cleaning homogenization

This commit is contained in:
Sharan Roongta 2021-02-25 21:42:40 +01:00
parent 9679c5403e
commit be0e393e1d
3 changed files with 73 additions and 78 deletions

View File

@ -110,11 +110,10 @@ module homogenization
integer, intent(in) :: ip,el
end subroutine thermal_homogenize
module subroutine mechanical_homogenize(dt,ip,el)
module subroutine mechanical_homogenize(dt,ce)
real(pReal), intent(in) :: dt
integer, intent(in) :: &
ip, & !< integration point
el !< element number
ce !< cell
end subroutine mechanical_homogenize
module subroutine mechanical_results(group_base,ho)
@ -348,14 +347,15 @@ subroutine materialpoint_stressAndItsTangent(dt,FEsolving_execIP,FEsolving_execE
enddo
!$OMP END DO
!$OMP DO PRIVATE(ho)
!$OMP DO PRIVATE(ho,ce)
elementLooping3: do el = FEsolving_execElem(1),FEsolving_execElem(2)
ho = material_homogenizationAt(el)
IpLooping3: do ip = FEsolving_execIP(1),FEsolving_execIP(2)
ce = (el-1)*discretization_nIPs + ip
do co = 1, homogenization_Nconstituents(ho)
call crystallite_orientations(co,ip,el)
enddo
call mechanical_homogenize(dt,ip,el)
call mechanical_homogenize(dt,ce)
enddo IpLooping3
enddo elementLooping3
!$OMP END DO

View File

@ -137,27 +137,24 @@ end subroutine mechanical_partition
!--------------------------------------------------------------------------------------------------
!> @brief Average P and dPdF from the individual constituents.
!--------------------------------------------------------------------------------------------------
module subroutine mechanical_homogenize(dt,ip,el)
module subroutine mechanical_homogenize(dt,ce)
real(pReal), intent(in) :: dt
integer, intent(in) :: &
ip, & !< integration point
el !< element number
integer, intent(in) :: ce
integer :: co,ce
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
real(pReal) :: Ps(3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
integer :: co
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt2(ce)))
real(pReal) :: Ps(3,3,homogenization_Nconstituents(material_homogenizationAt2(ce)))
ce = (el-1)* discretization_nIPs + ip
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
chosenHomogenization: select case(homogenization_type(material_homogenizationAt2(ce)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
homogenization_P(1:3,1:3,ce) = phase_mechanical_getP(1,ce)
homogenization_dPdF(1:3,1:3,1:3,1:3,ce) = phase_mechanical_dPdF(dt,1,ce)
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
dPdFs(:,:,:,:,co) = phase_mechanical_dPdF(dt,co,ce)
Ps(:,:,co) = phase_mechanical_getP(co,ce)
enddo
@ -165,10 +162,10 @@ module subroutine mechanical_homogenize(dt,ip,el)
homogenization_P(1:3,1:3,ce), &
homogenization_dPdF(1:3,1:3,1:3,1:3,ce),&
Ps,dPdFs, &
material_homogenizationAt(el))
material_homogenizationAt2(ce))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
dPdFs(:,:,:,:,co) = phase_mechanical_dPdF(dt,co,ce)
Ps(:,:,co) = phase_mechanical_getP(co,ce)
enddo
@ -176,7 +173,7 @@ module subroutine mechanical_homogenize(dt,ip,el)
homogenization_P(1:3,1:3,ce), &
homogenization_dPdF(1:3,1:3,1:3,1:3,ce),&
Ps,dPdFs, &
material_homogenizationAt(el))
material_homogenizationAt2(ce))
end select chosenHomogenization

View File

@ -77,7 +77,7 @@ module subroutine mechanical_RGC_init(num_homogMech)
num_homogMech !< pointer to mechanical homogenization numerics data
integer :: &
h, &
ho, &
Nmaterialpoints, &
sizeState, nIntFaceTot
@ -136,14 +136,14 @@ module subroutine mechanical_RGC_init(num_homogMech)
if (num%volDiscrPow <= 0.0_pReal) call IO_error(301,ext_msg='volDiscrPw_RGC')
do h = 1, size(homogenization_type)
if (homogenization_type(h) /= HOMOGENIZATION_RGC_ID) cycle
homog => material_homogenization%get(h)
do ho = 1, size(homogenization_type)
if (homogenization_type(ho) /= HOMOGENIZATION_RGC_ID) cycle
homog => material_homogenization%get(ho)
homogMech => homog%get('mechanics')
associate(prm => param(h), &
stt => state(h), &
st0 => state0(h), &
dst => dependentState(h))
associate(prm => param(ho), &
stt => state(ho), &
st0 => state0(ho), &
dst => dependentState(ho))
#if defined (__GFORTRAN__)
prm%output = output_asStrings(homogMech)
@ -152,7 +152,7 @@ module subroutine mechanical_RGC_init(num_homogMech)
#endif
