
neighbor_F, & !< total deformation gradient of my neighbor
|
||||
my_Fe, & !< my elastic deformation gradient
|
||||
neighboring_Fe, & !< elastic deformation gradient of my neighbor
|
||||
neighbor_Fe, & !< elastic deformation gradient of my neighbor
|
||||
Favg !< average total deformation gradient of me and my neighbor
|
||||
real(pReal), dimension(3) :: normal_neighbor2me, & !< interface normal pointing from my neighbor to me in neighbor's lattice configuration
|
||||
normal_neighbor2me_defConf, & !< interface normal pointing from my neighbor to me in shared deformed configuration
|
||||
|
@ -2240,31 +2241,45 @@ gdot = 0.0_pReal
|
|||
|
||||
!*** shortcut to state variables
|
||||
|
||||
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt) &
|
||||
rhoSgl(s,t) = max(state(g,ip,el)%p((t-1_pInt)*ns+s), 0.0_pReal)
|
||||
forall (s = 1_pInt:ns, t = 5_pInt:8_pInt) &
|
||||
rhoSgl(s,t) = state(g,ip,el)%p((t-1_pInt)*ns+s)
|
||||
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
|
||||
rhoDip(s,c) = max(state(g,ip,el)%p((7_pInt+c)*ns+s), 0.0_pReal)
|
||||
rhoForest = state(g,ip,el)%p(11_pInt*ns+1:12_pInt*ns)
|
||||
tauThreshold = state(g,ip,el)%p(12_pInt*ns+1_pInt:13_pInt*ns)
|
||||
tauBack = state(g,ip,el)%p(13_pInt*ns+1:14_pInt*ns)
|
||||
forall (t = 1_pInt:4_pInt) &
|
||||
v(1_pInt:ns,t) = state(g,ip,el)%p((13_pInt+t)*ns+1_pInt:(14_pInt+t)*ns)
|
||||
|
||||
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
|
||||
rhoSgl(s,t) = max(state(g,ip,el)%p(iRhoU(s,t,myInstance)), 0.0_pReal) ! ensure positive single mobile densities
|
||||
rhoSgl(s,t+4_pInt) = state(g,ip,el)%p(iRhoB(s,t,myInstance))
|
||||
v(s,t) = state(g,ip,el)%p(iV(s,t,myInstance))
|
||||
endforall
|
||||
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt)
|
||||
rhoDip(s,c) = max(state(g,ip,el)%p(iRhoD(s,c,myInstance)), 0.0_pReal) ! ensure positive dipole densities
|
||||
endforall
|
||||
rhoForest = state(g,ip,el)%p(iRhoF(1:ns,myInstance))
|
||||
tauThreshold = state(g,ip,el)%p(iTauF(1:ns,myInstance))
|
||||
tauBack = state(g,ip,el)%p(iTauB(1:ns,myInstance))
|
||||
|
||||
rhoSglOriginal = rhoSgl
|
||||
rhoDipOriginal = rhoDip
|
||||
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(myInstance) &
|
||||
.or. abs(rhoSgl) < significantRho(myInstance)) &
|
||||
.or. abs(rhoSgl) < significantRho(myInstance)) &
|
||||
rhoSgl = 0.0_pReal
|
||||
where (abs(rhoDip) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(myInstance) &
|
||||
.or. abs(rhoDip) < significantRho(myInstance)) &
|
||||
.or. abs(rhoDip) < significantRho(myInstance)) &
|
||||
rhoDip = 0.0_pReal
|
||||
|
||||
if (numerics_timeSyncing) then
|
||||
forall (t = 1_pInt:4_pInt)
|
||||
rhoSgl0(1:ns,t) = max(state0(g,ip,el)%p(iRhoU(1:ns,t,myInstance)), 0.0_pReal)
|
||||
rhoSgl0(1:ns,t+4_pInt) = state0(g,ip,el)%p(iRhoB(1:ns,t,myInstance))
|
||||
v0(1:ns,t) = state0(g,ip,el)%p(iV(1:ns,t,myInstance))
|
||||
endforall
|
||||
where (abs(rhoSgl0) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(myInstance) &
|
||||
.or. abs(rhoSgl0) < significantRho(myInstance)) &
|
||||
rhoSgl0 = 0.0_pReal
|
||||
endif
|
||||
|
||||
|
||||
|
||||
!*** sanity check for timestep
|
||||
|
||||
if (timestep <= 0.0_pReal) then ! if illegal timestep...
|
||||
constitutive_nonlocal_dotState = 0.0_pReal ! ...return without doing anything (-> zero dotState)
|
||||
if (timestep <= 0.0_pReal) then ! if illegal timestep...
|
||||
constitutive_nonlocal_dotState = 0.0_pReal ! ...return without doing anything (-> zero dotState)
|
||||
return
|
||||
endif
|
||||
|
||||
|
@ -2359,40 +2374,30 @@ endif
|
|||
|
||||
rhoDotFlux = 0.0_pReal
|
||||
|
||||
if (.not. phase_localPlasticity(material_phase(g,ip,el))) then ! only for nonlocal plasticity
|
||||
if (.not. phase_localPlasticity(material_phase(g,ip,el))) then ! only for nonlocal plasticity
|
||||
|
||||
|
||||
!*** check CFL (Courant-Friedrichs-Lewy) condition for flux
|
||||
|
||||
if (any( abs(gdot) > 0.0_pReal & ! any active slip system ...
|
||||
if (any( abs(gdot) > 0.0_pReal & ! any active slip system ...
|
||||
.and. CFLfactor(myInstance) * abs(v) * timestep &
|
||||
> mesh_ipVolume(ip,el) / maxval(mesh_ipArea(:,ip,el)))) then ! ...with velocity above critical value (we use the reference volume and area for simplicity here)
|
||||
> mesh_ipVolume(ip,el) / maxval(mesh_ipArea(:,ip,el)))) then ! ...with velocity above critical value (we use the reference volume and area for simplicity here)
|
||||
#ifndef _OPENMP
|
||||
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt) then
|
||||
write(6,'(a,i5,a,i2)') '<< CONST >> CFL condition not fullfilled at el ',el,' ip ',ip
|
||||
write(6,'(a,e10.3,a,e10.3)') '<< CONST >> velocity is at ', &
|
||||
maxval(abs(v), abs(gdot) > 0.0_pReal .and. CFLfactor(myInstance) * abs(v) * timestep &
|
||||
> mesh_ipVolume(ip,el) / maxval(mesh_ipArea(:,ip,el))), &
|
||||
' at a timestep of ',timestep
|
||||
maxval(abs(v), abs(gdot) > 0.0_pReal &
|
||||
.and. CFLfactor(myInstance) * abs(v) * timestep &
|
||||
> mesh_ipVolume(ip,el) / maxval(mesh_ipArea(:,ip,el))), &
|
||||
' at a timestep of ',timestep
|
||||
write(6,'(a)') '<< CONST >> enforcing cutback !!!'
|
||||
endif
|
||||
#endif
|
||||
constitutive_nonlocal_dotState = DAMASK_NaN ! -> return NaN and, hence, enforce cutback
|
||||
constitutive_nonlocal_dotState = DAMASK_NaN ! -> return NaN and, hence, enforce cutback
|
||||
return
|
||||
endif
|
||||
|
||||
|
||||
if (numerics_timeSyncing) then
|
||||
forall (t = 1_pInt:4_pInt) &
|
||||
v0(1_pInt:ns,t) = state0(g,ip,el)%p((12_pInt+t)*ns+1_pInt:(13_pInt+t)*ns)
|
||||
forall (t = 1_pInt:8_pInt) &
|
||||
rhoSgl0(1_pInt:ns,t) = state0(g,ip,el)%p((t-1_pInt)*ns+1_pInt:t*ns)
|
||||
where (abs(rhoSgl0) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(myInstance) &
|
||||
.or. abs(rhoSgl0) < significantRho(myInstance)) &
|
||||
rhoSgl0 = 0.0_pReal
|
||||
endif
|
||||
|
||||
|
||||
!*** be aware of the definition of lattice_st = lattice_sd x lattice_sn !!!
|
||||
!*** opposite sign to our p vector in the (s,p,n) triplet !!!
