major restructuring. packing stencil can be shifted to allow for element or nodal value averaging.

This commit is contained in:
Philip Eisenlohr 2012-02-02 17:12:48 +00:00
parent 7e23f84d2c
commit bffc22fbe1
1 changed files with 77 additions and 64 deletions

View File

@ -1,6 +1,6 @@
#!/usr/bin/python
import os,re,sys,math,string,numpy
import os,re,sys,math,string,numpy,damask
from optparse import OptionParser, Option
# -----------------------------
@ -47,25 +47,30 @@ to resolution/packing. (Requires numpy.)
""" + string.replace('$Id$','\n','\\n')
)
parser.add_option('-m','--memory', dest='memory', action='store_true', \
help='load complete file into memory [%default]')
parser.add_option('-r','--resolution', dest='res', type='int', nargs=3, \
help='resolution in fast, medium, and slow dimension [%default]')
parser.add_option('-c','--coordinates', dest='coords', type='string',\
help='column heading for coordinates [%default]')
parser.add_option('-p','--packing', dest='packing', type='int', nargs=3, \
help='number of data points to average down in each dimension [%default]')
help='dimension of packed group [%default]')
parser.add_option('-s','--shift', dest='shift', type='int', nargs=3, \
help='shift vector of packing stencil [%default]')
parser.set_defaults(memory = False)
parser.set_defaults(resolution = [32,32,32])
parser.set_defaults(coords = 'ip')
parser.set_defaults(packing = [2,2,2])
parser.set_defaults(shift = [0,0,0])
(options,filenames) = parser.parse_args()
if len(options.resolution) < 3:
parser.error('resolution needs three parameters...')
if len(options.packing) < 3:
parser.error('packing needs three parameters...')
if len(options.shift) < 3:
parser.error('shift needs three parameters...')
options.packing = numpy.array(options.packing)
options.shift = numpy.array(options.shift)
prefix = 'averagedDown%ix%ix%i'%(options.packing[0],options.packing[1],options.packing[2])
if numpy.any(options.shift != 0):
prefix += '_shift%+i%+i%+i'%(options.shift[0],options.shift[1],options.shift[2])
# ------------------------------------------ setup file handles ---------------------------------------
@ -75,74 +80,82 @@ if filenames == []:
else:
for name in filenames:
if os.path.exists(name):
(head,tail) = os.path.split(name)
files.append({'name':name, 'input':open(name), 'output':open(os.path.join(head,'avgDown_%s'%tail),'w')})
files.append({'name':name, 'input':open(name), 'output':open(prefix+'_'+name,'w')})
# ------------------------------------------ loop over input files ---------------------------------------
for file in files:
print file['name']
if file['name'] != 'STDIN': print file['name'],
# get labels by either read the first row, or - if keyword header is present - the last line of the header
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(string.replace('$Id$','\n','\\n') + \
'\t' + ' '.join(sys.argv[1:]))
firstline = file['input'].readline()
m = re.search('(\d+)\s*head', firstline.lower())
if m:
headerlines = int(m.group(1))
passOn = [file['input'].readline() for i in range(1,headerlines)]
headers = file['input'].readline().split()
else:
headerlines = 1
passOn = []
headers = firstline.split()
try:
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
except ValueError:
print 'no coordinate data found...'
continue
if options.memory:
data = file['input'].readlines()
else:
data = []
grid = [{},{},{}]
while table.data_read(): # read next data line of ASCII table
for j in xrange(3):
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
resolution = numpy.array([len(grid[0]),\
len(grid[1]),\
len(grid[2]),],'i') # resolution is number of distinct coordinates found
dimension = resolution/numpy.maximum(numpy.ones(3,'d'),resolution-1.0)* \
numpy.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
],'d') # dimension from bounding box, corrected for cell-centeredness
if resolution[2] == 1:
options.packing[2] = 1
options.shift[2] = 0
dimension[2] = min(dimension[:2]/resolution[:2])
downSized = numpy.maximum(numpy.ones(3,'i'),resolution//options.packing)
print '\t%s @ %s --> %s'%(dimension,resolution,downSized)
# ------------------------------------------ assemble header ---------------------------------------
output = '%i\theader'%(headerlines+1) + '\n' + \
''.join(passOn) + \
string.replace('$Id$','\n','\\n')+ '\t' + \
' '.join(sys.argv[1:]) + '\n' + \
'\t'.join(headers) + '\n' # build extended header
table.head_write()
if not options.memory:
file['output'].write(output)
output = ''
# ------------------------------------------ process data ---------------------------------------
# ------------------------------------------ read file ---------------------------------------
table.data_rewind()
averagedDown = numpy.zeros([options.res[2]/options.packing[2],
options.res[1]/options.packing[1],
options.res[0]/options.packing[0],
len(headers)])
averagedDown = numpy.zeros(downSized.tolist()+[len(table.labels)])
idx = 0
for line in {True : data,
False : file['input']}[options.memory]:
items = numpy.array(map(float,line.split()[:len(headers)]))
if len(items) < len(headers):
continue
for z in xrange(-options.shift[2],-options.shift[2]+resolution[2]):
for y in xrange(-options.shift[1],-options.shift[1]+resolution[1]):
for x in xrange(-options.shift[0],-options.shift[0]+resolution[0]):
table.data_read()
data = numpy.array(table.data_asFloat(),'d') # convert to numpy array
me = numpy.array((x,y,z),'i') # my location as array
data[locationCol:locationCol+3] -= dimension*(me//resolution) # shift coordinates if periodic image
(a,b,c) = (me%resolution)//options.packing # bin to condense my location into
averagedDown[a,b,c,:] += data # store the (coord-updated) data there
loc = location(idx,options.res)//options.packing
averagedDown[loc[2],loc[1],loc[0],:] += items
averagedDown /= options.packing.prod() # normalize data by element count
idx += 1
for c in xrange(downSized[2]):
for b in xrange(downSized[1]):
for a in xrange(downSized[0]):
table.data = averagedDown[a,b,c,:].tolist()
table.data_write() # output processed line
averagedDown /= options.packing[0]*options.packing[1]*options.packing[2]
for z in range(options.res[2]/options.packing[2]):
for y in range(options.res[1]/options.packing[1]):
for x in range(options.res[0]/options.packing[0]):
output += '\t'.join(map(str,averagedDown[z,y,x,:])) + '\n'
file['input'].close()
# ------------------------------------------ output result ---------------------------------------
file['output'].write(output)
table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ close file handles ---------------------------------------
for file in files:
file['input'].close() # close input ASCII table
if file['name'] != 'STDIN':
file['output'].close
file['output'].close # close output ASCII table