prm%N_constituents = homogMech%get_asInts('cluster_size',requiredSize=3)
if (homogenization_Nconstituents(h) /= product(prm%N_constituents)) &
if (homogenization_Nconstituents(ho) /= product(prm%N_constituents)) &
call IO_error(211,ext_msg='N_constituents (mechanical_RGC)')
prm%xi_alpha = homogMech%get_asFloat('xi_alpha')
@ -161,18 +161,18 @@ module subroutine mechanical_RGC_init(num_homogMech)
prm%D_alpha = homogMech%get_asFloats('D_alpha', requiredSize=3)
prm%a_g = homogMech%get_asFloats('a_g', requiredSize=3)
Nmaterialpoints = count(material_homogenizationAt == h)
Nmaterialpoints = count(material_homogenizationAt == ho)
nIntFaceTot = 3*( (prm%N_constituents(1)-1)*prm%N_constituents(2)*prm%N_constituents(3) &
+ prm%N_constituents(1)*(prm%N_constituents(2)-1)*prm%N_constituents(3) &
+ prm%N_constituents(1)*prm%N_constituents(2)*(prm%N_constituents(3)-1))
sizeState = nIntFaceTot
homogState(h)%sizeState = sizeState
allocate(homogState(h)%state0 (sizeState,Nmaterialpoints), source=0.0_pReal)
allocate(homogState(h)%state (sizeState,Nmaterialpoints), source=0.0_pReal)
homogState(ho)%sizeState = sizeState
allocate(homogState(ho)%state0 (sizeState,Nmaterialpoints), source=0.0_pReal)
allocate(homogState(ho)%state (sizeState,Nmaterialpoints), source=0.0_pReal)
stt%relaxationVector => homogState(h)%state(1:nIntFaceTot,:)
st0%relaxationVector => homogState(h)%state0(1:nIntFaceTot,:)
stt%relaxationVector => homogState(ho)%state(1:nIntFaceTot,:)
st0%relaxationVector => homogState(ho)%state0(1:nIntFaceTot,:)
allocate(dst%volumeDiscrepancy( Nmaterialpoints), source=0.0_pReal)
allocate(dst%relaxationRate_avg( Nmaterialpoints), source=0.0_pReal)
@ -181,7 +181,7 @@ module subroutine mechanical_RGC_init(num_homogMech)
!--------------------------------------------------------------------------------------------------
! assigning cluster orientations
dependentState(h)%orientation = spread(eu2om(prm%a_g*inRad),3,Nmaterialpoints)
dependentState(ho)%orientation = spread(eu2om(prm%a_g*inRad),3,Nmaterialpoints)
!dst%orientation = spread(eu2om(prm%a_g*inRad),3,Nmaterialpoints) ifort version 18.0.1 crashes (for whatever reason)
end associate
@ -205,10 +205,11 @@ module subroutine mechanical_RGC_partitionDeformation(F,avgF,ce)
real(pReal), dimension(3) :: aVect,nVect
integer, dimension(4) :: intFace
integer, dimension(3) :: iGrain3
integer :: iGrain,iFace,i,j,me
integer :: iGrain,iFace,i,j,ho,me
associate(prm => param(material_homogenizationAt2(ce)))
ho = material_homogenizationAt2(ce)
me = material_homogenizationMemberAt2(ce)
!--------------------------------------------------------------------------------------------------
! compute the deformation gradient of individual grains due to relaxations
@ -217,8 +218,8 @@ module subroutine mechanical_RGC_partitionDeformation(F,avgF,ce)
iGrain3 = grain1to3(iGrain,prm%N_constituents)
do iFace = 1,6
intFace = getInterface(iFace,iGrain3) ! identifying 6 interfaces of each grain
aVect = relaxationVector(intFace,ce,me) ! get the relaxation vectors for each interface from global relaxation vector array
nVect = interfaceNormal(intFace,ce,me)
aVect = relaxationVector(intFace,ho,me) ! get the relaxation vectors for each interface from global relaxation vector array
nVect = interfaceNormal(intFace,ho,me)
forall (i=1:3,j=1:3) &
F(i,j,iGrain) = F(i,j,iGrain) + aVect(i)*nVect(j) ! calculating deformation relaxations due to interface relaxation
enddo
@ -283,11 +284,11 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
!--------------------------------------------------------------------------------------------------
! computing interface mismatch and stress penalty tensor for all interfaces of all grains
call stressPenalty(R,NN,avgF,F,ce,me)
call stressPenalty(R,NN,avgF,F,ho,me)
!--------------------------------------------------------------------------------------------------
! calculating volume discrepancy and stress penalty related to overall volume discrepancy
call volumePenalty(D,dst%volumeDiscrepancy(me),avgF,F,nGrain,ce,me)
call volumePenalty(D,dst%volumeDiscrepancy(me),avgF,F,nGrain)
!------------------------------------------------------------------------------------------------
! computing the residual stress from the balance of traction at all (interior) interfaces