|
||||
|
||||
|
@ -2404,21 +2409,22 @@ if (.not. phase_localPlasticity(material_phase(g,ip,el))) then
|
|||
my_Fe = Fe(1:3,1:3,g,ip,el)
|
||||
my_F = math_mul33x33(my_Fe, Fp(1:3,1:3,g,ip,el))
|
||||
|
||||
do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el)))) ! loop through my neighbors
|
||||
neighboring_el = mesh_ipNeighborhood(1,n,ip,el)
|
||||
neighboring_ip = mesh_ipNeighborhood(2,n,ip,el)
|
||||
neighboring_n = mesh_ipNeighborhood(3,n,ip,el)
|
||||
do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el)))) ! loop through my neighbors
|
||||
neighbor_el = mesh_ipNeighborhood(1,n,ip,el)
|
||||
neighbor_ip = mesh_ipNeighborhood(2,n,ip,el)
|
||||
neighbor_n = mesh_ipNeighborhood(3,n,ip,el)
|
||||
|
||||
opposite_neighbor = n + mod(n,2_pInt) - mod(n+1_pInt,2_pInt)
|
||||
opposite_el = mesh_ipNeighborhood(1,opposite_neighbor,ip,el)
|
||||
opposite_ip = mesh_ipNeighborhood(2,opposite_neighbor,ip,el)
|
||||
opposite_n = mesh_ipNeighborhood(3,opposite_neighbor,ip,el)
|
||||
|
||||
if (neighboring_n > 0_pInt) then ! if neighbor exists, average deformation gradient
|
||||
neighboring_Fe = Fe(1:3,1:3,g,neighboring_ip,neighboring_el)
|
||||
neighboring_F = math_mul33x33(neighboring_Fe, Fp(1:3,1:3,g,neighboring_ip,neighboring_el))
|
||||
Favg = 0.5_pReal * (my_F + neighboring_F)
|
||||
else ! if no neighbor, take my value as average
|
||||
if (neighbor_n > 0_pInt) then ! if neighbor exists, average deformation gradient
|
||||
neighbor_instance = phase_plasticityInstance(material_phase(g,neighbor_ip,neighbor_el))
|
||||
neighbor_Fe = Fe(1:3,1:3,g,neighbor_ip,neighbor_el)
|
||||
neighbor_F = math_mul33x33(neighbor_Fe, Fp(1:3,1:3,g,neighbor_ip,neighbor_el))
|
||||
Favg = 0.5_pReal * (my_F + neighbor_F)
|
||||
else ! if no neighbor, take my value as average
|
||||
Favg = my_F
|
||||
endif
|
||||
|
||||
|
@ -2429,53 +2435,54 @@ if (.not. phase_localPlasticity(material_phase(g,ip,el))) then
|
|||
!* The entering flux from my neighbor will be distributed on my slip systems according to the compatibility
|
||||
|
||||
considerEnteringFlux = .false.
|
||||
neighboring_v = 0.0_pReal ! needed for check of sign change in flux density below
|
||||
neighboring_rhoSgl = 0.0_pReal
|
||||
if (neighboring_n > 0_pInt) then
|
||||
if (phase_plasticity(material_phase(1,neighboring_ip,neighboring_el)) == CONSTITUTIVE_NONLOCAL_LABEL &
|
||||
neighbor_v = 0.0_pReal ! needed for check of sign change in flux density below
|
||||
neighbor_rhoSgl = 0.0_pReal
|
||||
if (neighbor_n > 0_pInt) then
|
||||
if (phase_plasticity(material_phase(1,neighbor_ip,neighbor_el)) == CONSTITUTIVE_NONLOCAL_LABEL &
|
||||
.and. any(compatibility(:,:,:,n,ip,el) > 0.0_pReal)) &
|
||||
considerEnteringFlux = .true.
|
||||
endif
|
||||
|
||||
if (considerEnteringFlux) then
|
||||
if(numerics_timeSyncing .and. (subfrac(g,neighboring_ip,neighboring_el) /= subfrac(g,ip,el))) then ! for timesyncing: in case of a timestep at the interface we have to use "state0" to make sure that fluxes n both sides are equal
|
||||
forall (t = 1_pInt:4_pInt)
|
||||
neighboring_v(1_pInt:ns,t) = state0(g,neighboring_ip,neighboring_el)%p((13_pInt+t)*ns+1_pInt:(14_pInt+t)*ns)
|
||||
neighboring_rhoSgl(1_pInt:ns,t) = max(state0(g,neighboring_ip,neighboring_el)%p((t-1_pInt)*ns+1_pInt:t*ns), 0.0_pReal)
|
||||
if(numerics_timeSyncing .and. (subfrac(g,neighbor_ip,neighbor_el) /= subfrac(g,ip,el))) then ! for timesyncing: in case of a timestep at the interface we have to use "state0" to make sure that fluxes n both sides are equal
|
||||
forall (s = 1:ns, t = 1_pInt:4_pInt)
|
||||
neighbor_v(s,t) = state0(g,neighbor_ip,neighbor_el)%p(iV(s,t,neighbor_instance))
|
||||
neighbor_rhoSgl(s,t) = max(state0(g,neighbor_ip,neighbor_el)%p(iRhoU(s,t,neighbor_instance)), 0.0_pReal)
|
||||
neighbor_rhoSgl(s,t+4_pInt) = state0(g,neighbor_ip,neighbor_el)%p(iRhoB(s,t,neighbor_instance))
|
||||
endforall
|
||||
forall (t = 5_pInt:8_pInt) &
|
||||
neighboring_rhoSgl(1_pInt:ns,t) = state0(g,neighboring_ip,neighboring_el)%p((t-1_pInt)*ns+1_pInt:t*ns)
|
||||
else
|
||||
forall (t = 1_pInt:4_pInt)
|
||||
neighboring_v(1_pInt:ns,t) = state(g,neighboring_ip,neighboring_el)%p((13_pInt+t)*ns+1_pInt:(14_pInt+t)*ns)
|
||||
neighboring_rhoSgl(1_pInt:ns,t) = max(state(g,neighboring_ip,neighboring_el)%p((t-1_pInt)*ns+1_pInt:t*ns), 0.0_pReal)
|
||||
forall (s = 1:ns, t = 1_pInt:4_pInt)
|
||||
neighbor_v(s,t) = state(g,neighbor_ip,neighbor_el)%p(iV(s,t,neighbor_instance))
|
||||
neighbor_rhoSgl(s,t) = max(state(g,neighbor_ip,neighbor_el)%p(iRhoU(s,t,neighbor_instance)), 0.0_pReal)
|
||||
neighbor_rhoSgl(s,t+4_pInt) = state(g,neighbor_ip,neighbor_el)%p(iRhoB(s,t,neighbor_instance))
|
||||
endforall
|
||||
forall (t = 5_pInt:8_pInt) &
|
||||
neighboring_rhoSgl(1_pInt:ns,t) = state(g,neighboring_ip,neighboring_el)%p((t-1_pInt)*ns+1_pInt:t*ns)
|
||||
endif
|
||||
where (abs(neighboring_rhoSgl) * mesh_ipVolume(neighboring_ip,neighboring_el) ** 0.667_pReal &
|
||||
where (abs(neighbor_rhoSgl) * mesh_ipVolume(neighbor_ip,neighbor_el) ** 0.667_pReal &
|
||||
< significantN(myInstance) &
|
||||
.or. abs(neighboring_rhoSgl) < significantRho(myInstance)) &
|
||||
neighboring_rhoSgl = 0.0_pReal
|
||||
.or. abs(neighbor_rhoSgl) < significantRho(myInstance)) &
|
||||
neighbor_rhoSgl = 0.0_pReal
|
||||
normal_neighbor2me_defConf = math_det33(Favg) * math_mul33x3(math_inv33(transpose(Favg)), &
|
||||
mesh_ipAreaNormal(1:3,neighboring_n,neighboring_ip,neighboring_el)) ! calculate the normal of the interface in (average) deformed configuration (now pointing from my neighbor to me!!!)
|
||||
normal_neighbor2me = math_mul33x3(transpose(neighboring_Fe), normal_neighbor2me_defConf) / math_det33(neighboring_Fe) ! interface normal in the lattice configuration of my neighbor
|
||||
area = mesh_ipArea(neighboring_n,neighboring_ip,neighboring_el) * math_norm3(normal_neighbor2me)
|
||||
normal_neighbor2me = normal_neighbor2me / math_norm3(normal_neighbor2me) ! normalize the surface normal to unit length
|
||||
mesh_ipAreaNormal(1:3,neighbor_n,neighbor_ip,neighbor_el)) ! calculate the normal of the interface in (average) deformed configuration (now pointing from my neighbor to me!!!)
|
||||
normal_neighbor2me = math_mul33x3(transpose(neighbor_Fe), normal_neighbor2me_defConf) &
|
||||
/ math_det33(neighbor_Fe) ! interface normal in the lattice configuration of my neighbor
|
||||
area = mesh_ipArea(neighbor_n,neighbor_ip,neighbor_el) * math_norm3(normal_neighbor2me)
|
||||
normal_neighbor2me = normal_neighbor2me / math_norm3(normal_neighbor2me) ! normalize the surface normal to unit length
|
||||
do s = 1_pInt,ns
|
||||
do t = 1_pInt,4_pInt
|
||||
c = (t + 1_pInt) / 2
|
||||
topp = t + mod(t,2_pInt) - mod(t+1_pInt,2_pInt)
|
||||
if (neighboring_v(s,t) * math_mul3x3(m(1:3,s,t), normal_neighbor2me) > 0.0_pReal & ! flux from my neighbor to me == entering flux for me
|
||||
.and. v(s,t) * neighboring_v(s,t) > 0.0_pReal ) then ! ... only if no sign change in flux density
|
||||
if (neighbor_v(s,t) * math_mul3x3(m(1:3,s,t), normal_neighbor2me) > 0.0_pReal & ! flux from my neighbor to me == entering flux for me
|
||||
.and. v(s,t) * neighbor_v(s,t) > 0.0_pReal ) then ! ... only if no sign change in flux density
|
||||
do deads = 0_pInt,4_pInt,4_pInt
|
||||
lineLength = abs(neighboring_rhoSgl(s,t+deads)) * neighboring_v(s,t) &
|
||||
* math_mul3x3(m(1:3,s,t), normal_neighbor2me) * area ! positive line length that wants to enter through this interface
|
||||
where (compatibility(c,1_pInt:ns,s,n,ip,el) > 0.0_pReal) & ! positive compatibility...
|
||||
rhoDotFlux(1_pInt:ns,t) = rhoDotFlux(1_pInt:ns,t) + lineLength / mesh_ipVolume(ip,el) & ! ... transferring to equally signed mobile dislocation type
|
||||
lineLength = abs(neighbor_rhoSgl(s,t+deads)) * neighbor_v(s,t) &
|
||||
* math_mul3x3(m(1:3,s,t), normal_neighbor2me) * area ! positive line length that wants to enter through this interface
|
||||
where (compatibility(c,1_pInt:ns,s,n,ip,el) > 0.0_pReal) & ! positive compatibility...
|
||||
rhoDotFlux(1_pInt:ns,t) = rhoDotFlux(1_pInt:ns,t) &
|
||||
+ lineLength / mesh_ipVolume(ip,el) & ! ... transferring to equally signed mobile dislocation type
|
||||
* compatibility(c,1_pInt:ns,s,n,ip,el) ** 2.0_pReal
|
||||
where (compatibility(c,1_pInt:ns,s,n,ip,el) < 0.0_pReal) & ! ..negative compatibility...
|
||||
rhoDotFlux(1_pInt:ns,topp) = rhoDotFlux(1_pInt:ns,topp) + lineLength / mesh_ipVolume(ip,el) & ! ... transferring to opposite signed mobile dislocation type
|
||||
where (compatibility(c,1_pInt:ns,s,n,ip,el) < 0.0_pReal) & ! ..negative compatibility...
|
||||
rhoDotFlux(1_pInt:ns,topp) = rhoDotFlux(1_pInt:ns,topp) &
|
||||
+ lineLength / mesh_ipVolume(ip,el) & ! ... transferring to opposite signed mobile dislocation type
|
||||
* compatibility(c,1_pInt:ns,s,n,ip,el) ** 2.0_pReal
|
||||
enddo
|
||||
endif
|
||||
|
@ -2504,40 +2511,46 @@ if (.not. phase_localPlasticity(material_phase(g,ip,el))) then
|
|||
!* a synchronization step for the central ip, because then "state" contains the values at the end of the
|
||||
!* previously converged full time step. Also, if either me or my neighbor has zero subfraction, we have to
|
||||
!* use "state0" to make sure that fluxes on both sides of the (potential) timestep are equal.
|
||||
rhoSglMe = rhoSgl
|
||||
vMe = v
|
||||
my_rhoSgl = rhoSgl
|
||||
my_v = v
|
||||
if(numerics_timeSyncing) then
|
||||
if (subfrac(g,ip,el) == 0.0_pReal) then
|
||||
rhoSglMe = rhoSgl0
|
||||
vMe = v0
|
||||
elseif (neighboring_n > 0_pInt) then
|
||||
if (subfrac(g,neighboring_ip,neighboring_el) == 0.0_pReal) then
|
||||
rhoSglMe = rhoSgl0
|
||||
vMe = v0
|
||||
my_rhoSgl = rhoSgl0
|
||||
my_v = v0
|
||||
elseif (neighbor_n > 0_pInt) then
|
||||
if (subfrac(g,neighbor_ip,neighbor_el) == 0.0_pReal) then
|
||||
my_rhoSgl = rhoSgl0
|
||||
my_v = v0
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
|
||||
normal_me2neighbor_defConf = math_det33(Favg) * math_mul33x3(math_inv33(math_transpose33(Favg)), &
|
||||
mesh_ipAreaNormal(1:3,n,ip,el)) ! calculate the normal of the interface in (average) deformed configuration (pointing from me to my neighbor!!!)
|
||||
normal_me2neighbor = math_mul33x3(math_transpose33(my_Fe), normal_me2neighbor_defConf) / math_det33(my_Fe) ! interface normal in my lattice configuration
|
||||
normal_me2neighbor_defConf = math_det33(Favg) &
|
||||
* math_mul33x3(math_inv33(math_transpose33(Favg)), &
|
||||
mesh_ipAreaNormal(1:3,n,ip,el)) ! calculate the normal of the interface in (average) deformed configuration (pointing from me to my neighbor!!!)
|
||||
normal_me2neighbor = math_mul33x3(math_transpose33(my_Fe), normal_me2neighbor_defConf) &
|
||||
/ math_det33(my_Fe) ! interface normal in my lattice configuration
|
||||
area = mesh_ipArea(n,ip,el) * math_norm3(normal_me2neighbor)
|
||||
normal_me2neighbor = normal_me2neighbor / math_norm3(normal_me2neighbor) ! normalize the surface normal to unit length
|
||||
normal_me2neighbor = normal_me2neighbor / math_norm3(normal_me2neighbor) ! normalize the surface normal to unit length
|
||||
do s = 1_pInt,ns
|
||||
do t = 1_pInt,4_pInt
|
||||
c = (t + 1_pInt) / 2_pInt
|
||||
if (vMe(s,t) * math_mul3x3(m(1:3,s,t), normal_me2neighbor) > 0.0_pReal ) then ! flux from me to my neighbor == leaving flux for me (might also be a pure flux from my mobile density to dead density if interface not at all transmissive)
|
||||
if (vMe(s,t) * neighboring_v(s,t) > 0.0_pReal) then ! no sign change in flux density
|
||||
transmissivity = sum(compatibility(c,1_pInt:ns,s,n,ip,el)**2.0_pReal) ! overall transmissivity from this slip system to my neighbor
|
||||
else ! sign change in flux density means sign change in stress which does not allow for dislocations to arive at the neighbor
|
||||
if (my_v(s,t) * math_mul3x3(m(1:3,s,t), normal_me2neighbor) > 0.0_pReal ) then ! flux from me to my neighbor == leaving flux for me (might also be a pure flux from my mobile density to dead density if interface not at all transmissive)
|
||||
if (my_v(s,t) * neighbor_v(s,t) > 0.0_pReal) then ! no sign change in flux density
|
||||
transmissivity = sum(compatibility(c,1_pInt:ns,s,n,ip,el)**2.0_pReal) ! overall transmissivity from this slip system to my neighbor
|
||||
else ! sign change in flux density means sign change in stress which does not allow for dislocations to arive at the neighbor
|
||||
transmissivity = 0.0_pReal
|
||||
endif
|
||||
lineLength = rhoSglMe(s,t) * vMe(s,t) * math_mul3x3(m(1:3,s,t), normal_me2neighbor) * area ! positive line length of mobiles that wants to leave through this interface
|
||||
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / mesh_ipVolume(ip,el) ! subtract dislocation flux from current type
|
||||
rhoDotFlux(s,t+4_pInt) = rhoDotFlux(s,t+4_pInt) + lineLength / mesh_ipVolume(ip,el) * (1.0_pReal - transmissivity) &
|
||||
* sign(1.0_pReal, vMe(s,t)) ! dislocation flux that is not able to leave through interface (because of low transmissivity) will remain as immobile single density at the material point
|
||||
lineLength = rhoSglMe(s,t+4_pInt) * vMe(s,t) * math_mul3x3(m(1:3,s,t), normal_me2neighbor) * area ! positive line length of deads that wants to leave through this interface