@ -299,7 +300,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
iGr3N = faceID(2:4) ! identifying the grain ID in local coordinate system (3-dimensional index)
iGrN = grain3to1(iGr3N,param(ho)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceN = getInterface(2*faceID(1),iGr3N)
normN = interfaceNormal(intFaceN,ce,me)
normN = interfaceNormal(intFaceN,ho,me)
!--------------------------------------------------------------------------------------------------
! identify the right/up/front grain (+|P)
@ -307,7 +308,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identifying the grain ID in local coordinate system (3-dimensional index)
iGrP = grain3to1(iGr3P,param(ho)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceP = getInterface(2*faceID(1)-1,iGr3P)
normP = interfaceNormal(intFaceP,ce,me)
normP = interfaceNormal(intFaceP,ho,me)
!--------------------------------------------------------------------------------------------------
! compute the residual of traction at the interface (in local system, 4-dimensional index)
@ -363,10 +364,10 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
iGr3N = faceID(2:4) ! identifying the grain ID in local coordinate sytem
iGrN = grain3to1(iGr3N,param(ho)%N_constituents) ! translate into global grain ID
intFaceN = getInterface(2*faceID(1),iGr3N) ! identifying the connecting interface in local coordinate system
normN = interfaceNormal(intFaceN,ce,me)
normN = interfaceNormal(intFaceN,ho,me)
do iFace = 1,6
intFaceN = getInterface(iFace,iGr3N) ! identifying all interfaces that influence relaxation of the above interface
mornN = interfaceNormal(intFaceN,ce,me)
mornN = interfaceNormal(intFaceN,ho,me)
iMun = interface4to1(intFaceN,param(ho)%N_constituents) ! translate the interfaces ID into local 4-dimensional index
if (iMun > 0) then ! get the corresponding tangent
do i=1,3; do j=1,3; do k=1,3; do l=1,3
@ -384,10 +385,10 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identifying the grain ID in local coordinate sytem
iGrP = grain3to1(iGr3P,param(ho)%N_constituents) ! translate into global grain ID
intFaceP = getInterface(2*faceID(1)-1,iGr3P) ! identifying the connecting interface in local coordinate system
normP = interfaceNormal(intFaceP,ce,me)
normP = interfaceNormal(intFaceP,ho,me)
do iFace = 1,6
intFaceP = getInterface(iFace,iGr3P) ! identifying all interfaces that influence relaxation of the above interface
mornP = interfaceNormal(intFaceP,ce,me)
mornP = interfaceNormal(intFaceP,ho,me)
iMun = interface4to1(intFaceP,param(ho)%N_constituents) ! translate the interfaces ID into local 4-dimensional index
if (iMun > 0) then ! get the corresponding tangent
do i=1,3; do j=1,3; do k=1,3; do l=1,3
@ -409,9 +410,9 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
p_relax = relax
p_relax(ipert) = relax(ipert) + num%pPert ! perturb the relaxation vector
stt%relaxationVector(:,me) = p_relax
call grainDeformation(pF,avgF,ce,me) ! rain deformation from perturbed state
call stressPenalty(pR,DevNull, avgF,pF,ce,me) ! stress penalty due to interface mismatch from perturbed state
call volumePenalty(pD,devNull(1,1), avgF,pF,nGrain,ce,me) ! stress penalty due to volume discrepancy from perturbed state
call grainDeformation(pF,avgF,ho,me) ! rain deformation from perturbed state
call stressPenalty(pR,DevNull, avgF,pF,ho,me) ! stress penalty due to interface mismatch from perturbed state
call volumePenalty(pD,devNull(1,1), avgF,pF,nGrain) ! stress penalty due to volume discrepancy from perturbed state
!--------------------------------------------------------------------------------------------------
! computing the global stress residual array from the perturbed state
@ -424,7 +425,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
iGr3N = faceID(2:4) ! identify the grain ID in local coordinate system (3-dimensional index)
iGrN = grain3to1(iGr3N,param(ho)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceN = getInterface(2*faceID(1),iGr3N) ! identify the interface ID of the grain
normN = interfaceNormal(intFaceN,ce,me)
normN = interfaceNormal(intFaceN,ho,me)
!--------------------------------------------------------------------------------------------------
! identify the right/up/front grain (+|P)