|
||||
rhoDotFlux(s,t+4_pInt) = rhoDotFlux(s,t+4_pInt) - lineLength / mesh_ipVolume(ip,el) * transmissivity ! dead dislocations leaving through this interface
|
||||
lineLength = my_rhoSgl(s,t) * my_v(s,t) &
|
||||
* math_mul3x3(m(1:3,s,t), normal_me2neighbor) * area ! positive line length of mobiles that wants to leave through this interface
|
||||
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / mesh_ipVolume(ip,el) ! subtract dislocation flux from current type
|
||||
rhoDotFlux(s,t+4_pInt) = rhoDotFlux(s,t+4_pInt) &
|
||||
+ lineLength / mesh_ipVolume(ip,el) * (1.0_pReal - transmissivity) &
|
||||
* sign(1.0_pReal, my_v(s,t)) ! dislocation flux that is not able to leave through interface (because of low transmissivity) will remain as immobile single density at the material point
|
||||
lineLength = my_rhoSgl(s,t+4_pInt) * my_v(s,t) &
|
||||
* math_mul3x3(m(1:3,s,t), normal_me2neighbor) * area ! positive line length of deads that wants to leave through this interface
|
||||
rhoDotFlux(s,t+4_pInt) = rhoDotFlux(s,t+4_pInt) &
|
||||
- lineLength / mesh_ipVolume(ip,el) * transmissivity ! dead dislocations leaving through this interface
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
@ -2658,8 +2671,14 @@ if ( any(rhoSglOriginal(1:ns,1:4) + rhoDot(1:ns,1:4) * timestep < -aTolRho(my
|
|||
constitutive_nonlocal_dotState = DAMASK_NaN
|
||||
return
|
||||
else
|
||||
constitutive_nonlocal_dotState(1:10_pInt*ns) = reshape(rhoDot,(/10_pInt*ns/))
|
||||
constitutive_nonlocal_dotState(10_pInt*ns+1:11_pInt*ns) = shearrate(1:ns,g,ip,el)
|
||||
forall (s = 1:ns, t = 1_pInt:4_pInt)
|
||||
constitutive_nonlocal_dotState(iRhoU(s,t,myInstance)) = rhoDot(s,t)
|
||||
constitutive_nonlocal_dotState(iRhoB(s,t,myInstance)) = rhoDot(s,t+4_pInt)
|
||||
endforall
|
||||
forall (s = 1:ns, c = 1_pInt:2_pInt) &
|
||||
constitutive_nonlocal_dotState(iRhoD(s,c,myInstance)) = rhoDot(s,c+8_pInt)
|
||||
forall (s = 1:ns) &
|
||||
constitutive_nonlocal_dotState(iGamma(s,myInstance)) = shearrate(s,g,ip,el)
|
||||
endif
|
||||
|
||||
endfunction
|
||||
|
@ -2707,12 +2726,12 @@ real(pReal), dimension(4,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems),
|
|||
!* local variables
|
||||
integer(pInt) Nneighbors, & ! number of neighbors
|
||||
n, & ! neighbor index
|
||||
neighboring_e, & ! element index of my neighbor
|
||||
neighboring_i, & ! integration point index of my neighbor
|
||||
neighbor_e, & ! element index of my neighbor
|
||||
neighbor_i, & ! integration point index of my neighbor
|
||||
my_phase, &
|
||||
neighboring_phase, &
|
||||
neighbor_phase, &
|
||||
my_texture, &
|
||||
neighboring_texture, &
|
||||
neighbor_texture, &
|
||||
my_structure, & ! lattice structure
|
||||
my_instance, & ! instance of plasticity
|
||||
ns, & ! number of active slip systems
|
||||
|
@ -2722,11 +2741,11 @@ real(pReal), dimension(4) :: absoluteMisorientation !
|
|||
real(pReal), dimension(2,totalNslip(phase_plasticityInstance(material_phase(1,i,e))),&
|
||||
totalNslip(phase_plasticityInstance(material_phase(1,i,e))),&
|
||||
FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e))))) :: &
|
||||
myCompatibility ! myCompatibility for current element and ip
|
||||
my_compatibility ! my_compatibility for current element and ip
|
||||
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phase(1,i,e)))) :: &
|
||||
slipNormal, &
|
||||
slipDirection
|
||||
real(pReal) myCompatibilitySum, &
|
||||
real(pReal) my_compatibilitySum, &
|
||||
thresholdValue, &
|
||||
nThresholdValues
|
||||
logical, dimension(totalNslip(phase_plasticityInstance(material_phase(1,i,e)))) :: &
|
||||
|
@ -2745,24 +2764,24 @@ slipDirection(1:3,1:ns) = lattice_sd(1:3, slipSystemLattice(1:ns,my_instance), m
|
|||
|
||||
!*** start out fully compatible
|
||||
|
||||
myCompatibility = 0.0_pReal
|
||||
my_compatibility = 0.0_pReal
|
||||
forall(s1 = 1_pInt:ns) &
|
||||
myCompatibility(1:2,s1,s1,1:Nneighbors) = 1.0_pReal
|
||||
my_compatibility(1:2,s1,s1,1:Nneighbors) = 1.0_pReal
|
||||
|
||||
|
||||
!*** Loop thrugh neighbors and check whether there is any myCompatibility.
|
||||
!*** Loop thrugh neighbors and check whether there is any my_compatibility.
|
||||
|
||||
do n = 1_pInt,Nneighbors
|
||||
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
|
||||
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
|
||||
neighbor_e = mesh_ipNeighborhood(1,n,i,e)
|
||||
neighbor_i = mesh_ipNeighborhood(2,n,i,e)
|
||||
|
||||
|
||||
!* FREE SURFACE
|
||||
!* Set surface transmissivity to the value specified in the material.config
|
||||
|
||||
if (neighboring_e <= 0_pInt .or. neighboring_i <= 0_pInt) then
|
||||
if (neighbor_e <= 0_pInt .or. neighbor_i <= 0_pInt) then
|
||||
forall(s1 = 1_pInt:ns) &
|
||||
myCompatibility(1:2,s1,s1,n) = sqrt(surfaceTransmissivity(my_instance))
|
||||
my_compatibility(1:2,s1,s1,n) = sqrt(surfaceTransmissivity(my_instance))
|
||||
cycle
|
||||
endif
|
||||
|
||||
|
@ -2773,11 +2792,11 @@ do n = 1_pInt,Nneighbors
|
|||
!* If one of the two "CPFEM" phases has a local plasticity law,
|
||||
!* we do not consider this to be a phase boundary, so completely compatible.
|
||||
|
||||
neighboring_phase = material_phase(1,neighboring_i,neighboring_e)
|
||||
if (neighboring_phase /= my_phase) then
|
||||
if (.not. phase_localPlasticity(neighboring_phase) .and. .not. phase_localPlasticity(my_phase)) then
|
||||
neighbor_phase = material_phase(1,neighbor_i,neighbor_e)
|
||||
if (neighbor_phase /= my_phase) then
|
||||
if (.not. phase_localPlasticity(neighbor_phase) .and. .not. phase_localPlasticity(my_phase)) then
|
||||
forall(s1 = 1_pInt:ns) &
|
||||
myCompatibility(1:2,s1,s1,n) = 0.0_pReal ! = sqrt(0.0)
|
||||
my_compatibility(1:2,s1,s1,n) = 0.0_pReal ! = sqrt(0.0)
|
||||
endif
|
||||
cycle
|
||||
endif
|
||||
|
@ -2787,57 +2806,58 @@ do n = 1_pInt,Nneighbors
|
|||
!* fixed transmissivity for adjacent ips with different texture (only if explicitly given in material.config)
|
||||
|
||||
if (grainboundaryTransmissivity(my_instance) >= 0.0_pReal) then
|
||||
neighboring_texture = material_texture(1,neighboring_i,neighboring_e)
|
||||
if (neighboring_texture /= my_texture) then
|
||||
if (.not. phase_localPlasticity(neighboring_phase)) then
|
||||
neighbor_texture = material_texture(1,neighbor_i,neighbor_e)
|
||||
if (neighbor_texture /= my_texture) then
|
||||
if (.not. phase_localPlasticity(neighbor_phase)) then
|
||||
forall(s1 = 1_pInt:ns) &
|
||||
myCompatibility(1:2,s1,s1,n) = sqrt(grainboundaryTransmissivity(my_instance))
|
||||
my_compatibility(1:2,s1,s1,n) = sqrt(grainboundaryTransmissivity(my_instance))
|
||||
endif
|
||||
cycle
|
||||
endif
|
||||
|
||||
|
||||
!* GRAIN BOUNDARY ?
|
||||
!* Compatibility defined by relative orientation of slip systems:
|
||||
!* The myCompatibility value is defined as the product of the slip normal projection and the slip direction projection.
|
||||
!* The my_compatibility value is defined as the product of the slip normal projection and the slip direction projection.
|
||||
!* Its sign is always positive for screws, for edges it has the same sign as the slip normal projection.
|
||||
!* Since the sum for each slip system can easily exceed one (which would result in a transmissivity larger than one),
|
||||
!* only values above or equal to a certain threshold value are considered. This threshold value is chosen, such that
|
||||
!* the number of compatible slip systems is minimized with the sum of the original myCompatibility values exceeding one.
|
||||
!* Finally the smallest myCompatibility value is decreased until the sum is exactly equal to one.
|
||||
!* the number of compatible slip systems is minimized with the sum of the original my_compatibility values exceeding one.
|
||||
!* Finally the smallest my_compatibility value is decreased until the sum is exactly equal to one.
|
||||
!* All values below the threshold are set to zero.
|
||||
else
|
||||
absoluteMisorientation = math_qDisorientation(orientation(1:4,1,i,e), &
|
||||
orientation(1:4,1,neighboring_i,neighboring_e), &
|
||||
orientation(1:4,1,neighbor_i,neighbor_e), &
|
||||
0_pInt) ! no symmetry
|
||||
do s1 = 1_pInt,ns ! my slip systems
|
||||
do s2 = 1_pInt,ns ! my neighbor's slip systems
|
||||
myCompatibility(1,s2,s1,n) = math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2))) &
|
||||
my_compatibility(1,s2,s1,n) = math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2))) &
|
||||
* abs(math_mul3x3(slipDirection(1:3,s1), math_qRot(absoluteMisorientation, slipDirection(1:3,s2))))
|
||||
myCompatibility(2,s2,s1,n) = abs(math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2)))) &
|
||||
my_compatibility(2,s2,s1,n) = abs(math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2)))) &
|
||||
* abs(math_mul3x3(slipDirection(1:3,s1), math_qRot(absoluteMisorientation, slipDirection(1:3,s2))))
|
||||
enddo
|
||||
|
||||
myCompatibilitySum = 0.0_pReal
|
||||
my_compatibilitySum = 0.0_pReal
|
||||
belowThreshold = .true.
|
||||
do while (myCompatibilitySum < 1.0_pReal .and. any(belowThreshold(1:ns)))
|
||||
thresholdValue = maxval(myCompatibility(2,1:ns,s1,n), belowThreshold(1:ns)) ! screws always positive
|
||||
nThresholdValues = real(count(myCompatibility(2,1:ns,s1,n) == thresholdValue),pReal)
|
||||
where (myCompatibility(2,1:ns,s1,n) >= thresholdValue) &
|
||||
do while (my_compatibilitySum < 1.0_pReal .and. any(belowThreshold(1:ns)))
|
||||
thresholdValue = maxval(my_compatibility(2,1:ns,s1,n), belowThreshold(1:ns)) ! screws always positive
|
||||
nThresholdValues = real(count(my_compatibility(2,1:ns,s1,n) == thresholdValue),pReal)
|
||||
where (my_compatibility(2,1:ns,s1,n) >= thresholdValue) &
|
||||
belowThreshold(1:ns) = .false.
|
||||
if (myCompatibilitySum + thresholdValue * nThresholdValues > 1.0_pReal) &
|
||||
where (abs(myCompatibility(1:2,1:ns,s1,n)) == thresholdValue) &
|
||||
myCompatibility(1:2,1:ns,s1,n) = sign((1.0_pReal - myCompatibilitySum) &
|
||||
/ nThresholdValues, myCompatibility(1:2,1:ns,s1,n))
|
||||
myCompatibilitySum = myCompatibilitySum + nThresholdValues * thresholdValue
|
||||
if (my_compatibilitySum + thresholdValue * nThresholdValues > 1.0_pReal) &
|
||||
where (abs(my_compatibility(1:2,1:ns,s1,n)) == thresholdValue) &
|
||||
my_compatibility(1:2,1:ns,s1,n) = sign((1.0_pReal - my_compatibilitySum) &
|
||||
/ nThresholdValues, my_compatibility(1:2,1:ns,s1,n))
|
||||
my_compatibilitySum = my_compatibilitySum + nThresholdValues * thresholdValue
|
||||
enddo
|
||||
where (belowThreshold(1:ns)) myCompatibility(1,1:ns,s1,n) = 0.0_pReal
|
||||
where (belowThreshold(1:ns)) myCompatibility(2,1:ns,s1,n) = 0.0_pReal
|
||||
where (belowThreshold(1:ns)) my_compatibility(1,1:ns,s1,n) = 0.0_pReal
|
||||
where (belowThreshold(1:ns)) my_compatibility(2,1:ns,s1,n) = 0.0_pReal
|
||||
enddo ! my slip systems cycle
|
||||
endif
|
||||
|
||||
enddo ! neighbor cycle
|
||||
|
||||
compatibility(1:2,1:ns,1:ns,1:Nneighbors,i,e) = myCompatibility
|
||||
compatibility(1:2,1:ns,1:ns,1:Nneighbors,i,e) = my_compatibility
|
||||
|
||||
endsubroutine
|
||||
|
||||
|
@ -2916,16 +2936,16 @@ type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), in
|
|||
real(pReal), dimension(3,3) :: constitutive_nonlocal_dislocationstress
|
||||
|
||||
!*** local variables
|
||||
integer(pInt) neighboring_el, & ! element number of neighboring material point
|
||||
neighboring_ip, & ! integration point of neighboring material point
|
||||
integer(pInt) neighbor_el, & ! element number of neighbor material point
|
||||
neighbor_ip, & ! integration point of neighbor material point
|
||||
instance, & ! my instance of this plasticity
|
||||
neighboring_instance, & ! instance of this plasticity of neighboring material point
|
||||
neighbor_instance, & ! instance of this plasticity of neighbor material point
|
||||
latticeStruct, & ! my lattice structure
|
||||
neighboring_latticeStruct, & ! lattice structure of neighboring material point
|
||||
neighbor_latticeStruct, & ! lattice structure of neighbor material point
|
||||
phase, &
|
||||
neighboring_phase, &
|
||||
neighbor_phase, &
|
||||
ns, & ! total number of active slip systems at my material point
|
||||
neighboring_ns, & ! total number of active slip systems at neighboring material point
|
||||
neighbor_ns, & ! total number of active slip systems at neighbor material point
|
||||
c, & ! index of dilsocation character (edge, screw)
|
||||
s, & ! slip system index
|
||||
t, & ! index of dilsocation type (e+, e-, s+, s-, used e+, used e-, used s+, used s-)
|
||||
|
@ -2934,7 +2954,7 @@ integer(pInt) neighboring_el, & ! element number o
|
|||
side, &
|
||||
j
|
||||
integer(pInt), dimension(2,3) :: periodicImages
|
||||
real(pReal) x, y, z, & ! coordinates of connection vector in neighboring lattice frame
|
||||
real(pReal) x, y, z, & ! coordinates of connection vector in neighbor lattice frame
|
||||
xsquare, ysquare, zsquare, & ! squares of respective coordinates
|
||||
distance, & ! length of connection vector
|
||||
segmentLength, & ! segment length of dislocations
|
||||
|
@ -2942,22 +2962,22 @@ real(pReal) x, y, z, & ! coordinates of c
|
|||
R, Rsquare, Rcube, &
|
||||
denominator, &
|
||||
flipSign, &
|
||||
neighboring_ipVolumeSideLength, &
|
||||
neighbor_ipVolumeSideLength, &
|
||||
detFe
|
||||
real(pReal), dimension(3) :: connection, & ! connection vector between me and my neighbor in the deformed configuration
|
||||
connection_neighboringLattice, & ! connection vector between me and my neighbor in the lattice configuration of my neighbor
|
||||
connection_neighboringSlip, & ! connection vector between me and my neighbor in the slip system frame of my neighbor
|
||||
connection_neighborLattice, & ! connection vector between me and my neighbor in the lattice configuration of my neighbor
|
||||
connection_neighborSlip, & ! connection vector between me and my neighbor in the slip system frame of my neighbor
|
||||
maxCoord, minCoord, &
|
||||
meshSize, &
|
||||
coords, & ! x,y,z coordinates of cell center of ip volume
|
||||
neighboring_coords ! x,y,z coordinates of cell center of neighboring ip volume