@ -432,7 +433,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identify the grain ID in local coordinate system (3-dimensional index)
iGrP = grain3to1(iGr3P,param(ho)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceP = getInterface(2*faceID(1)-1,iGr3P) ! identify the interface ID of the grain
normP = interfaceNormal(intFaceP,ce,me)
normP = interfaceNormal(intFaceP,ho,me)
!--------------------------------------------------------------------------------------------------
! compute the residual stress (contribution of mismatch and volume penalties) from perturbed state
@ -476,7 +477,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
if (any(abs(drelax) > num%maxdRelax)) then ! Forcing cutback when the incremental change of relaxation vector becomes too large
doneAndHappy = [.true.,.false.]
!$OMP CRITICAL (write2out)
! print'(a,i3,a,i3,a)',' RGC_updateState: ip ',ip,' | el ',el,' enforces cutback'
print'(a,i3,a,i3,a)',' RGC_updateState: enforces cutback'
print'(a,e15.8)',' due to large relaxation change = ',maxval(abs(drelax))
flush(IO_STDOUT)
!$OMP END CRITICAL (write2out)
@ -488,14 +489,14 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
!------------------------------------------------------------------------------------------------
!> @brief calculate stress-like penalty due to deformation mismatch
!------------------------------------------------------------------------------------------------
subroutine stressPenalty(rPen,nMis,avgF,fDef,ce,me)
subroutine stressPenalty(rPen,nMis,avgF,fDef,ho,me)
real(pReal), dimension (:,:,:), intent(out) :: rPen !< stress-like penalty
real(pReal), dimension (:,:), intent(out) :: nMis !< total amount of mismatch
real(pReal), dimension (:,:,:), intent(in) :: fDef !< deformation gradients
real(pReal), dimension (3,3), intent(in) :: avgF !< initial effective stretch tensor
integer, intent(in) :: ce, me
integer, intent(in) :: ho, me
integer, dimension (4) :: intFace
integer, dimension (3) :: iGrain3,iGNghb3,nGDim
@ -515,10 +516,9 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
! get the correction factor the modulus of penalty stress representing the evolution of area of
! the interfaces due to deformations
surfCorr = surfaceCorrection(avgF,ce,me)
associate(prm => param(material_homogenizationAt2(ce)))
surfCorr = surfaceCorrection(avgF,ho,me)
associate(prm => param(ho))
!-----------------------------------------------------------------------------------------------
! computing the mismatch and penalty stress tensor of all grains
@ -528,7 +528,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
interfaceLoop: do iFace = 1,6
intFace = getInterface(iFace,iGrain3) ! get the 4-dimensional index of the interface in local numbering system of the grain
nVect = interfaceNormal(intFace,ce,me)
nVect = interfaceNormal(intFace,ho,me)
iGNghb3 = iGrain3 ! identify the neighboring grain across the interface
iGNghb3(abs(intFace(1))) = iGNghb3(abs(intFace(1))) &
+ int(real(intFace(1),pReal)/real(abs(intFace(1)),pReal))
@ -574,7 +574,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
!------------------------------------------------------------------------------------------------
!> @brief calculate stress-like penalty due to volume discrepancy
!------------------------------------------------------------------------------------------------
subroutine volumePenalty(vPen,vDiscrep,fAvg,fDef,nGrain,ce,me)
subroutine volumePenalty(vPen,vDiscrep,fAvg,fDef,nGrain)
real(pReal), dimension (:,:,:), intent(out) :: vPen ! stress-like penalty due to volume
real(pReal), intent(out) :: vDiscrep ! total volume discrepancy
@ -582,9 +582,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
real(pReal), dimension (:,:,:), intent(in) :: fDef ! deformation gradients
real(pReal), dimension (3,3), intent(in) :: fAvg ! overall deformation gradient
integer, intent(in) :: &
Ngrain, &
ce, &
me
Ngrain
real(pReal), dimension(size(vPen,3)) :: gVol
integer :: i
@ -614,13 +612,13 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
!> @brief compute the correction factor accouted for surface evolution (area change) due to
! deformation
!--------------------------------------------------------------------------------------------------