|
||||
real(pReal), dimension(3,3) :: sigma, & ! dislocation stress for one slip system in neighboring material point's slip system frame
|
||||
Tdislo_neighboringLattice, & ! dislocation stress as 2nd Piola-Kirchhoff stress at neighboring material point
|
||||
neighbor_coords ! x,y,z coordinates of cell center of neighbor ip volume
|
||||
real(pReal), dimension(3,3) :: sigma, & ! dislocation stress for one slip system in neighbor material point's slip system frame
|
||||
Tdislo_neighborLattice, & ! dislocation stress as 2nd Piola-Kirchhoff stress at neighbor material point
|
||||
invFe, & ! inverse of my elastic deformation gradient
|
||||
neighboring_invFe, &
|
||||
neighboringLattice2myLattice ! mapping from neighboring MPs lattice configuration to my lattice configuration
|
||||
neighbor_invFe, &
|
||||
neighborLattice2myLattice ! mapping from neighbor MPs lattice configuration to my lattice configuration
|
||||
real(pReal), dimension(2,2,maxval(totalNslip)) :: &
|
||||
neighboring_rhoExcess ! excess density at neighboring material point (edge/screw,mobile/dead,slipsystem)
|
||||
neighbor_rhoExcess ! excess density at neighbor material point (edge/screw,mobile/dead,slipsystem)
|
||||
real(pReal), dimension(2,maxval(totalNslip)) :: &
|
||||
rhoExcessDead
|
||||
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),8) :: &
|
||||
|
@ -2973,10 +2993,10 @@ ns = totalNslip(instance)
|
|||
|
||||
!*** get basic states
|
||||
|
||||
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt) &
|
||||
rhoSgl(s,t) = max(state(g,ip,el)%p((t-1_pInt)*ns+s), 0.0_pReal) ! ensure positive single mobile densities
|
||||
forall (t = 5_pInt:8_pInt) &
|
||||
rhoSgl(1:ns,t) = state(g,ip,el)%p((t-1_pInt)*ns+1_pInt:t*ns)
|
||||
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
|
||||
rhoSgl(s,t) = max(state(g,ip,el)%p(iRhoU(s,t,instance)), 0.0_pReal) ! ensure positive single mobile densities
|
||||
rhoSgl(s,t+4_pInt) = state(g,ip,el)%p(iRhoB(s,t,instance))
|
||||
endforall
|
||||
|
||||
|
||||
|
||||
|
@ -3008,24 +3028,24 @@ if (.not. phase_localPlasticity(phase)) then
|
|||
!* loop through all material points (also through their periodic images if present),
|
||||
!* but only consider nonlocal neighbors within a certain cutoff radius R
|
||||
|
||||
do neighboring_el = 1_pInt,mesh_NcpElems
|
||||
ipLoop: do neighboring_ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,neighboring_el)))
|
||||
neighboring_phase = material_phase(g,neighboring_ip,neighboring_el)
|
||||
if (phase_localPlasticity(neighboring_phase)) then
|
||||
do neighbor_el = 1_pInt,mesh_NcpElems
|
||||
ipLoop: do neighbor_ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,neighbor_el)))
|
||||
neighbor_phase = material_phase(g,neighbor_ip,neighbor_el)
|
||||
if (phase_localPlasticity(neighbor_phase)) then
|
||||
cycle
|
||||
endif
|
||||
neighboring_instance = phase_plasticityInstance(neighboring_phase)
|
||||
neighboring_latticeStruct = constitutive_nonlocal_structure(neighboring_instance)
|
||||
neighboring_ns = totalNslip(neighboring_instance)
|
||||
call math_invert33(Fe(1:3,1:3,1,neighboring_ip,neighboring_el), neighboring_invFe, detFe, inversionError)
|
||||
neighboring_ipVolumeSideLength = mesh_ipVolume(neighboring_ip,neighboring_el) ** (1.0_pReal/3.0_pReal) ! reference volume used here
|
||||
forall (s = 1_pInt:neighboring_ns, c = 1_pInt:2_pInt) &
|
||||
neighboring_rhoExcess(c,1,s) = state(g,neighboring_ip,neighboring_el)%p((2_pInt*c-2_pInt)*neighboring_ns+s) & ! positive mobiles
|
||||
- state(g,neighboring_ip,neighboring_el)%p((2_pInt*c-1_pInt)*neighboring_ns+s) ! negative mobiles
|
||||
forall (s = 1_pInt:neighboring_ns, c = 1_pInt:2_pInt) &
|
||||
neighboring_rhoExcess(c,2,s) = abs(state(g,neighboring_ip,neighboring_el)%p((2_pInt*c+2_pInt)*neighboring_ns+s)) & ! positive deads
|
||||
- abs(state(g,neighboring_ip,neighboring_el)%p((2_pInt*c+3_pInt)*neighboring_ns+s)) ! negative deads
|
||||
Tdislo_neighboringLattice = 0.0_pReal
|
||||
neighbor_instance = phase_plasticityInstance(neighbor_phase)
|
||||
neighbor_latticeStruct = constitutive_nonlocal_structure(neighbor_instance)
|
||||
neighbor_ns = totalNslip(neighbor_instance)
|
||||
call math_invert33(Fe(1:3,1:3,1,neighbor_ip,neighbor_el), neighbor_invFe, detFe, inversionError)
|
||||
neighbor_ipVolumeSideLength = mesh_ipVolume(neighbor_ip,neighbor_el) ** (1.0_pReal/3.0_pReal) ! reference volume used here
|
||||
forall (s = 1_pInt:neighbor_ns, c = 1_pInt:2_pInt)
|
||||
neighbor_rhoExcess(c,1,s) = state(g,neighbor_ip,neighbor_el)%p(iRhoU(s,2*c-1,neighbor_instance)) & ! positive mobiles
|
||||
- state(g,neighbor_ip,neighbor_el)%p(iRhoU(s,2*c,neighbor_instance)) ! negative mobiles
|
||||
neighbor_rhoExcess(c,2,s) = abs(state(g,neighbor_ip,neighbor_el)%p(iRhoB(s,2*c-1,neighbor_instance))) & ! positive deads
|
||||
- abs(state(g,neighbor_ip,neighbor_el)%p(iRhoB(s,2*c,neighbor_instance))) ! negative deads
|
||||
endforall
|
||||
Tdislo_neighborLattice = 0.0_pReal
|
||||
do deltaX = periodicImages(1,1),periodicImages(2,1)
|
||||
do deltaY = periodicImages(1,2),periodicImages(2,2)
|
||||
do deltaZ = periodicImages(1,3),periodicImages(2,3)
|
||||
|
@ -3033,12 +3053,12 @@ ipLoop: do neighboring_ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,neighborin
|
|||
|
||||
!* regular case
|
||||
|
||||
if (neighboring_el /= el .or. neighboring_ip /= ip &
|
||||
if (neighbor_el /= el .or. neighbor_ip /= ip &
|
||||
.or. deltaX /= 0_pInt .or. deltaY /= 0_pInt .or. deltaZ /= 0_pInt) then
|
||||
|
||||
neighboring_coords = mesh_cellCenterCoordinates(neighboring_ip,neighboring_el) &
|
||||
neighbor_coords = mesh_cellCenterCoordinates(neighbor_ip,neighbor_el) &
|
||||
+ (/real(deltaX,pReal), real(deltaY,pReal), real(deltaZ,pReal)/) * meshSize
|
||||
connection = neighboring_coords - coords
|
||||
connection = neighbor_coords - coords
|
||||
distance = sqrt(sum(connection * connection))
|
||||
if (distance > cutoffRadius(instance)) then
|
||||
cycle
|
||||
|
@ -3046,44 +3066,44 @@ ipLoop: do neighboring_ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,neighborin
|
|||
|
||||
|
||||
!* the segment length is the minimum of the third root of the control volume and the ip distance
|
||||
!* this ensures, that the central MP never sits on a neighboring dislocation segment
|
||||
!* this ensures, that the central MP never sits on a neighbor dislocation segment
|
||||
|
||||
connection_neighboringLattice = math_mul33x3(neighboring_invFe, connection)
|
||||
segmentLength = min(neighboring_ipVolumeSideLength, distance)
|
||||
connection_neighborLattice = math_mul33x3(neighbor_invFe, connection)
|
||||
segmentLength = min(neighbor_ipVolumeSideLength, distance)
|
||||
|
||||
|
||||
!* loop through all slip systems of the neighboring material point
|
||||
!* loop through all slip systems of the neighbor material point
|
||||
!* and add up the stress contributions from egde and screw excess on these slip systems (if significant)
|
||||
|
||||
do s = 1_pInt,neighboring_ns
|
||||
if (all(abs(neighboring_rhoExcess(:,:,s)) < significantRho(instance))) then
|
||||
do s = 1_pInt,neighbor_ns
|
||||
if (all(abs(neighbor_rhoExcess(:,:,s)) < significantRho(instance))) then
|
||||
cycle ! not significant
|
||||
endif
|
||||
|
||||
|
||||
!* map the connection vector from the lattice into the slip system frame
|
||||
|
||||
connection_neighboringSlip = math_mul33x3(lattice2slip(1:3,1:3,s,neighboring_instance), &
|
||||
connection_neighboringLattice)
|
||||
connection_neighborSlip = math_mul33x3(lattice2slip(1:3,1:3,s,neighbor_instance), &
|
||||
connection_neighborLattice)
|
||||
|
||||
|
||||
!* edge contribution to stress
|
||||
sigma = 0.0_pReal
|
||||
|
||||
x = connection_neighboringSlip(1)
|
||||
y = connection_neighboringSlip(2)
|
||||
z = connection_neighboringSlip(3)
|
||||
x = connection_neighborSlip(1)
|
||||
y = connection_neighborSlip(2)
|
||||
z = connection_neighborSlip(3)
|
||||
xsquare = x * x
|
||||
ysquare = y * y
|
||||
zsquare = z * z
|
||||
|
||||
do j = 1_pInt,2_pInt
|
||||
if (abs(neighboring_rhoExcess(1,j,s)) < significantRho(instance)) then
|
||||
if (abs(neighbor_rhoExcess(1,j,s)) < significantRho(instance)) then
|
||||
cycle
|
||||
elseif (j > 1_pInt) then
|
||||
x = connection_neighboringSlip(1) + sign(0.5_pReal * segmentLength, &
|
||||
state(g,neighboring_ip,neighboring_el)%p(4*neighboring_ns+s) &
|
||||
- state(g,neighboring_ip,neighboring_el)%p(5*neighboring_ns+s))
|
||||
x = connection_neighborSlip(1) + sign(0.5_pReal * segmentLength, &
|
||||
state(g,neighbor_ip,neighbor_el)%p(iRhoB(s,1,neighbor_instance)) &
|
||||
- state(g,neighbor_ip,neighbor_el)%p(iRhoB(s,2,neighbor_instance)))
|
||||
xsquare = x * x
|
||||
endif
|
||||
|
||||
|
@ -3101,35 +3121,35 @@ ipLoop: do neighboring_ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,neighborin
|
|||
sigma(1,1) = sigma(1,1) - real(side,pReal) &
|
||||
* flipSign * z / denominator &
|
||||
* (1.0_pReal + xsquare / Rsquare + xsquare / denominator) &
|
||||
* neighboring_rhoExcess(1,j,s)
|
||||
* neighbor_rhoExcess(1,j,s)
|
||||
sigma(2,2) = sigma(2,2) - real(side,pReal) &
|
||||
* (flipSign * 2.0_pReal * nu(instance) * z / denominator + z * lambda / Rcube) &
|
||||
* neighboring_rhoExcess(1,j,s)
|
||||
* neighbor_rhoExcess(1,j,s)
|
||||
sigma(3,3) = sigma(3,3) + real(side,pReal) &
|
||||
* flipSign * z / denominator &
|
||||
* (1.0_pReal - zsquare / Rsquare - zsquare / denominator) &
|
||||
* neighboring_rhoExcess(1,j,s)
|
||||
* neighbor_rhoExcess(1,j,s)
|
||||
sigma(1,2) = sigma(1,2) + real(side,pReal) &
|
||||
* x * z / Rcube * neighboring_rhoExcess(1,j,s)
|
||||
* x * z / Rcube * neighbor_rhoExcess(1,j,s)
|
||||
sigma(1,3) = sigma(1,3) + real(side,pReal) &
|
||||
* flipSign * x / denominator &
|
||||
* (1.0_pReal - zsquare / Rsquare - zsquare / denominator) &
|
||||
* neighboring_rhoExcess(1,j,s)
|
||||
* neighbor_rhoExcess(1,j,s)
|
||||
sigma(2,3) = sigma(2,3) - real(side,pReal) &
|
||||
* (nu(instance) / R - zsquare / Rcube) * neighboring_rhoExcess(1,j,s)
|
||||
* (nu(instance) / R - zsquare / Rcube) * neighbor_rhoExcess(1,j,s)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!* screw contribution to stress
|
||||
|
||||
x = connection_neighboringSlip(1) ! have to restore this value, because position might have been adapted for edge deads before
|
||||
x = connection_neighborSlip(1) ! have to restore this value, because position might have been adapted for edge deads before
|
||||
do j = 1_pInt,2_pInt
|
||||
if (abs(neighboring_rhoExcess(2,j,s)) < significantRho(instance)) then
|
||||
if (abs(neighbor_rhoExcess(2,j,s)) < significantRho(instance)) then
|
||||
cycle
|
||||
elseif (j > 1_pInt) then
|
||||
y = connection_neighboringSlip(2) + sign(0.5_pReal * segmentLength, &
|
||||
state(g,neighboring_ip,neighboring_el)%p(6_pInt*neighboring_ns+s) &
|
||||
- state(g,neighboring_ip,neighboring_el)%p(7_pInt*neighboring_ns+s))
|
||||
y = connection_neighborSlip(2) + sign(0.5_pReal * segmentLength, &
|
||||
state(g,neighbor_ip,neighbor_el)%p(iRhoB(s,3,neighbor_instance)) &
|
||||
- state(g,neighbor_ip,neighbor_el)%p(iRhoB(s,4,neighbor_instance)))
|
||||
ysquare = y * y
|
||||
endif
|
||||
|
||||
|
@ -3145,9 +3165,9 @@ ipLoop: do neighboring_ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,neighborin
|
|||
endif
|
||||
|
||||
sigma(1,2) = sigma(1,2) - real(side,pReal) * flipSign * z * (1.0_pReal - nu(instance)) / denominator &
|
||||
* neighboring_rhoExcess(2,j,s)
|
||||
* neighbor_rhoExcess(2,j,s)
|
||||
sigma(1,3) = sigma(1,3) + real(side,pReal) * flipSign * y * (1.0_pReal - nu(instance)) / denominator &
|
||||
* neighboring_rhoExcess(2,j,s)
|
||||
* neighbor_rhoExcess(2,j,s)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
@ -3162,14 +3182,14 @@ ipLoop: do neighboring_ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,neighborin
|
|||
sigma(3,2) = sigma(2,3)
|
||||
|
||||
|
||||
!* scale stresses and map them into the neighboring material point's lattice configuration
|
||||
!* scale stresses and map them into the neighbor material point's lattice configuration
|
||||
|
||||
sigma = sigma * mu(neighboring_instance) * burgers(s,neighboring_instance) &
|
||||
/ (4.0_pReal * pi * (1.0_pReal - nu(instance))) &
|
||||
* mesh_ipVolume(neighboring_ip,neighboring_el) / segmentLength ! reference volume is used here (according to the segment length calculation)
|
||||
Tdislo_neighboringLattice = Tdislo_neighboringLattice &
|
||||
+ math_mul33x33(math_transpose33(lattice2slip(1:3,1:3,s,neighboring_instance)), &
|
||||
math_mul33x33(sigma, lattice2slip(1:3,1:3,s,neighboring_instance)))
|
||||
sigma = sigma * mu(neighbor_instance) * burgers(s,neighbor_instance) &
|
||||
/ (4.0_pReal * pi * (1.0_pReal - nu(neighbor_instance))) &
|
||||
* mesh_ipVolume(neighbor_ip,neighbor_el) / segmentLength ! reference volume is used here (according to the segment length calculation)
|
||||
Tdislo_neighborLattice = Tdislo_neighborLattice &
|
||||
+ math_mul33x33(math_transpose33(lattice2slip(1:3,1:3,s,neighbor_instance)), &
|
||||
math_mul33x33(sigma, lattice2slip(1:3,1:3,s,neighbor_instance)))
|
||||
|
||||
enddo ! slip system loop
|
||||
|
||||
|
@ -3182,8 +3202,8 @@ ipLoop: do neighboring_ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,neighborin
|
|||
else
|
||||
|
||||
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
|
||||
rhoExcessDead(c,s) = state(g,ip,el)%p((2_pInt*c+2_pInt)*ns+s) & ! positive deads (here we use symmetry: if this has negative sign it is treated as negative density at positive position instead of positive density at negative position)
|
||||
+ state(g,ip,el)%p((2_pInt*c+3_pInt)*ns+s) ! negative deads (here we use symmetry: if this has negative sign it is treated as positive density at positive position instead of negative density at negative position)
|
||||
rhoExcessDead(c,s) = state(g,ip,el)%p(iRhoB(s,2*c-1,instance)) & ! positive deads (here we use symmetry: if this has negative sign it is treated as negative density at positive position instead of positive density at negative position)
|
||||