function surfaceCorrection(avgF,ce,me)
function surfaceCorrection(avgF,ho,me)
real(pReal), dimension(3) :: surfaceCorrection
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
integer, intent(in) :: &
ce, &
ho, &
me
real(pReal), dimension(3,3) :: invC
real(pReal), dimension(3) :: nVect
@ -632,7 +630,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
surfaceCorrection = 0.0_pReal
do iBase = 1,3
nVect = interfaceNormal([iBase,1,1,1],ce,me)
nVect = interfaceNormal([iBase,1,1,1],ho,me)
do i = 1,3; do j = 1,3
surfaceCorrection(iBase) = surfaceCorrection(iBase) + invC(i,j)*nVect(i)*nVect(j) ! compute the component of (the inverse of) the stretch in the direction of the normal
enddo; enddo
@ -649,7 +647,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
integer, intent(in) :: &
grainID,&
ce !< cell
ce
real(pReal), dimension(6,6) :: C
@ -664,13 +662,13 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
!> @brief calculating the grain deformation gradient (the same with
! homogenization_RGC_partitionDeformation, but used only for perturbation scheme)
!-------------------------------------------------------------------------------------------------
subroutine grainDeformation(F, avgF, ce, me)
subroutine grainDeformation(F, avgF, ho, me)
real(pReal), dimension(:,:,:), intent(out) :: F !< partitioned F per grain
real(pReal), dimension(:,:), intent(in) :: avgF !< averaged F
integer, intent(in) :: &
ce, &
ho, &
me
real(pReal), dimension(3) :: aVect,nVect
@ -681,15 +679,15 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHa
!-----------------------------------------------------------------------------------------------
! compute the deformation gradient of individual grains due to relaxations
associate (prm => param(material_homogenizationAt2(ce)))
associate (prm => param(ho))
F = 0.0_pReal
do iGrain = 1,product(prm%N_constituents)
iGrain3 = grain1to3(iGrain,prm%N_constituents)
do iFace = 1,6
intFace = getInterface(iFace,iGrain3)
aVect = relaxationVector(intFace,ce,me)
nVect = interfaceNormal(intFace,ce,me)
aVect = relaxationVector(intFace,ho,me)
nVect = interfaceNormal(intFace,ho,me)
forall (i=1:3,j=1:3) &
F(i,j,iGrain) = F(i,j,iGrain) + aVect(i)*nVect(j) ! effective relaxations
enddo
@ -756,11 +754,11 @@ end subroutine mechanical_RGC_results
!--------------------------------------------------------------------------------------------------
!> @brief collect relaxation vectors of an interface
!--------------------------------------------------------------------------------------------------
pure function relaxationVector(intFace,ce,me)
pure function relaxationVector(intFace,ho,me)
real(pReal), dimension (3) :: relaxationVector
integer, intent(in) :: ce,me
integer, intent(in) :: ho,me
integer, dimension(4), intent(in) :: intFace !< set of interface ID in 4D array (normal and position)
integer :: iNum
@ -768,8 +766,8 @@ pure function relaxationVector(intFace,ce,me)
!--------------------------------------------------------------------------------------------------
! collect the interface relaxation vector from the global state array
associate (prm => param(material_homogenizationAt2(ce)), &
stt => state(material_homogenizationAt2(ce)))
associate (prm => param(ho), &
stt => state(ho))
iNum = interface4to1(intFace,prm%N_constituents) ! identify the position of the interface in global state array
if (iNum > 0) then
@ -786,17 +784,17 @@ end function relaxationVector
!--------------------------------------------------------------------------------------------------
!> @brief identify the normal of an interface
!--------------------------------------------------------------------------------------------------
pure function interfaceNormal(intFace,ce,me)
pure function interfaceNormal(intFace,ho,me)
real(pReal), dimension(3) :: interfaceNormal
integer, dimension(4), intent(in) :: intFace !< interface ID in 4D array (normal and position)
integer, intent(in) :: &
ce, &
ho, &
me
integer :: nPos
associate (dst => dependentState(material_homogenizationAt2(ce)))
associate (dst => dependentState(ho))
!--------------------------------------------------------------------------------------------------
! get the normal of the interface, identified from the value of intFace(1)