+ state(g,ip,el)%p(iRhoB(s,2*c,instance)) ! negative deads (here we use symmetry: if this has negative sign it is treated as positive density at positive position instead of negative density at negative position)
|
||||
|
||||
do s = 1_pInt,ns
|
||||
if (all(abs(rhoExcessDead(:,s)) < significantRho(instance))) then
|
||||
|
@ -3191,11 +3211,11 @@ ipLoop: do neighboring_ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,neighborin
|
|||
endif
|
||||
sigma = 0.0_pReal ! all components except for sigma13 are zero
|
||||
sigma(1,3) = - (rhoExcessDead(1,s) + rhoExcessDead(2,s) * (1.0_pReal - nu(instance))) &
|
||||
* neighboring_ipVolumeSideLength * mu(instance) * burgers(s,instance) &
|
||||
* neighbor_ipVolumeSideLength * mu(instance) * burgers(s,instance) &
|
||||
/ (sqrt(2.0_pReal) * pi * (1.0_pReal - nu(instance)))
|
||||
sigma(3,1) = sigma(1,3)
|
||||
|
||||
Tdislo_neighboringLattice = Tdislo_neighboringLattice &
|
||||
Tdislo_neighborLattice = Tdislo_neighborLattice &
|
||||
+ math_mul33x33(math_transpose33(lattice2slip(1:3,1:3,s,instance)), &
|
||||
math_mul33x33(sigma, lattice2slip(1:3,1:3,s,instance)))
|
||||
|
||||
|
@ -3208,14 +3228,14 @@ ipLoop: do neighboring_ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,neighborin
|
|||
enddo ! deltaX loop
|
||||
|
||||
|
||||
!* map the stress from the neighboring MP's lattice configuration into the deformed configuration
|
||||
!* map the stress from the neighbor MP's lattice configuration into the deformed configuration
|
||||
!* and back into my lattice configuration
|
||||
|
||||
neighboringLattice2myLattice = math_mul33x33(invFe, Fe(1:3,1:3,1,neighboring_ip,neighboring_el))
|
||||
neighborLattice2myLattice = math_mul33x33(invFe, Fe(1:3,1:3,1,neighbor_ip,neighbor_el))
|
||||
constitutive_nonlocal_dislocationstress = constitutive_nonlocal_dislocationstress &
|
||||
+ math_mul33x33(neighboringLattice2myLattice, &
|
||||
math_mul33x33(Tdislo_neighboringLattice, &
|
||||
math_transpose33(neighboringLattice2myLattice)))
|
||||
+ math_mul33x33(neighborLattice2myLattice, &
|
||||
math_mul33x33(Tdislo_neighborLattice, &
|
||||
math_transpose33(neighborLattice2myLattice)))
|
||||
|
||||
enddo ipLoop
|
||||
enddo ! element loop
|
||||
|
@ -3308,24 +3328,20 @@ constitutive_nonlocal_postResults = 0.0_pReal
|
|||
|
||||
!* short hand notations for state variables
|
||||
|
||||
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt) &
|
||||
rhoSgl(s,t) = max(state(g,ip,el)%p((t-1_pInt)*ns+s), 0.0_pReal)
|
||||
forall (s = 1_pInt:ns, t = 5_pInt:8_pInt) &
|
||||
rhoSgl(s,t) = state(g,ip,el)%p((t-1_pInt)*ns+s)
|
||||
forall (c = 1_pInt:2_pInt) &
|
||||
rhoDip(1:ns,c) = max(state(g,ip,el)%p((7_pInt+c)*ns+1_pInt:(8_pInt+c)*ns), 0.0_pReal)
|
||||
rhoForest = state(g,ip,el)%p(11_pInt*ns+1:12_pInt*ns)
|
||||
tauThreshold = state(g,ip,el)%p(12_pInt*ns+1:13_pInt*ns)
|
||||
tauBack = state(g,ip,el)%p(13_pInt*ns+1:14_pInt*ns)
|
||||
forall (t = 1_pInt:8_pInt) rhoDotSgl(1:ns,t) = dotState%p((t-1_pInt)*ns+1_pInt:t*ns)
|
||||
forall (c = 1_pInt:2_pInt) rhoDotDip(1:ns,c) = dotState%p((7_pInt+c)*ns+1_pInt:(8_pInt+c)*ns)
|
||||
forall (t = 1_pInt:4_pInt) v(1:ns,t) = state(g,ip,el)%p((13_pInt+t)*ns+1_pInt:(14_pInt+t)*ns)
|
||||
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(myInstance) &
|
||||
.or. abs(rhoSgl) < significantRho(myInstance)) &
|
||||
rhoSgl = 0.0_pReal
|
||||
where (abs(rhoDip) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(myInstance) &
|
||||
.or. abs(rhoDip) < significantRho(myInstance)) &
|
||||
rhoDip = 0.0_pReal
|
||||
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
|
||||
rhoSgl(s,t) = state(g,ip,el)%p(iRhoU(s,t,myInstance))
|
||||
rhoSgl(s,t+4_pInt) = state(g,ip,el)%p(iRhoB(s,t,myInstance))
|
||||
v(s,t) = state(g,ip,el)%p(iV(s,t,myInstance))
|
||||
rhoDotSgl(s,t) = dotState%p(iRhoU(s,t,myInstance))
|
||||
rhoDotSgl(s,t+4_pInt) = dotState%p(iRhoB(s,t,myInstance))
|
||||
endforall
|
||||
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt)
|
||||
rhoDip(s,c) = state(g,ip,el)%p(iRhoD(s,c,myInstance))
|
||||
rhoDotDip(s,c) = dotState%p(iRhoD(s,c,myInstance))
|
||||
endforall
|
||||
rhoForest = state(g,ip,el)%p(iRhoF(1:ns,myInstance))
|
||||
tauThreshold = state(g,ip,el)%p(iTauF(1:ns,myInstance))
|
||||
tauBack = state(g,ip,el)%p(iTauB(1:ns,myInstance))
|
||||
|
||||
|
||||
|
||||
|
@ -3410,11 +3426,11 @@ do o = 1_pInt,phase_Noutput(material_phase(g,ip,el))
|
|||
cs = cs + ns
|
||||
|
||||
case ('rho_sgl_edge_pos_mobile')
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(1:ns)
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1)
|
||||
cs = cs + ns
|
||||
|
||||
case ('rho_sgl_edge_pos_immobile')
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(4*ns+1:5*ns)
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,5)
|
||||
cs = cs + ns
|
||||
|
||||
case ('rho_sgl_edge_neg')
|
||||
|
@ -3422,15 +3438,15 @@ do o = 1_pInt,phase_Noutput(material_phase(g,ip,el))
|
|||
cs = cs + ns
|
||||
|
||||
case ('rho_sgl_edge_neg_mobile')
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(ns+1:2*ns)
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,2)
|
||||
cs = cs + ns
|
||||
|
||||
case ('rho_sgl_edge_neg_immobile')
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(5*ns+1:6*ns)
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,6)
|
||||
cs = cs + ns
|
||||
|
||||
case ('rho_dip_edge')
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(8*ns+1:9*ns)
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDip(1:ns,1)
|
||||
cs = cs + ns
|
||||
|
||||
case ('rho_screw')
|
||||
|
@ -3454,11 +3470,11 @@ do o = 1_pInt,phase_Noutput(material_phase(g,ip,el))
|
|||
cs = cs + ns
|
||||
|
||||
case ('rho_sgl_screw_pos_mobile')
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(2*ns+1:3*ns)
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3)
|
||||
cs = cs + ns
|
||||
|
||||
case ('rho_sgl_screw_pos_immobile')
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(6*ns+1:7*ns)
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,7)
|
||||
cs = cs + ns
|
||||
|
||||
case ('rho_sgl_screw_neg')
|
||||
|
@ -3466,15 +3482,15 @@ do o = 1_pInt,phase_Noutput(material_phase(g,ip,el))
|
|||
cs = cs + ns
|
||||
|
||||
case ('rho_sgl_screw_neg_mobile')
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(3*ns+1:4*ns)
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,4)
|
||||
cs = cs + ns
|
||||
|
||||
case ('rho_sgl_screw_neg_immobile')
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(7*ns+1:8*ns)
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,8)
|
||||
cs = cs + ns
|
||||
|
||||
case ('rho_dip_screw')
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(9*ns+1:10*ns)
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDip(1:ns,2)
|
||||
cs = cs + ns
|
||||
|
||||
case ('excess_rho')
|
||||
|
@ -3715,7 +3731,7 @@ do o = 1_pInt,phase_Noutput(material_phase(g,ip,el))
|
|||
cs = cs + 6_pInt
|
||||
|
||||
case('accumulatedshear')
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(10*ns+1:11*ns)
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(iGamma(1:ns,myInstance))
|
||||
cs = cs + ns
|
||||
|
||||
case('boundarylayer')
|
||||
|
|
Loading…
Reference in New Issue